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Dear Delegates, Researchers and Readers,

I am delighted to share this message through the Proceedings of the International Conference on
Algebraic Graph Theory, Graph Theory and Topology. This conference exemplifies the power of
mathematics in bridging geographical gaps, fostering collaboration and advancing knowledge.

Algebraic Graph Theory and Topology have profound implications in pure mathematics, data
science, artificial intelligence and network analysis. Our hybrid conference featured esteemed
mathematicians worldwide, showcasing the diversity and depth of contributions from leading
researchers and emerging scholars.

I extend my sincere gratitude to the authors, reviewers and editors, for their tireless efforts in
making this publication possible. I also applaud the organizing committee's vision and hard work
in making this conference a resounding success.

I hope these proceedings inspire the scholarly community to further develop these fascinating
fields of mathematics.

Warm regards and best wishes,

Prof. Dr. A. J. S. Pravin
Correspondent/Secretary

Nesamony Memorial Christian College
Marthandam



Dear Delegates and Participants,

I am extremely excited that the Research Department of Mathematics is hosting an International
Conference on Algebraic Graph Theory, Graph Theory and Topology on January 9 and 10, 2025.

I extend my warmest greetings to the contributors and readers of the International Conference
Proceedings. This collection showcases outstanding research, creative thinking and teamwork
from global scholars, researchers and students. The conference's topics - Algebraic Graph Theory,
Graph Theory and Topology - illustrate the connections between pure mathematics and various
fields including science and technology.

The proceedings serve as a valuable resource for further research and a testament to the concepts
explored during the conference. I express my sincere gratitude to the organizers for compiling
this collection and commend the authors to advance in mathematical knowledge.

May the proceedings inspire readers and scholars to push the boundaries of knowledge, foster
meaningful collaborations and promote mathematics' continued growth as a science that shapes
our understanding of the world.

Congratulations to all contributors. I wish you great success in your future endeavours.
Warm regards,

Dr. R. Sheela Christy

Principal i/c

Nesamony Memorial Christian College
Marthandam



Dear colleagues and participants,

It is with immense pleasure and pride that I welcome you to the proceedings of the
“International Conference on Algebraic Graph Theory, Graph Theory and Topology”. This event
marks a significant step in advancing research and fostering collaboration in the realms of
mathematics and its interdisciplinary applications.

Algebraic Graph theory, Graph theory and Topology are pivotal areas of study, offering
powerful tools and insights that span various scientific domains. By bringing together scholars,
researchers, and practitioners from around the globe, this conference aims to spark innovative
ideas and promote meaningful discussions.

I extend my heartfelt gratitude to the organizing committee, contributors, and participants for
their dedication and commitment to making this event a success. Your collective efforts serve as
a testament to the vibrant intellectual community that we are privileged to be part of.

As you engage with the content of this publication, we invite you to reflect on the broader
implications of these works and their potential to create meaningful impact in our fields and
beyond. May this document serve as a valuable resource for advancing your endeavours and
fostering further collaborations.

Best wishes for a fruitful and engaging experience!

Sincerely,

Dr. A. Pramila Inpa Rose

Head, Department of Mathematics
Nesamony Memorial Christian College
Marthandam
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SOME NEW GRAPH PARAMETERS

R. Kala
Department of Mathematics
Manonmaniam Sundaranar University, Tirunelveli

Abstract

In thistalk we shall have an insight into the following four new graph parameters.
(i) Strongly Regular graphs

(i) Triameter of agraph

(ii1) Proper diameter of agraph

(iv) Neighbourhood Polynomial of a graph

A graph G issaid to be strongly regular with parameters (n; k; A; p) if itisak-
regular n-vertex graph in which any two adjacent vertices have A common neighbours
and any two non-adjacent vertices have p common neighbours.

Thetriameter of G isdefinedasmax{d(u,v) + d(v,w) + d(u,w) : u,v,w €
V(G)}and is denoted by tr(G). It is obvious that3 < tr(G) < 2n—2 . We
determine several upper bounds for this parameter and prove that they are best
possible. We also determine the rel ationship between this parameter and several other
parameters.

A proper edge-coloring of agraphisacoloring in which adjacent edges receive
distinct colors. A path is properly colored if consecutive edges have distinct colors,
and an edge-colored graph is properly connected if there exists aproperly colored path
between every pair of vertices. In such a graph, we introduce the notion of the graphs
proper diameter which is a function of both the graph and the coloring and define it to
be the maximum length of a shortest properly colored path between any two verticesin
the graph.

For 0 <i<n-—2, the i —common neighbor set of G is defined as
NG, ) ={(w,v):u,veV(G),u#+vand [N(u) N N(v)| =i}. The common
neighbor polynomial of G denoted by N[G;x] is defined as N[G;x] =
Y™ZIN(G,i)| x;. Notethat N[G, x] isapolynomial of degree at most n-2.

Also isomorphic graphs have same common neighbor polynomials.
References
[1] Angsuman Das, Triameter of graphs, Discussiones Mathematicae
Graph Theory 41(2021), pp 601-616.
[2] Vincent Coll, The proper diameter of a graph, Discussiones Mathematicae
Graph Theory 40(2020), pp 107-125.



ON (a,d) —HYPEREDGE ANTIMAGIC LABELING
OF CERTAIN CLASSES OF HYPERGRAPHS:
A NEW NOTION

Dafik!?3* 1 .H.Agustin?3V.Swaminathan*
!Department of Mathematics, University of Jember, Indonesia
2Department of Postgraduate M athematics Education, University of Jember, Indonesia
3PUI-PT Combinatorics and Graph, CGANT-University of Jember, Indonesia
4Al& CS Laboratory, School of Arts, Sciences, Humanities and Education, SASTRA
Deemed University, Thanjavur, Tamil Nadu, India

E-mail: d.dafik@unegj.ac.id

Abstract

By a hypergraph G, we mean a generalization of a graph G in which an edge
can join any number of vertices. In an ordinary graph, an edge connects exactly two
vertices, but in hypergraph, an edge or hyperedge may connect more than two
vertices. Let G = (V,E) bea hypergraph, thus VV contains a finite set of vertices,
and E contains a hyperedge of subset of V. Some vertices are said to be adjacent if
they are elements of a hyperedge. A vertex v is said to be incident to an hyperedge e
If vee. Smilarly, a hyperedge e is said to be incident to vertex v if v € e.
Furthermore, a bijection f from V(G) into {1,2,3,...,|V|} is caled and
(a,d) —hyperedge antimagic labeling of hypergraph G if the hyperedge weights
W(e) = X,ee f (v)Form an arithmetic progression starting from a and having common
difference d. In this paper, we initiate to study hyperedge antimagic labeling of certain
classes of hypergraphs, including analyze the properties of the antimagicness of any

hypergraph.

