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Abstract  

A matroid is a structure that generalizes the properties of Independence. 

Matroid were introduced by Whitney in 1935 to provide a unifying 

abstract treatment of dependence in linear Algebra and graph theory. 

There are several ways to define a Matroid, each relate to the concept of 

independence.This project will focus on definitions of matroid in terms 

of Independent sets, circuits, bases and rank function and also discuss 

about transversal matroids and matroid optimization. 
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Algorithm  

 

Introduction   

Matroid were introduced by Whitney in 1935 to provide a 

unifying abstract treatment of dependence in linear algebra and graph 

theory. There are several ways to define a matroid, each relate to the 

concept of independence. A characteristic of matroid is that they can be 

defined on many different but equivalent ways.The Theory of matroids 

originated in Linear Algebra and 

Graph Theory and has deep connections with many other areas 

including Field theory, matching theory, submodular optimization, lie 

combinatorics and total positivity. 
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Preliminaries  

Basic Graph Theory      

By a graph 𝐺(𝑉, 𝐸)we mean a finite set of vertices 𝑉and a set of 

edges 𝐸..An edge that joins a vertex to itself is called a loop. Edges that 

join the same pair of distinct vertices are called parallel edges . A graph 

with no loops and parallel edges are called simple. A graph  𝐻 is a 

subgraph of a graph 𝐺 if 𝑉 (𝐻) and 𝐸(𝐻)are subsets of 𝑉(𝐺)and 

𝐸(𝐺) respectively. A subgraph 𝐻 of 𝐺 is called proper if either 𝑉 (𝐻)  ≠

𝑉 (𝐺) or 𝐸(𝐻)  ≠ 𝐸(𝐺).A walk in a graph is a sequence 

𝑣0 𝑒1𝑣1𝑒2 … 𝑣𝑘−1𝑒𝑘𝑣𝑘 of vertices and edges and each vertex or edge in the 

sequence, except 𝑣𝑘  , is incident with its successor in the sequence. If the 

vertices and the edges in the walk are distinct, it is a path. 

A graph is closed i.e., 𝑣0 = 𝑣𝑘 then it is called a cycle. A graph 

which contains no cycles is called forest or acyclic. A graph is connected 

if for any 𝑣, 𝑤 ∈ 𝑉(𝐺) there exists a 𝑣 − 𝑤 path. A connected acyclic 

graph is a tree. 

 

Basic Linear Algebra 

A non-empty set 𝑉 is said to be a vector space over a scalar field 

 𝐹 together with operations, addition and scalar multiplication, if it 

satisfy the following axioms: 

1. If 𝛼, 𝛽 ∈ 𝑉 , then 𝛼 +  𝛽 ∈  𝑉 

2.  𝛼 +  𝛽 =  𝛽 +  𝛼,for every 𝛼, 𝛽 ∈  𝑉 (commutativity) 

3.  (𝛼 +  𝛽)  +  𝛾 =  𝛼 +  (𝛽 +  𝛾) for every 𝛼, 𝛽, 𝛾 ∈

 𝑉(associativity) 

4. There exists 0 ∈  𝑉 such that 𝛼 +  0 =  𝛼 for every 𝛼 ∈  𝑉 (Zero 

vector ) 

5. For every 𝛼 ∈  𝑉 there exists −𝛼 ∈  𝑉 such that 𝛼 +  −𝛼 =

 0(additive identity ) 

6.  If 𝑐 ∈  𝐹 and 𝛼 ∈  𝑉 , then 𝑐𝛼 ∈  𝑉 

7. 𝑐(𝛼 +  𝛽)  =  𝑐𝛼 +  𝑐𝛽 for every 𝑐 ∈  𝐹 and every 𝛼, 𝛽 ∈  𝑉 

8. (𝑐1 +  𝑐2)𝛼 = 𝑐1𝛼 + 𝑐2𝛼 for every 𝑐1, 𝑐2 ∈  𝐹 and every 𝛼 ∈  𝑉 

9. 𝑐1(𝑐2𝛼) = (𝑐1𝑐2)𝛼 for every 𝑐1, 𝑐2 ∈ 𝐹 and every 𝛼 ∈  𝑉 

10. 1𝛼 =  𝛼 for every 𝛼 ∈  𝑉 
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Let 𝑉 be a vector space over 𝐹, then a linear combination of 