Keywords : Hypergraphs, Hyperedge Antimagic Labeling, Hyperedge weights.
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THE K-UNIFORM HYPER GRAPH OF
COMMUTATIVE RINGS

K. Selvakumar
Department of Mathematics
ManonmaniamSundaranarUniversity
Tirunelveli, Tamil Nadu, India
email: selva_158@yahoo.co.in

Abstract

Theideaof k —zero-divisor hypergraph of acommutative ring R was introduced
by Ch. Esdanchi and A. M. Rahimi [1] in 2007. Actually they extended the
concept of zero-divisor of a commutative ring R to that of k-zero-divisor and
investigating the interplay between the ring-theoretic properties of R and the
hypergraph-theoretic properties of its associated k-uniform hypergraph. They
defined, for k = 2, a non zero non unit element a, as a k-zero-divisor in R if
there exist k — 1 distinct elements a,, ..., a, different from a, such that a,,...,a; = 0,
and no product of elements of any proper subset of {a_1,...,a_k} is zero and
denote Z(R,k) as the set of all k-zero-divisors in R. The k-zero-divisor
hypergraph of R, denoted by H, (R), isahypergraph with vertex set Z(R, k), and
for distinct elements x4, x5, ..., x, IN Z(R, k), the set {x,, x5, ..., x;} iSan edge of
H,(R) if and only if [T¥ , x; = 0 and the product of any (k — 1) elements of
{x1,%,,...,x,}is non zero. In this talk, we discuss some properties of k —zero-
divisor hypergraph of R and we will generalize this notion by replacing elements
whose product is zero with elements whose product liesin someideal I of R.

References

[1] Edlahchi, C H., Rahimi, A. M., The k-zero divisor hypergraph of a
commutativering. Int. J. Math. and Mathematical SciencesVol. 2007, Article
ID 50875 (2007), 15 pp.

[2] Selvakumar K., Ramanathan V., The k-annihilating-ideal hypergraph of
commutative ring, AKCE Inter. J .Graphs and Combin., 16 (3) (2019), 241
252.

[3] Selvakumar K., and Ramanathan V., On the genus of the k-annihilating ideal
hypergraph of commutative ring, Indian J. Pure and Applied Mathematics,
50 (2) (2019), 461475.

[4] Selvakumar K., Subajini M., ldeal- based k-zero-divisor hypergraph of
commutative rings, Algebra Colloquium, 28(4)(2021), 655-672.
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OMEGA INVARIANT AND ALGEBRAIC GRAPHS

Ismail Naci Canqul, Ali Berkan Bektas, YelizKara

1Bursa Uludag University, Mathematics, Bursa, Turkey,
cangul @uludag.edu.tr

Abstract

The omegainvariant was introduced in 2018 to determine several algebraic, combinatoric and
topological propertiesof al realizations of a given degree sequence or of any given graph. It is
directly related to the Euler characteristic and the cyclomatic number of the graph. It helps one
to find many algebraic, geometric, graph theoretical, number theoretical, topological and
combinatorial properties of al the realizations of the given degree sequenceincluding cyclicity,
connectivity, numbers of components, multiple edges, loops, cycles, chords, pendant and
support vertices, etc. Since 2019, several applications of thisinvariant have been found. In this
work, we shall recall the omega invariant together with some fundamental combinatoric
properties and also apply it to study the constructive properties of idempotent total graphs as
algebraic graphs.

Keywords. graph characteristic, degree sequence, omega invariant, idempotent total graph.

References

[1] Delen, S., Cangul, I. N. 2018. A New Graph Invariant. Turkish Journal of Analysis and
Number Theory, 6 (1), 30-33.

[2] Delen, S, Cangul, 1. N. 2019. Extremal Problems on Components and Loops in Graphs.
Acta Mathematica Sinica, English Series, 35 (2), 161-171.
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CONNECTED GEODETIC DOMINATION NUMBER OF A
FUZZY GRAPH
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Abstract

Let S beasubset of V(G) andlet G: (V, o, 1) be afuzzy graph. A connected geodetic
dominating set of afuzzy graph G: (V, o, 1) is a geodetic dominating set S such that the sub
graph induced by S, (S), is connected. The minimum cardinality among all the connected
geodetic dominating set of G is called the connected geodetic domination number of G and is
denoted by ys.4(G). In this paper the concept of connected geodetic domination number of
fuzzy graph isintroduced and al so proves some important results related to connected geodetic

domination number of fuzzy graph.

Keywords. geodesic set, dominating set, geodetic dominating set, connected geodetic
dominating set, connected geodetic domination number.

2020 Mathematics Subject Classification (AMS): 05C72, 05C69, 05C12.

1. Introduction

Zadeh in 1965[12] developed a mathematical phenomenon for describing the
uncertainties prevailing in day-to-day life situations by introducing the concept of fuzzy sets.
The theory of fuzzy graphs was later on developed by Rosenfeld in the year 1975[7]. A fuzzy
graphisatriplet G: (V, o, u) where V isavertex set, o isafuzzy subset on V and u is afuzzy
relation on o such that u(x,y) < o(x)Ac(y)vVx,y € V. We assume that V is finite and
nonempty, u is reflexive and symmetric. In al the examples ¢ is chosen suitably. Also we
denote the underlying crisp graph by G*: (6", u*) whereo” ={x € V:o(x) > 0} andu* =
{(x,y) eV xV:u(x,y) >0}. Here we takec™ =V. For basic fuzzy graph theoretic
terminology we refer to Nagoorgani and Chandrasekaran VT [4]. A fuzzy graph G: (V, o, 1) is

acomplete fuzzy graph if u(x,y) < o(x)Aa(y) foreveryx,y € o*.
1
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Domination in fuzzy graph is one of the widest fields which have witness atremendous
growth recently. The term domination in crisp graph was first introduced by Ore[6]. The
concept of domination in fuzzy graph was introduced by A. Somasundaram and S.
Somasundaram [9]. Let G: (V, g, u) beafuzzy graph. Let x and y be any two vertices of G. We
say that x dominatesy if (x,y) isastrong arc. A subset D of V iscalled adominating set of
G if for every y ¢ D, there exists x € D such that x dominatesy. A dominating set S is a

connected dominating set if it induces a connected sub graph in G.

If there is no shorter strong path from x to y, then a strong path P from x toy issaid
to be geodesic, and thelength of ax — y geodesicisthe geodesic distancefrom x to y, indicated
by (x,y). Let S represent the collection of verticesin afuzzy connected graph G. The set of all
verticesin S aswell asthe verticesthat lie on the geodesic between S's verticesis known asthe
geodesic closure (S) of S. Any set of G with a minimum number of verticesisreferred to asa
geodesic basis for G, and S is said to be a geodesic set of G if (S) = V(G). The number of
vertices on a geodesic basis determines its order. A fuzzy graph's geodesic number, indicated
by the symbol gn(G), isthe order of ageodesic basisof G. Inthis paper, the connected geodetic

domination number of fuzzy graph isintroduced and its limiting bounds are identified.
2. Connected geodetic domination number of a fuzzy graph

In this section, we introduce the concept of connected geodetic domination in fuzzy
graphs and its bounds are discussed.

Definition 2.1. A connected geodetic domination set of afuzzy graph G: (V, g, 1) isageodetic
dominating set S such that the sub graph induced by S, (S), is connected. The minimum
cardinality among all the connected geodetic dominating set of G is called the connected
geodetic domination number of G and is denoted by y.4(G).

Example 2.2. For thefuzzy graph givenin Fig.1. thearcs (v;, v,) and (vs, vg) are §- arcsand
all the other arcsare strong arcs. Here S; = {v4, v,, V5, v} i1Saminimum geodetic dominating
set and the geodetic domination number isy;,(G) = 2.1 . Also, S, = {v4, V3, V3, V4, Us, Vg} IS
aminimum connected geodetic dominating set and the connected geodetic domination number
iSYrcg(G) = 3 . Thus the geodetic domination number and connected geodetic domination

number are different.
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Theorem 2.3. For the complete fuzzy graph G = K,,: (V, 0, 1), (n = 2), ¥5.4(G) = p, where
P = ey 0(W).
Proof. Since G is a complete fuzzy graph, all arcs are strong arcs and each vertex is adjacent

to all other vertices. No vertex will lie on the geodesic path of any pair of vertices (x,y) € u*.

Therefore the complete vertex set is the only connected geodetic dominating set and hence
Yfcg G) = p.

Proposition 2.4. Any connected geodetic dominating set of a fuzzy graph G: (V,o, 1) is a
geodetic dominating set of G.

Remark 2.5. The converse of Proposition 2.4 need not be true.

Example 2.6. Consider the fuzzy graph in Fig. 2. In this graph S = {a,c} is a geodetic
dominating set, but not a connected geodetic dominating set, since the induced sub graph (S)
IS not connected.
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Proposition 2.7. For any connected fuzzy graph G: (V, o, i), ¥5g(G) < V¢cq(G).

Proposition 2.8. If G: (V,0,u) is a non-trivial fuzzy path B, then y;.,(G) = p, where p =
ZuEV J(u)'

ISBN: 978-93-48505-23-1
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Definition 2.9. A minimal connected geodetic dominating set S in afuzzy graph G: (V, o, ) is

a connected geodetic dominating set which contains no connected geodetic dominating set as
aproper set.

Remark 2.10. For any minimal connected dominating set S of afuzzy graph G: (V, o, ), if S
is a'so a geodetic set of G, then S is minima connected geodetic dominating set in a fuzzy
graph G.

Example 2.11. Consider the fuzzy graph in Fig.3. In this graph, the minimal connected
dominating set isS = {a, b}, which is also ageodetic set of G. Hence S = {a, b} isaminimal
connected geodetic dominating set of G.

Al 4 0.2 =i LR §]
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Remark 2.12. [1] For a connected fuzzy graph G: (V, o, ) on n vertices, 0 < y5,(G) < p,
wherep = Yy o(w).

Remark 2.13. For aconnected fuzzy graph G: (V, o, 1) onn vertices, 0 < y¢.4(G) < p, where
P = Xuev o (u).

Theorem 2.14. For connected fuzzy graph G: (V, g, 1) having maximum degree A=V
{dw)/veV}, s =A{d(wv)/veV}orderp =Y ,eyo(u),andsizeq = Y., u(u, v),then

P <Yreg(@) <2(q-E)+2.

1+A

Proof. The vertex set V of the fuzzy graph G: (V, g, u) is aconnected geodetic dominating set
of G with order p. But it may not be the minimum one. Therefore, y¢.,(G) < p and for all
connected fuzzy graphG we haveq =p — 1. Thus, yr,(G) <p=2(p—1D —-p+2<
2 (q - g) + 2. For the time being, we assume that y;.,(G) = 8, where§ < p. Consider a

connected geodetic dominating set S = {uy, uy, ..., us} Withys.,(G) = 6. For

ISBN: 978-93-48505-23-1
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a€{1,2,..,6}, wecanwrite ¥_, 1 + deg(u,) = p and deg(u,) < A for each a,
p < Xa=1(1 + deg(ug)) < Xoos(1+4) < 5(1 +4).
p p
It follows that £~ < y,.,(6) < 2 (q - 5) +2.

Remark 2.15. For any connected fuzzy graph G: (V, o, ) onn vertices, 0 < y¢4(G) <

Yreg(G) < p, Wherep = ¥, ey o(u).

Proof. By Remark 2.12, itis clear that y;,(G) = 0. Now by Definition 2.1, every connected
geodetic dominating set is also a geodetic dominating set of G and s0 ¥¢,(G) < y¢c4(G). Also
note that V(G)induces a connected geodetic dominating set of G and it is obvious that
Yreg(G) < p. Thus 0 < y¢4(G) < y54(G) < p.

Corollary 2.16. Let G: (V, g, u) be any connected fuzzy graph on n vertices. If y;4(G) = p,
then Yfcg (G) = p,wherep = Yy e a(u).

Definition 2.17. [8] A vertex vin afuzzy graph G: (V, o, u) is caled extreme vertex, if the
fuzzy sub graph induces by its neighbors is a complete fuzzy graph.

Proposition 2.18. Each extreme vertex of afuzzy graph G: (V, o, 1) belongsto every geodetic
dominating set of G.

Proof. Let S be a geodetic dominating set of G and x be an extreme vertex of G. Let
{x1, x5, ..., x,} betheneighborsof x and (x, x;) (1 < i,j < n) betheedgesincident on x. Since
x is an extreme vertex, x; and x;are adjacent for i # j (1 <i,j < n). Then any geodetic
dominating set which contains x, is either (x;,x) (1 <i<n) or yi,¥2, -, Ym, Xi, X Where
each y; (1 <i<n) is different from x;. Thus each extreme vertex of a fuzzy graph

G: (V,o,u) belongsto every geodetic dominating set of G.

Proposition 2.19. Each extreme vertex of afuzzy graph G: (V, g, u) belongsto every connected

geodetic dominating set of G.

Proof. Since every connected geodetic dominating set is aso a geodetic dominating set, the

result follows from Proposition 2.19.

Proposition 2.20. Let G: (V, g, 1) be a connected fuzzy graph such that the underlying crisp
graph G* contains at least one cut-vertex and let S be a connected geodetic dominating set of
G. If x isacut-vertex of G*, then every component of G* — {x} contains an element of S.

5
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Proof. Let x be a cut-vertex of G* and let S be a connected geodetic dominating set of G.
Suppose that there exists acomponent say G, ", of G* — {x} such that G, contains no vertex of
S.Lety € V(G,"). Since S is a connected geodetic dominating set of G, there exists a pair of
verticesa and b in S suchthat y liesonsomea — b geodesicpath P:a = yo, V1, ) ¥, ooy Y =
binG. Since x isacut-vertex of G*,thea — y geodesic sub path of P and they — b geodesic

sub path of P both contain x. Then it follows that P is not a path, contrary to assumption.

Proposition 2.21. Let G: (V, 0, 1) be a connected fuzzy graph such that G* contains at |east
one cut-vertex. Then every cut-vertex of G* belongs to every connected geodetic dominating
set of G.

Proof. Let x beacut-vertex of G* andlet G,",G,", ...,G,” (a = 2) be the components of G —
{x}. Let S be any connected geodetic dominating set of G. Then by Proposition 2.20, S contains
at least one element from each component G; * (I < i < a). Since (S) is connected, it follows
that x € S.

Theorem 2.22. For a complete bipartite fuzzy graph ¢ = K, s = (V; U V,, 0, u) with partite

setsV; and V, having number of vertices r and s respectively,

(1) Yreg(G) = pwherep = Y epo(u),ifr=1,s > 1.

(D) Ypeg(G) = min{Xgey, 0(a) + minpey,a(b), Lpey, 0(b) + mingey,0(a)}, if r=
s=2.

(i) Vreg(G) = Xgey, 0(a) + minyey,0(b) ifr =2, = 3.

(iV)  Yfeg(G) = ming g, v,y [o0(ay) + o(az)] + miny, v, [c(by) +o(by)], ifr,s = 3.

Pr oof.

(1) If the set V; having single vertex then the underlying crisp graph K; ¢ (s = 1) then
any connected geodetic dominating set must contains every vertices in G.
Thereforeysy(G) = Xuev,un, 0(w) =p .