vectors  𝛼1, 𝛼2, … . . , 𝛼𝑛  in 𝑉 is a vector 𝛽 = 𝑐1𝛼1 + 𝑐2𝛼2 + ⋯ + 𝑐𝑛 𝛼𝑛  for 

some scalars 𝑐1, 𝑐2, … , 𝑐𝑛 in  𝐹 .The vectors 𝛼1, 𝛼2, … , 𝛼𝑛 are said to be 

linearly independent if 𝑐1𝛼1 + 𝑐2𝛼2 + ⋯ + 𝑐𝑛𝛼𝑛 = 0 ⇒ 𝑐𝑖 = 0 ∀𝑖 

Otherwise the vectors are said to be linearly dependent. Let 𝑉 be a vector 

space over 𝐹, then the subset 𝑆 = {𝛼1, 𝛼2, … , 𝛼𝑛}of 𝑉 is said to be a 

spanning set of 𝑉 if for any 𝛼 ∈  𝑉 ,𝛼 = 𝑐1𝛼1 + 𝑐2𝛼2 + ⋯ . +𝑐𝑛𝛼𝑛  for 

some scalars 𝑐1, 𝑐2, … , 𝑐𝑛in 𝐹.Let 𝑉 be a vector space over 𝐹, 𝑆 =

{𝛼1, 𝛼2, … , 𝛼𝑛} be a subset of 𝑉 ,then the Linear span 𝐿(𝑆) of 𝑆 is given by 

𝐿(𝑆) = {𝛼 ∈ 𝑉, 𝛼 = 𝑐1𝛼1 + 𝑐2𝛼2 + ⋯ + 𝑐𝑛, 𝑐𝑖 ∈ 𝐹}. A subset S if a vector 

space V over F, is a basis for V if it is linearly independent and spans V 

 
Basic Transversal Theory 

Let E be a finite set and 𝑆 =  (𝑆1, 𝑆2, … , 𝑆𝑚) be a family of non-

empty subsets of E. A transversal of S is a set of m distinct elements of E, 

one chosen from each of subsets 𝑆𝑖 such that a partial transversal of S is 

a Transversal of some subfamily of S.An equivalent way of graphically 

representing transversals is through bipartite graph.So the edges of the 

bipartite graph represent the membership of the elements in E to the 

subsets in S.A matching M ⊆ E(G) in a graph G is a set of non-adjacent 

edges, while we say that M is a matching of some U ⊆ V (G) if every vertex 

in U is an end-vertex of an edge in M. We can see that any matching in a 

bipartite graph of a set system corresponds to a partial transversal, and 

any matching of S corresponds to a transversal. 

 

Independent Sets And Circuits 

Independent Sets  

A matroid 𝑀 is an ordered pair (𝐸, 𝐼) consisting of a finite set 𝐸 

and a collection 𝐼 of subsets of E having the following three properties: 

(I1)𝜙 ∈ 𝐼 

(I2) If 𝐼1 ∈ 𝐼and 𝐼2 ⊆  𝐼 then 𝐼2 ∈  𝐼 

(I3) If 𝐼1, 𝐼2 ∈ 𝐼 and |𝐼1|  >  |𝐼2| then there exist 𝑖 ∈  𝐼1 − 𝐼2 such that 𝐼2 ∪

{𝑖}  ∈  𝐼. 

The members of 𝐼 are the independent sets of 𝑀 and 𝐸 is the 

ground set of 𝑀.A subset of 𝐸 that is not in 𝐼 is called dependent . 
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Proposition  

Let 𝐸 be the set of column labels of an 𝑚 ×  𝑛 matrix 𝐴 over a field 

𝐹 and let 𝐼 be the set of subsets 𝑋 of 𝐸 for which the multiset of columns 

labelled by 𝑋 is a set and is linearly independent in the vector space 

𝑉 (𝑚, 𝐹). Then (𝐸, 𝐼) is a matroid. 