(i) If the setsV; and V, each having two vertices. In K, ,, @l the arcs are strong. Also
each vertex in V; is adjacent with all the vertices in V,. Therefore, the minimal
connected geodetic dominating sets consists of three vertices such that two vertices
from one partite set and the other is from the other partite set. Hence yy.4(G) =
min{Y ey, 0(a) + mingey,0(b), Ypey, 0(b) + ming.y, o(a)}.

(ili)  Suppose V; consists of two vertices and V, consists of more than two vertices. Soin
6
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this complete bipartite fuzzy graph any two vertices of a partite set is geodetic
dominate with al the vertices of the other partite set. But it is not connected. Hence
the minimum connected geodetic dominating sets consists of three vertices from V;
and the other oneisfrom V,. Hence y;c,(G) = Yger, 0(a) + ming,y,a(b) .

(iv) LetV; ={aq,ay, .., ay,}and V; ={by,b,, .., b,} be the partitions of the complete
bipartite graph G. In G every vertex in V/; islinked with every vertex in V,. Moreover
all the arcs are strong and also any vertex will never lies on the shortest path between
any other pair other pair vertices. Also two vertices from each partiteset of G say S =
{ai, ai11,bj, bj,1}. Each path a;, a;4 contains al the vertices of V, as an internal
vertices and the path b;, b;,, contains al the vertices of V; as an internal vertices.
Clearly the set S is connected geodetic dominating set. Therefore the minimal
connected geodetic dominating sets are the sets consists of four vertices such that two
vertices in V; and the remaining two verttices in V,. Thus yr,(G) =
MiNg, 4, oy [0(a1) + 0(a5)] + miny, 1, o, [0(by) + (b)),

Example 2.23. Consider the complete bipartite fuzzy graph G = K, ;: (V; UV, 0,u) is
shown in Fig.4. with partition sets areV; = {a,, a,, as, a,}, V, = {by, by, b3, by, bs} with
o(a;) =04,0(a,) =0.2,0(az) =0.6,0(a,) =0.5,0(a;) =0.40(b;) =0.2,0(b,) =

0.1,0(b3) = 0.8,0(b,) = 0.4,0(bs) = 0.6 and edge membership valuesare shown in Fig.

4. Here 1,5 23, SO Y54(G) = ming g, v, [o(ay) + a(az)] + miny, o(by) +

'b2 €Vy [

0(b,)]=0.6+0.3=0.9. Thus the minimum connected geodetic dominating set is S =

{a,, a,, by, b,} and the connected geodetic domination number is 0.9.

b 40.6)

ISBN: 978-93-48505-23-1



Proceedings of the Inter national Conference on Algebraic Graph Theory,
Graph Theory and Topology — 9" & 10" January 2025

Proposition 2.24. If G: (V,0,u) is aconnected fuzzy graph on n > 3 vertices containing no
8- arcs such that xis a cut-vertex of ¢* of degree n — 1, theny;,(G) = p wherep =
Luev 0 ().

Proof. Let S be any connected geodetic dominating set of G and x be a cut-vertex of G* of

degreen — 1. Then by Proposition 2.21, x € S.
Claim: S = V(@) isaminimum connected geodetic dominating set of G.

Otherwise, thereexistsaset W < V(G) such that W is a connected geodetic dominating set of
G.By Proposition2.21, x € W. SinceW c V(G), thereexistsavertex a € V suchthata ¢ W.
Since W is a connected geodetic dominating set of G, the vertex a lies on ageodesic joining a

pair of verticesu and v of W. Let the geodesicbe P: v, ..., x, a, ..., b. Thenwehave a # u, v.

Case (i): Suppose u = x, then the arc (x, v) is the only geodesic joining x and v, since x is

adjacent to every vertex of G.

Case (ii): Suppose u # x, then u — x — v isthe only geodesic joining u and v. Thus in any
case P isnot an u — v geodesic, which is a contradiction. So S = V(G) is the only connected

geodesic domination number of G. Hencey¢.,(G) = p.

Remark 2.25. The converse of Proposition 2.24 isnot true. For the fuzzy graph G giveninFig.
5,5 ={a, b, c,d, e} isaminimum connected geodetic dominating set of ¢ and then y.,(G) =
1.5 = p. But no vertex of degree G* of degreen — 1.

a{lL1) 0.f 0. 2} oo £|0.4]

Theorem 2.26. For any pair r,n of integers with 3 < r < n, there exists a connected fuzzy

graph G: (V, o, u) onn verticessuch that y;.,(G) = Xi_; o(a;).
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Proof. We construct a connected fuzzy graph G: (V,o,u) on n vertices having connected

geodetic domination number Y.7_; a(a;) asfollows:

Let P-:ay, ayas,...,a, be a pah on r vertices with o(a;) =0.i (0 <i <r) such that
u(a;,a;p1) =o(a))ANo(ai1) A1<i<r—1). Add new vertices by,b,,...,b,_,, €ach
having membership value a(b;) =A{o(a;)} (1 <i<r) andjoineachb; (1<j<n-—r)
with a; and a; taking u(ai,bj) =a(a;) A a(bj), i=13 and 1<j<n-r, thereby
obtaining afuzzy graph G as shown in Fig. 6.

Then G is a connected fuzzy graph on n verticesand S = {as, ay, ..., a,} isthe set of al cut-
vertices of the underlying crisp graph G* and all the extreme vertices of G. It follows from
Proposition 2. 19 and 2.21 that y;., (G) = Y.i_3d(a;). Clearly, S isnot a geodetic dominating
set of G, since (S) #V(G) and thus not a connected geodetic dominating set of G.
S0, ¥fcg(G) > Xiz0(ay).

Note that neither Su {b;} (1 <j <n—r) nor SU{a,} is a geodetic dominating set of G.
Thus, R = S U {a, } isageodetic dominating set of G but (R) is not connected. However, R U
{a,} isaconnected geodetic dominating set of G of minimum cardinality. Hence the connected

geodetic domination number is y¢.,(G) = Xi_, o(a;).
3. Conclusion

In this paper, the concept of connected geodetic domination number of afuzzy graphis
introduced and its limiting bounds are identified. It is proved that all extreme vertices of a

connected fuzzy graph G and al cut-vertices of its underlying crisp graph ¢* belong to its

9
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connected geodetic dominating set. Also the connected geodetic domination number of

complete fuzzy graph and complete bipartite fuzzy graphs are obtained. We extend this concept

to other distance related parameters in fuzzy graph.
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Abstract

This paper introduces and investigates the concept of regular and total regular cubic
fuzzy graphs. This research involves a combination of theoretical and analytical approaches
to define and anal yze the degree of avertex and total degree of avertex in the context of cubic
fuzzy graphs. The main findings of this paper include the specification of regular and total
regular cubic fuzzy graphs are defined, along with illustrative examples. Additionally, some
characterization of results on a cycle with some specific membership values has been analyzed.
This research provides a new perspective on cubic fuzzy graphs, extending the existing
literature on fuzzy graphs and opening up new avenues for future research in this area.
Keywords. Degree of a vertex in Fuzzy Graphs, Total degree of a vertex in Fuzzy Graphs,
Regular Fuzzy Graphs, Total Regular Fuzzy Graphs, Cubic Fuzzy Graphs.

2020 Mathematics Subject Classification (AMS): 05C72, 03E72.

1. Introduction

Fuzzy set theory, introduced by Lotfi A. Zadeh in 1965 [18]. Zadeh further extended
this concept to fuzzy relations in 1971 [19], where the relationship between elements is
represented by a membership function. The fundamental characteristic of fuzzy sets is the
membership function, which assigns a degree of membership to each element in the set. The
integration of fuzzy set theory and graph theory gave rise to a new class of graphs known as
fuzzy graphs.

Fuzzy graph theory, introduced by Kaufmann in 1973 [10]. Azriel Rosenfeld devel oped
fuzzy graph operations such as union, intersection, and complement in 1975 [17]. Although
thisfield is relatively young, it has rapidly expanded and found numerous applications across
various disciplines. Recently, researchers have continued to contribute to the field with notable
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contributions including the introduction of interval-valued fuzzy graphs (IVFGs) by Akram
and Dudek in 2011 [1], the exploration of Totally Regular Fuzzy Graphs by Edward Samuel
and C. Kayalvizhi in 2016 [3] and the presentation of A New Approach to Regular Fuzzy
Graphs by Kailash Kumar Kakkad and Sanjay Sharmain 2017 [9]. Additionally, Huda Mutab
Al Mutab conducted a study on fuzzy graphsin 2019 [5], further advancing the field.

Cubic Fuzzy Sets (CFS) are a mathematical framework that combines fuzzy sets and
intuitionistic fuzzy sets to provide a more comprehensive and flexible approach to modeling
uncertainty and imprecision. Introduced by Jun et al. [8], Cubic Fuzzy Set integrate fuzzy sets
(FS) and intuitionistic fuzzy sets (IVFS). Rashid et al. [15] extended this ideato Cubic Fuzzy
Graphs, introducing various types of graphs and their applications. Kishore Kumar et al. [11]
investigated the concept of regularity in Cubic Fuzzy Graphs., while Muhiuddin et al. [12]
provided amodified definition of Cubic Fuzzy Graphs, along with notions such as strong edges,
paths, path strength, bridges and cut vertices. Furthermore, Rashmanlon et al. [6, 16] further
elaborated on various aspects of Cubic Fuzzy Graphs.

Cubic Fuzzy Graphs represent a novel extension of fuzzy graph theory, combining the
concepts of fuzzy sets and graph theory. However, the study of regular and total regular cubic
fuzzy graph remains a relatively unexplored area. Nagoor Gani and Radha introduced the
concept Total Degree and Total Regular Fuzzy Graphs in 2008 [13]. The existing literature on
fuzzy graphs lacks a comprehensive study on regular and total regular fuzzy graphs, which
motivates our research. This paper aims to explore the degree and total degree of a vertex in
cubic fuzzy graph. We conduct a comparative study of regular and total regular cubic fuzzy
graph through various examples. Additionally, we characterize cycles with specific
membership function providing a comprehensive study on this topic. This research will
contribute to the development of fuzzy graph theory and its application.

2. Basic Definitions

Definition 2.1. A graph G: (V, E) consists of afinite set denoted by VV asV (G) and acollection
E asE (G) areunordered pairs (u, v) of distinct elements from V. Each element of V iscalled
avertex or apoint and each element of E iscalled an edge or aline.

Definition 2.2. A fuzzy graph C*: (o, ) isapair of functions (o, 1), wherea: V. - [0,1] is
afuzzy subset of anon-empty set Vand u: V x V — [0, 1] isasymmetric fuzzy relation on
o such that, Vu,vinV, therdation u (u,v) < o (u) A o (v) issatisfied.

12
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Definition 2.3. Aninterval-valued fuzzy set AonV isdefinedas A = {[a(uw), S (w)]/u €V},
where « and 8 arefuzzy setsof V, suchthat a(u) < f(u),Yu € V.

Definition 2.4. Let U be a non-empty set. A cubic set is a structure of the form C =
{u,A(u), B(u)}, where A(u) isaninterva valued fuzzy set in U and B(u) isafuzzy setin U.

Definition 2.5. A cubic fuzzy set in V isdescribed as X = {([a(w), B(w)],y(w))/u € V},
where [a(u),B(u)] is named the IVF- membership value and y(u) is named the F-
membership value of u, suchthat a, 8,y: V — [0,1]. X isnamed aninterna CFSif y(u) €
[a(w), B(w)] and an external CFSwhenever y (u) € [a(w),B(w)],Vu € V.

Definition 2.6. A cubicfuzzy graphson G: (V,E) isapair of functionsC*: (A,B), whereA =
([@1,B1],71) such that [aq,B1]:V — [0,1] and y; : V —[0,1] is a Cubic Fuzzy Set on the
vertex set V and B = ([a,, B2], v2) such that [a,, B2] : E —[0,1] and y, : E —[0,1] is a Cubic
Fuzzy Set on the edge set E, satisfying the following conditions:

a,(u,v) < min{oy(u), a;(V)},vV (w,v) €EE

B2(u,v) < min{By(u), B1(V)}.V (w,v) €E

Y2(u,v) < min{y;(u),v:(V)},V (u,v) €E

Definition 2.7. Let G*: (o, p) be a fuzzy graph on G: (V,E). Thedegreeof avertex u inGis
denoted by d(u) andisdefinedasd(u) => p(u,v),v (u,v) EEandd(u) =0,V (u,v) ¢ E.

Definition 2.8. Let G*: (o, p) be a fuzzy graph on G: (V, E). Thetotal degree of avertex u is
denoted by td(u) and isdefined astd (u) =3 u (u, v) to (u), V (u, v) € E. It can also defined
astd(u) = d(u) +o(w).

Definition 2.9. Let G*: (o, p) be a fuzzy graphon G: (V,E). If d(v) = k,V veV,i.e if each
vertex has the same degree k, then G is, then G* is said to be aregular fuzzy graph of degree k

or ak-regular fuzzy graph.

Definition 2.10. If each vertex of G* hasthe same total degree k, then G* issaid to be atotally
regular fuzzy graph of total degree k, or ak- totally regular fuzzy graph.

Definition 2.11. A cycleof length nin agraph G, denoted by C,, isasequence (ugy, uy, u, , ...,
u,_q, Ug) of vertices of G, such that, for 1 <i<n - 2, the vertices u; and u;,, are adjacent;
u,_; and u, are also adjacent and uy, u, u, , ...u,_; aredistinct.

A cycle C,, of length nis called an even cycle or odd cycle according asn is even or odd.
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3. Degree and total degree of avertex in a cubic fuzzy graph

Definition 3.1. Let C*: (A, B) be a Cubic Fuzzy Graph on G: (V, E). The degree of avertex u
in C* isaninterval valued fuzzy membership number suchthat d[ay, B1](w) =3 [, B2](w, V),
V(u,v) e Eandasod|ay, B1](w) =0,V(u,v) € E. Thedegreeof avertex u in C+ isafuzzy
membership number such that d [y,] (w) =3 [y2] (U, V),V (u,v) e Eandasod[y;](u) =0,V

(u, v) € E. Therefore, the degree of a vertex in a Cubic Fuzzy Graph isdefined asd(u) =
(d [ag, B1] (W), dly4] (W)).

Example 3.2. Consider a Cubic Fuzzy Graph C*: (A, B) on G: (V, E).

(10.2,0.5,0.7)
& (u) %
") "-:r,-_-.'_.

o i
= =
= b
e =
: 2
1o :
- |x L j tn

(0.1,0.4],0.5) =

(10.3.0.51,0.7) {[0.2.0.7),0.6
Figure. 1

d(w) = ([0.2+0.1,0.4 + 0.4], 0.5 + 0.6) = ([0.3, 0.8], 1.1). Similarly, d(v) = ([0.3, 1.0], 1.1),
d(w) = ([0.3, 1.0], 1.0), d(x) = ([0.4, 0.8], 1.1) and d(y) = ([0.5, 0.8], 1.1).