 

Example 

Let 𝐴 be the following matrix over the field 𝑅 of real numbers 

                   (
1 0 0 1 1
0 1 0 0 1

) 

                    

If we denote the columns as 1, 2, 3, 4, 5 in order, then 𝐸 =

 {1, 2, 3, 4, 5} and 

𝐼=  {ϕ, {1}, {2}, {4}, {5}, {1, 2}, {1, 5}, {2, 4}, {2, 5}, {4, 5}} 

Thus the dependent sets of this matroid is, 

{{3}, {1, 3}, {1, 4}, {2, 3}, {3, 4}, {3, 5}} ∪ {𝑋 ⊆  𝐸 ∶  |𝑋|  ≥  3} 

 

Circuits 

A circuit in a matroid 𝑀 is a minimal dependent set i.e., A 

dependent set whose proper subsets are all independent. 

We shall denote the set of circuits of 𝑀 by 𝐶 or 𝐶(𝑀). Once 𝐼 has 

been specified, 𝐶 can be determined and vice versa. The members of 𝐼 

are those subsets of 𝐸 that contains no member of 𝐶. 

Thus a matroid is uniquely determined by its set 𝐶 of circuits. 

Clearly 

(C1) 𝜙 ∉ 𝐼 

(C2) If 𝐶1and 𝐶2 are members of 𝐶 and 𝐶1 ⊆  𝐶2 then 𝐶1 =  𝐶2 

(C3) If 𝐶1 and 𝐶2 are distinct members of C and 𝑒 ∈  𝐶1 ∩ 𝐶2then there is 

a member 𝐶3 of C such that 𝐶3 ⊆  (𝐶1 ∪ 𝐶2) –  𝑒. 

 

Theorem  

Let 𝐸 be a set and 𝐶 be a collection of subsets of 𝐸 satisfying (C1)-

(C3). Let 𝐼 be the collection of subsets of 𝐸 that contain no member of 𝐶. 

Then (𝐸, 𝐼) is a matroid having 𝐶 as its collection of circuits. 
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Proposition  

Let 𝐸 be the set of edges of a graph 𝐺 and 𝐶 be the set of edge 

cycles of  . Then 𝐶 is the set of circuits of a matroid on 𝐸. 

 

Example 

Let 𝐺 be the graph shown below and let 𝑀 =  𝑀(𝐺), 𝐸(𝑀)  =

 {𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5} and 𝐶 =  {{𝑒3}, {𝑒1, 𝑒4}, {𝑒1, 𝑒2, 𝑒5}, {𝑒4, 𝑒2, 𝑒5}}. 

Comparing 𝑀 with the matroid 𝑀[𝐴] in the first example, we see 

that under the bijection 𝜓 from {1, 2, 3, 4, 5} to {𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5} defined 

by 𝜓(𝑖)  =  𝑒𝑖 ,a set 𝑋 is a circuit in 𝑀[𝐴] if and only if 𝜓(𝑥) is a circuit in 

𝑀. Equivalently, a set Y is independent in 𝑀[𝐴] and 𝑀 have the same 

structure or are isomorphic. 

 

Matroid that is isomorphic to the cycle matroid of a graph is called 

graphic matroid. 

Formally two matroids 𝑴𝟏  and 𝑴𝟐  are isomorphic , written 𝑴𝟏 ≅

 𝑴𝟐 if there is a bijection 𝝍 from 𝑬(𝑴𝟏) to 𝑬(𝑴𝟐) such that, for all X ⊆

 𝑬(𝑴𝟏),the set 𝜳(𝑿) is independent in 𝑴𝟐  if and only if 𝑿 is independent 

in 𝑴𝟏. 

We call such a bijection 𝛹 an isomorphism from 𝑀1 to 𝑀2. 