Definition 3.3. Let C*: (A, B) be a Cubic Fuzzy Graph on G: (V,E). The total degree of a
vertex ueV in a Cubic Fuzzy Graph is defined td(u) = (td[aq, B1](w), td[y1](w)), where
td[ay, B11(w) = X [z, B2] (w,v) + [ag, B1] (W), V(w,v) € E and td[y,1](U)= ¥ [y2](w,v) +
[yi](w),V(u,v) € E. It can aso be defined as td(u) = d(u) + A(u), where A(w)=([a4, B1]
(), [ya](w)).

Example 3.4. Consider a Cubic Fuzzy Graph C*: (A, B) on G: (V,E). In Figure 1, td(u) =
([0.3,0.8], 1.1) + (0.2, 0.5], 0.7) = ([0.5, 1.3], 1.8). Similarly, d(v) = ([0.9, 1.7], 2.0), d(w)
=([0.5,1.7],1.6),d(x) =([0.7,1.3],1.8) and d(y) = ([1.2,1.7], 2.0).
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4. Regular and total regular cubic fuzzy graphs

Definition 4.1. Let C*: (A, B) be a Cubic Fuzzy Graph on G: (V, E). If d(u) = ([kq, k3], k3),
vu € V,i.e, if each vertex has the same degree ([k;, k,], k3) then C* issadtobea ([k,,
k,], k3) - Regular Cubic Fuzzy Graph.

Example 4.2. Consider a Cubic Fuzzy Graph C*: (A, B) on G: (V, E).

(u

([0.2,0.470.1!

I'*f; ([0.2,0:3].0 1::"-: i

([0.6,0.8].0.5) *
Figure. 2
d(u) =([0.5,0.7],0.2), vu € V. Thisgraphisa([0.5, 0.7], 0.2) - Regular Cubic Fuzzy Graph.

Definition 4.3. Let C*: (A, B) be a Cubic Fuzzy Graph on G: (V, E). If each vertex of C* has
the same total degree ([k;,k;],k3), then C* is said to be a Total ([k;,k,].ks) - Regular Cubic
Fuzzy Graph.

Example 4.4. Consider a Cubic Fuzzy Graph C*: (A, B) on G: (V, E).

§ .--..f.. H‘\. '|:I:'__
i & 3 o '.: 0 5 O i
ijo.6.0.81,0 3,!.‘_3_)—{[\.' TR Ji[0.5,0.7L.0.6)

Figure. 3

td(u) = ([1.0, 1.6], 1.1), vu € V. If each vertex has the same total degree ([1.0, 1.6], 1.1),
thenthisgraphisaTotal ([1.0, 1.6], 1.1) - Regular Cubic Fuzzy Graph. However, it isobserved
that d(u) # d(w). Hence, C* isnot a([k;,k;].k3) - Regular Cubic Fuzzy Graph.

Remark 4.5. From Example 4.4, it is clear that a Total ([kq,k,],k3) - Regular Cubic Fuzzy
Graph is not necessarily a ([k;,k;],k3)) - Regular Cubic Fuzzy Graph.

Example 4.6. Consider a Cubic Fuzzy Graph C*: (A, B) on G: (V,E). Figure 2 shows that
d(u) =([0.5,0.7], 0.2), Vu € V. If each vertex has the same degree ([0.5, 0.7], 0.2), then this
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graph C* is a ([0.5, 0.7], 0.2) - Regular Cubic Fuzzy Graph. However, it is observed that
td(u) # td(w).Hence, C*isnot aTota ([k;,k;].k;) - Regular Cubic Fuzzy Graph.

Remark 4.7. From Example 4.6, it is clear that a ([k4,k,],k3) - Regular Cubic Fuzzy Graph is
not necessarily aTotal ([k;,k;],k3) - Regular Cubic Fuzzy Graph.

Example 4.8. Consider a Cubic Fuzzy Graph C*: (A, B) on G: (V, E).

(10.4.0.61,0.5) L ([0.4,0.6),0.5)
i 5 ([0.2,0.4],0.3 S !
B e
= L
& o
o in
o B s ¥
=) —— () & |
(040605 L204103 50 406,05

Figure. 4

d(u) = ([0.5,0.9],0.5),vu € Vand td(u) = ([0.9, 1.5], 1.0), vu € V. If each vertex has
the same degree ([0.5, 0.9], 0.5), then this graph is a ([0.5, 0.9], 0.5) - Regular Cubic Fuzzy
Graph. Additionally, if each vertex hasthe sametotal degree ([0.9, 1.5], 1.0), then C* isaTota
([0.9, 1.5], 1.0) - Regular Cubic Fuzzy Graph.

Remark 4.9. From Example 4.8, it is clear that a ([k,,k,] k3) - Regular Cubic Fuzzy Graphis
asoaTota ([kq,k,].k3) - Regular Cubic Fuzzy Graph.

Theorem 4.10. Let C*: (A, B) be a Cubic Fuzzy Graph on G: (V,E). Then A is a constant
function if and only if the following conditions are equival ent.

(i) C* isaRegular Cubic Fuzzy Graph.

(ii) C* isaTota Regular Cubic Fuzzy Graph.

Proof. Consider A(u) =([c;,¢5],¢c3),V u € V. Assumethat C* isa([k;,k;].k3) - Regular Cubic
Fuzzy Graph. Then d(u) = ([kq,k;],k3), Vu € V.

So, td(uw) = d(u) + A(w) = td(u) = ([k.kz].k3) + ([c1,¢2].¢c3) = td(w) = ([ky +cq,
k,+c,], k3 +c3), Vu € V. Hence C* isaTotal Regular Cubic Fuzzy Graph. Thus (i) = (ii) is
proved. Now, suppose C* isaTotal ([k; +cq, k,+c,], ks +c3) - Regular Cubic Fuzzy Graph.
Then td(u) = ([ky +cq, kKy+cy], k3 +c3), Vu € V. Thisimpliesd(u) + A(w) = ([ky +cq,
k,+c;y], k3 +c3), Vu € V. Therefore d(u) + ([cq,c2],c3) = ([Kq.kz2].k3) + ([c1,c2],c3), VU €
V.Henced(u) = ([ky,kz],k3),Vu € V.

16

ISBN: 978-93-48505-23-1



Proceedings of the Inter national Conference on Algebraic Graph Theory,
Graph Theory and Topology — 9" & 10" January 2025

Thus C* is a Regular Cubic Fuzzy Graph. Therefore (ii) = (i) is proved. Conversely, assume
that (i) and (ii) are equivalent. Suppose A(u) is not a constant function. Then A(u) # A(w)
for at least one pair u,w € V,i.e, td(u) # td(w).Let C* beaRegular Cubic Fuzzy Graph.
Then, d(u) = d(w) = ([kq,k,].k3).

So, td(u) = d(u) + A(w), td(w) = d(w) + A(w) = td(u) = ([kq1,k;].k3) + A(w), td(w)
= ([kq1,k;].k3) + A(w). Since A(u) # A(w),i.e, td(u) # td(w) = ([ky.kz].k3) + A(w) #
([kq1,k5].k3) + A(w).= td(u) # td(w).

So, C* isnot Total Regular Cubic Fuzzy Graph. This contradicts our assumption. Now, Let C*
be a Total Regular Cubic Fuzzy Graph. Then, td(u) = td(w).= d(u) + A(w) = d(w) +
A(w) = d(u) # d(w). So C* isnot a Regular Cubic Fuzzy Graph. This is a contradiction.
Thus, it can be concluded that A is a constant function.

5. Characterization of a cycle with some specific member ship values
Theorem 5.1. Let C*: (A, B) be aCubic Fuzzy Graphon G: (V, E) whichisan odd cycle. If B
isaconstant function, then C* is a Regular Cubic Fuzzy Graph.

Proof. If B isaconstant function, then B (u v) =([c,c;],c3), YU€ V. Then, d (u) = ([c;,c,],c3)
+ ([c1,¢2],¢3) = ([2¢4, 2¢,], 2c3). Hence C* isa Regular Cubic Fuzzy Graph.

Conversdly, supposethat C* isa([k;,k,] k3) - Regular Cubic Fuzzy Graph. Let e, ,e,,€e3,...,€2,,
. _(kq if i is odd
e,n+1 Dethe edges of an odd cycleof C*. Let a,(e;) = {kz —k, ifiiseven’
ks if i is odd
k, = k; ifiiseven

k if i is odd
Ba(e;) = { andy,(e;) = {k: = ks ifiiseven

Then, d(vy) = ([az(ey), B2(e1)], v2(€1)) + ([az(€2n+1), B2(€2n41)]s Y2(€2n41))
= ([kq,ks]ks) + ([ky k3] ks) = ([2kq, 2ks3], 2ks)
d(vy) = ([az(ez), B2(e2)], v2(e2)) + ([az(ey), B2(e1)]s v2(e1))
= ([kq,ks]ks) + ([kq k3] ks) = ([2kq, 2ks], 2ks)
For1=34,5,....2n
Proceeding similarly, we get d(v,,,) = ([2k,, 2k;], 2ks) and d(v;) = ([2k,, 2k3], 2ks). Hence,
C* isaRegular Cubic Fuzzy Graph. But it is obtained as B is not a constant function.

Remark 5.2. If a Cubic Fuzzy Graph C* on G which is an odd cycle and A is not a constant

function, then C* isnot a Total Regular Cubic Fuzzy Graph.
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Example 5.3. Consider a Cubic Fuzzy Graph C*: (A, B) on G: (V, E) which isan odd cycle. In
Figure 3, td(u) = ([1.0, 1.6], 1.1), V u € V. Then, this graph isa Total ([1.0, 1.6], 1.1) -
Regular Cubic Fuzzy Graph. But it isobtained as B is not a constant function.

Theorem 5.4. Let C*: (A, B) be a Cubic Fuzzy Graph on G: (V, E)) which is an even cycle. If
B is a constant function or the alternate edges have the same IVF membership number and

fuzzy membership number, then C* is a Regular Cubic Fuzzy Graph.

Proof. If B isaconstant function or the alternate edges have the same | VF membership number
and fuzzy membership number, then C* isa Regular Cubic Fuzzy Graph.
Conversdly, supposethat C*isa([kq,k;],k3) - Regular Cubic Fuzzy Graph. Let e;,e,,e3,....,€21,

k, ifi is odd k. if i is odd
: Bated =

be the edges of an even cycle of C*. Let a,(e;) :{kz ifiis even’ k, if i is even

B {ks if i is odd
vz(e:) = k¢ if i is even
If d(v,) =d(v;), then B is aconstant function. If d(v,) # d(v;), then the alternate edges have

the same IVF membership number and fuzzy membership number.

Remark 5.5. If a Cubic Fuzzy Graph C* on G which is an even cycle and aternate edges have
the same IVF membership number and fuzzy membership number, then since A is not a

constant function C* isnot a Total Regular Cubic Fuzzy Graph.

Example 5.6. Consider a Cubic Fuzzy Graph C*: (A, B) on G: (V, E) which is an even cycle.
In Figure 4, td(u) = ([0.9, 1.5], 1.0), Vu € V. Then C* isaTota ([0.9, 1.5], 1.0) - Regular
Cubic Fuzzy Graph. However, thisis only possible when B is not a constant function or when

alternate edges have the same IVF membership number and fuzzy membership number.

6. Conclusion

This study has explored the concepts of regular and total regular cubic fuzzy graphs,
providing definitions, examples and characteristics of these graphs and have investigated their
relationships and differences. The study of regular and total regular cubic fuzzy graphs has
provided new insightsinto the structure and behaviour of complex systems and has opened up

new avenues for research in fuzzy graph theory.
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Abstract

The Concept of this effort is to present the definition of fuzzy doubt z- idealsin Z -
algebras and severa properties related to fuzzy doubt z-ideals are discussed. The Cartesian
product and homomorphic of fuzzy doubt z-ideal is also discussed And at the same time we

specify some common theorem belonging to them with examples.

Key words: Z-agebra, Fuzzy set, Fuzzy z-ideal, Fuzzy Doubt z-Subalgebra, Fuzzy Doubt z-
Ideal, Intersection.

2020 Mathematical Subject Classification (AMS): 03E72
1. Introduction

Fuzzy mathematics is the branch of mathematics including fuzzy set theory and fuzzy
logic that deals with partia inclusion of elementsin a set on a spectrum as opposed to simple
binary “yes’ or ‘no” (0 or 1) inclusion. Fuzzy mathematics hasitsorgin on fuzzy set introduced
by Lofti Asker Zadeh [1]. Fuzzy set theory has been developed in many directions by many
scholars and has evolved a great deal of interest among mathematicians working in various
fields of mathematics. As a advancement of these research works we get, the idea of
intuitionistic fuzzy sets propounded by T. Atanassov in 2012 [10], that is a generalisation of
the notion of fuzzy set. Imai and Iseki [2] introduced two classes of abstract algebras BCK -
algebras and BCl-algebras. It is known that the class of BCK-algebrais a proper subclass of
the class of BCl-algebra. In 2017, M. Chandramoul eeswaran [6], introduced the concept of Z-
algebras. Then in 2020, S. Sowmiya [7] gave another concept of fuzzy ideals of z-algebras.
Following the same route, S. Sowmiya [8] established the definition of the intuitionistic fuzzy
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sub-algebra and intuitionistic fuzzy ideal in z —algebras. In the last two decades interest of
many mathematicians has shifted to the development of fuzzy algebrain view of generaisation
of the well-known rules of algebraic structures. Many mathematicians have been involved in
extending the concepts and outcomes of various algebra.

2. Preliminaries

Wefirst list some basic concepts which are needed for our work.

Definition 2.1. [6] A Z-algebra (A, *, 0) isanonempty set X with a constant 0 and a binary
operation * satisfying the following conditions:

e a*0=0

e O*a=a

e a*a=a

e a*b=Db*awhena#0andb#0 foreverya,beA.

Throughout this paper A means a Z-algebra without any specification. We also include some
basic results that are necessary for this paper.

Definition 2.2. [6] A subset | of aZ-algebra A iscalled anideal of A if it satisfies

e (OE€el,

e axbelandbelimplyacel, fordlabeA.

Definition 2.3. [6] Let (A,*, 0) and (4’,*,0) betwo Z-Algebras. A mapping h:A—A' be Z-
homomorphism of Z-Algebras if h : (A,*,0) — (A’,*,0) issaid to be aZ-homomor phism of
Z-algebrasif h (x*y) = h(x) * h(y) for al x, y € X.