 
Bases And Rank 

Bases 

A basis or a base of 𝑀 is the maximal independent set in 𝑀.If 𝑀 is 

a matroid and 𝐵 is its collection of bases,then 

(B1) 𝐵 is non-empty. 
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(B2) If 𝐵1 and 𝐵2 are members of 𝐵 and 𝑥 ∈  𝐵1– 𝐵2, then there is 

an element 𝑦 of 𝐵2– 𝐵1; (𝐵1–  𝑥)  ∪  𝑦 ∈  𝐵.(Basis exchange axiom) 

 

Lemma : All the members of 𝐵 have the same cardinality. 

Theorem  

Let 𝐸 be a set and 𝐵 be a collection of subsets of 𝐸 satisfying (B1) 

and (B2).Let 𝐼 be the collection of subsets of 𝐸 that are contained in some 

member of 𝐵. Then (𝐸, 𝐼) is a matroid having 𝐵 as its collection of bases. 

Corollary  :Let 𝐵 be a basis of a matroid 𝑀. If 𝑒 ∈  𝐸(𝑀) –  𝐵, then 𝐵 ∪

 𝑒 contains a unique circuit 𝐶(𝑒, 𝐵). 

Example  

For graphic matroids, we will take the base of our matroid to be a 

spanning tree of graph 𝐺. Let 𝐺 be the graph shown below 
 

Then the bases are,{a, b, c, d}, {a, e, d, c}, {b, c, d, e}, {b, a, d, e}, {c, 

b, a, e}, {c, b, f, e}, {c, d, f, a},{c, g, a, e}, {c, g, f, e}.Clearly (B1) is satisfied. 

We can now demonstrate (B2);If we choose B1 ={a, b, c, d} and B2= {c, g, 

a, e}, then we can see the spanning trees of B1 and B2 in the following 

figures .Each spanning tree has 5 vertices and 4 edges.We can 

demonstrate (B2) by removing an element  {a} from B1 and then there 

exist  an element in B2 such that a new base is created ,B3= (B1\{a}) ∪ 

{e}).Figure 3.3 shows the new base B2 

3.1 Spanning Tree of B1      3.2  Spanning Tree of B2         3.3 Spanning Tree  

                                                                                                     of B3 
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Rank 

We begin by defining a fundamental and very natural matroid 

construction .Let 𝑀 be the matroid (𝐸, 𝐼) and suppose that 𝑋 ⊆  𝐸. Let 

𝐼|𝑋 be {𝐼 ⊆  𝑋 ∶  𝐼 ∈  𝐼}.Then the pair (𝑋, 𝐼|𝑋) is a matroid.We call this 

matroid the restriction of 𝑀 to 𝑋 or the deletion of 𝐸 –  𝑋 from 𝑀.It is 

denoted by 𝑀|𝑋 or 𝑀|(𝐸 –  𝑋). 

 

Definition  

Rank 𝑟(𝑋) of 𝑋 to be the cardinality of a basis 𝐵 of 𝑀|𝑋 and call 

such a set 𝐵 a basis of 𝑋.Clearly the function 𝑟 ,the rank function of 𝑀 

,maps 2𝐸  into the set of non negative integers. 

𝑅 has the following properties: 

(R1) If 𝑋 ⊆  ,then 0 ≤ 𝑟(𝑋)  ≤ |𝑋| 

(R2) If 𝑋 ⊆ 𝑌 ⊆ 𝐸, then 𝑟(𝑋) ≤ 𝑟(𝑌 ). 

R(3) If 𝑋 and 𝑌 are subsets of 𝐸,then 𝑟(𝑋 ∪ 𝑌 )  +  𝑟(𝑋 ∩ 𝑌 )  ≤  𝑟(𝑋)  +

 𝑟(𝑌 ) 

 

Lemma 

Let 𝐸 be a set and 𝑟 be a function on 2𝐸  satisfying (R2) and 

(R3).If 𝑋 and 𝑌 are subsets of 𝐸 such that 𝑟(𝑋 ∪ 𝑌 ) =  𝑟(𝑋) for all 𝑦 in 

𝑌 –  𝑋, then 𝑟(𝑋 ∪ 𝑌 ) =  𝑟(𝑋). 

 

Theorem  

Let 𝐸 be a set and 𝑟 be a function that maps 2𝐸  into the set of non-

negative Integers and satisfies (R1)-(R3).Let 𝐼 be the collection of 

subsets 𝑋 of 𝐸 for which 𝑟(𝑋) =  |𝑋|. Then (𝐸, 𝐼) is a matroid having rank 

function 𝑟. 

 

Remark 

Let 𝑀 =  𝑀(𝐺) where 𝐺 is connected graph. Then a basis of 𝑀(𝐺) 

is the set of edges of a spanning tree of 𝐺. It is well known that for a 

tree 𝑇, |𝑉 (𝑇)| =  |𝐸(𝑇)| +  1. 

Hence, 𝑟(𝑀) =  |𝑉 (𝐺)| − 1 
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Example 

Let 𝑀 =  𝑀(𝐺) where 𝐺 is the graph shown below. Then as 𝐺 is 

connected 

𝑅(𝑀)  =  |𝑉 (𝐺)|  −  1 =  4 

If 𝑋 =  {4, 5, 6, 7, 8}, then a basis for 𝑀|𝑋 is {4, 5, 6}, so 

𝑟({4, 5, 6, 7, 8})  =  3 

 
Transversal  Matroids 

For a finite set 𝑆, a family of subsets of 𝑆 is a finite sequence 

(𝐴1, 𝐴2, . . . , 𝐴𝑚) such that 𝐴𝑗 ⊆  𝑆 for all j in {1, 2, . . . , 𝑚} Note that the 

terms of this sequence,the members of the family, need not be distinct. If 

𝐽 =  {1, 2, . . , 𝑚},We shall frequently abbreviate {𝐴1, 𝐴2, . . . , 𝐴𝑚} 

as (𝐴𝑗: 𝑗 ∈  𝐽). A transversal or system of distinct representatives of 

{𝐴1, 𝐴2, . . . , 𝐴𝑚} is a subset {𝑒1, 𝑒2, . . . , 𝑒𝑚} of 𝑆 such that 𝑒𝑗 ∈ 𝐴𝑗 .For all 𝑗 in 

𝐽, and 𝑒1, 𝑒2, . . . , 𝑒𝑚 are distinct. Equivalently , 𝑇 is a transversal 

of (𝐴𝑗: 𝑗 ∈ 𝐽) if there is a bijection 𝜓 ∶  𝐽 →  𝑇 such that 𝜓(𝑗) ∈ 𝐴𝑗for all 𝑗 

in 𝐽.If 𝑋 ⊆  𝑆, then 𝑋 is a partial transversal of (𝐴𝑗: 𝑗 ∈ 𝐽) if 𝑋 is a 

transversal of (𝐴𝑗: 𝑗 ∈ 𝐾) for some subset 𝐾 of 𝐽. In the special case that 

(𝐴1, 𝐴2, . . . , 𝐴𝑚) is a partition π of 𝑆, the set of partial transversal of 𝐴 

coincides with the set of independent sets of the partition Matroid 𝑀𝜋. 

The main result we are discussing in this chapter is that, for all families 

𝐴 of subsets of 𝑆, the set of all partial transversals of 𝐴 is the set of 

independent sets of a matroid on 𝑆.Another way to view partial 

transversals uses the idea of a matching in a bipartite graph. 

 
Example  

Let 𝑆 =  {𝑥1, 𝑥2, . . . , 𝑥6} and 𝐴 =  {𝐴1, 𝐴2, 𝐴3, 𝐴4} where 𝐴1 =

 {𝑥1, 𝑥2, 𝑥6}, 𝐴2 = {𝑥3, 𝑥4, 𝑥5, 𝑥6}, 𝐴3 =  {𝑥2, 𝑥3}, and 𝐴4 =  {𝑥2, 𝑥4, 𝑥6}. 

Then the bipartite graph ∆[A] is as shown in Figure. 
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The set {𝑥1, 𝑥2, 𝑥3, 𝑥4} is a transversal of 𝐴. To check this, one 

needs only check that {𝑥11, 𝑥42, 𝑥33, 𝑥24} is a matching in ∆[A]. Similarly 

as,{𝑥61, 𝑥23, 𝑥43} is a matching in ∆[A] the set {𝑥6, 𝑥2, 𝑥4} is a partial 

transversal of 𝐴. Clearly 𝐴 has many other partial transversals. 

 

Theorem 

Let 𝐴 be a family {𝐴1, 𝐴2, . . . , 𝐴𝑚} of subsets of a set 𝑆.Let 𝐼 be the 

set of partial transversals of 𝐴. Then 𝐼 is the collection of independent 

sets of a matroid on 𝑆. 

 

Example  

Let G1 and G2 be the graphs shown below.Let 𝐴1 =  {1, 2, 7} 𝐴2 =

 {3, 4, 7} and 𝐴3 =  {5, 6, 7}. Then, for 𝐴 =  (𝐴1, 𝐴2, 𝐴3) and 𝑆 =

 {1, 2, . . . , 7} ,then 𝑀[𝐴]  =  𝑀(𝐺1). 

In contrast, 𝑀(𝐺2) is not transversal. To show this, assume 

that 𝑀(𝐺2)  = 𝑀[𝐴′] for some family 𝐴′ of subsets of {1, 2, 3, 4, 5, 6} As 

{1} and {2} are independent but {1, 2} is dependent, there is a unique 

member, say 𝐴1′ of 𝐴 meeting {1, 2}. Moreover,𝐴1′ contains both 1 and 2. 

Similarly, 𝐴′ has a unique member 𝐴2′ meeting {3, 4} and a unique 

member 𝐴3′ meeting {5, 6} and these members contain {3, 4} and {5, 6} 

respectively.As {1, 3}, {1, 5} and {3, 5} must be partial transversals of 

𝐴′,the sets 𝐴1′, 𝐴2′ and 𝐴3′ are distinct.This implies that {1, 3, 5} is a 

partial transversal of 𝐴′; a contradiction. We conclude that 𝑀(𝐺2) is 

indeed non-transversal. 
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Greedy Algorithm  

Let 𝐺 be a connected graph and let 𝑤 be a function from 𝐸(𝐺)into 

𝑅.We call 𝑤 a weight function on 𝐺 and, for all 𝑋 ⊆  𝐸(𝐺), we define the 

weight 𝑤(𝑥) of 𝑋 to be ∑ 𝑤(𝑥)𝑥∈𝑋 . 

The greedy algorithm for the pair (𝐼, 𝑤) proceeds as follows: 

1.  Set 𝑋0 =  𝜙 and 𝑗 =  0 

2. If 𝐸 – 𝑋𝑗 contains an element 𝑒 such that 𝑋𝑗 ∪  𝑒 ∈  𝐼 choose such  

an element 𝑒𝑗+1 of maximum weight, let 𝑋𝑗+1 =  𝑋𝑘 ∪ 𝑒𝑗+1and go 

to (3) 

Otherwise, let 𝐵𝐺 = 𝑋𝑗 jand go to (4). 

3. Add 1 to j and go to (2). 

4. Stop 

 

Theorem 

Let 𝐼 be a collection of subsets of a set 𝐸.Then (𝐸, 𝐼) is a matroid if 

and only if 𝐼 has the following properties: 

(I1) 𝜙 ∈  𝐼 

(I2) If 𝐼 ∈  𝐼 and 𝐼′ ⊆  𝐼, then 𝐼′ ∈  𝐼. 

(G) For all weight functions 𝑤 ∶  𝐸 →  𝑅 the greedy algorithm produces 

a maximal member of I of maximum weight. 

 

Conclusion  

The theory of matroids has its origins in graph theory and linear 

algebra, and its most successful applications in the past have been jn the 

areas of combinatorial optimization and network theory. 

Recently, however, there has been a flurry of new applications of 

this theory in the fields of information and coding theory. Its applications 

extend to diverse fields such as computer science, operation research, 

electrical engineering and more. 
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