Definition 2.4. [7] Let h be a Z-homomorphism of Z-algebra (A, ,*,0) — (4’,*,0), then his
caled

e A Z-monomorphism of Z-algebrasif his1-1.
e An Z-epimorphism of Z-agebrasif hisonto.
e An Z-endomorphism of Z-algebrasif hismapping (A, ,*,0) into itself.

Definition 2.5. [7] A fuzzy set 6 of a Z-algebra A iscaled afuzzy ideal of A if it satisfies

e 9(0) =d(a)
e d0(a)>min {0 (ax*xb),d(b)},forallab€eA.
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Definition 2.6. [9] Let pu be a fuzzy set in a Z-algebra A. then p is called a fuzzy subalgebra
of A, if it satisfies

* p(xy)=px). Wy), forall x,y € X.

Definition 2.7. [9] Let p be a fuzzy set in a BCI-algebra X. then p is called a fuzzy ideal of
A, if it satisfies

* 10)=p(x)

*  p(xy)=ux). wy), forall x,y € X.

3. Fuzzy Doubt z-Ideal

Definition 3.1. Let §, be a fuzzy set in Z-Algebra A, Then §, is called a fuzzy doubt z-
subalgebra of A, if it satisfies

o 5a(®) A Ga(K) < (k)

Definition 3.2. Let 6, be afuzzy set in Z-Algebra A, Then 6, is caled afuzzy doubt z-ideal
of &, if it satisfies

o 54(0) < p(0x)
o u(0K) A u(K) < Sa(0)

Throughout this concept FDzl means Fuzzy Doubt z-Ideal

Theorem 3.3. Let g: A — A’ be ahomomorphism of A. If A, isaFDzl of A’, then the pre
image g~1(4,) of A, under gisaFDzl of A.

Proof. for any w4, k; € A we have
8g-1(4,)(0) = 64,(9 (0))
< 64,(9 (w1K1))
= 8g-1(a,)(@1K1)
Og-1(a,)(@1) = 84, (9 (1))
> 84,(9 (w1k1) A 6, (k1))
= 84, (9 (w1k1)) N 6a,(9 (ic1)).
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= 8g-1(4, ) (W1K1) N Bg=1(4, (k1)
Hence, g71(4, ) isaFDzl of A.

Theorem 3.4. Let A; and A, beaFDzl of A and A’ respectively, then the cross product 4, X
A, of Ay and A, defined by 64, x4, (w1,w3) = 84, (w1). 8, (w7) for Al (wq,w;) EA X A’ isa
FDzl of AX A'.

Proof. For all (w,,w,) € AX A’, we have
8a,%4,(0,0) = 84,(0). 64,(0)
< 84, (w1) A 64, (w3)
=84,%a4, (w1,02)
Now, for al (wq,w-,), (k1,k;) € AXA', we have
84, x4,(W1,02) = 84 (w1) N 64, (w3),
> (64, (w1k1). 84, (k1)) A (84, (w2K2). 4, (K2))
= (5A1 (w1ky). (5A2 (w2K3))) A (6A1(K1)-6A2 (x2))
= (84, x4, (W1K1,W3072) A 84, x 4, (K1,K2))
= (84, x4, (01,02)( K1, K2)) A Sa, xa,( K15 K2))
ThusA,; X A, isaFDzl of A X A'.

Theorem 3.5. Let A; and A, beaFDzl of A and A’ respectively, then the cross product A4, X
A, isaFDzl of AX A’, then A; or A, must be afuzzy doubt ideal.

Proof. Let A; X A, isFDDzl of AX A'.
We assumethat A; or A, satisfies §4,(0) < 4, (w4) Or §4,(0) < 5, (w3).
Suppose 84, (0) > 84, (w1) and 64, (0) > 8,4, (w;) for some (wq,w,) € AX A’
Then, we have
8a,x4,(0, 0) =64, (0) A 64,(0)
> 8y, (w1) N Sy, (w7)
24
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=84, x4,(w1,w,) Whichisacontradiction.

Therefore §,,(0) < 64, (w1) O §4,(0) < 84, (w3).
Suppose that the condition
84, (w1) < 84, (w1,161) A Gy, (161) OF Sg, (w3) < 6a, (w3, K2) A 64, (i) iSNOL true,
Then (w,,w,), (kq,k;) €E AXA,
We have
84, % 4,(W1,02) = 84, (w1) N 64, (w5),

< (84, (w1K1) A Ba, (K1) A ((Ba, (w2kc)N (K2))

= (04, (w1K1) N (8, (w2k2))) A (84, (1c1).84, (x2))

= (84, x4, (W1K1,W2K2)N B g, x 4, (K1,K2))

= (84, x4, (W1,02)( K1, K2))A 4, xa,( K1, k7)) Which isimpossible,
Hence 8,4, (w1) > 84, (w1, 11) A G4, (k1) OF 8p, (w3) < O, (w3, K2) A Bg,(ic2) iStrue.
ThusA, or A, isaFDzl of A X A’.

Theorem 3.6. Let M be anonempty subset of A and 6y, be afuzzy set in A defined by 6y (®)

=aif ® € M and &y () = B otherwise a, p € [0,1] with o> . Then &y isaFDzl of A.if M is
aideal of A.

Proposition 3.7. Every FDzl of A isaFDzSof A.
Remark 3.8. The converse of proposition 7 may not be true in the following example.

Example 3.9. Suppose A = {0, B, w, x} the operation is given by the table

* 0 B w K

0 0 B w K
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Then (A, *, 0) isa Z-algebra. We define 3: A— [0,1] by 6 (0)=0.6, 6 (f)=0.9, 6 (®)=0.7
and 6 (x)=0.9. By simple calculations show that 6 is FDzl aswell as FDzS.

Preposition 3.10. If §, and 64, are FDzl of A, then sois 5, 1 &y, .
Proof. Let o, k € A.
Then, (84,16,,) (0) = 11 ((4,(0), 64,(0))
> 0 ((84,(0K), 8, (0K))
= (64,118,,) (oK)
Also, (64,0164, (©) =0 (84,(®), b,(w))
> 11 (8, (@K) A 84,(K)), (84, (0K) A 8y, (1))
= (64,0164,) (0K) A (84,01684,) (x)
Hence 4,01 8,4, isaFDzl of A.

Theorem 3.11. Let A; be afuzzy subset of A, assume that §, be a fuzzy subset of AX A
defined by 64, (w, k) = A (w). A1(x) for all o, k € A. Then A; isFDzl of A if and only if 54, is
aFDzl of A X A.

Proof. Suppose A; is a FDzI of A. For all o, k € A.
84,(0,0) =4, (0) A A4(0)
<4 (0x) N Aq(oK)
= 6y, (0K, ©K)
For any w4, k1, w, and k, € A.
Also, We have
84, (w1, w3) (K1, K2)) = 8y, (1K1, WaK2) A 6y, (K1, K2)
= (A1 (w1K1) N Ag(w2k2)) A (Ag (k1) A Ay(x3))
= (A1 (w1k1) N ()N (Ar(waks) A Ay (K2))
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<A; (wq) Ny (w,)
=6y, (0, )
Therefore, §,, isaFDzl of A X A.
Conversely, suppose 64, isaFDzl of A X A.
Obviously, 41 (w) > 8,4, (wK). A;(x) is a FDzI.

Theorem 3.12. Let A; be a fuzzy subset of A, assume that §, be a fuzzy subset of AX A
defined by A; (0) = 84, (0, o). forallo € A. If §, isaFDzl of A X A Then A, isFDzl of A.

Proof. for all ® € A.
We have, 4,(0) = 6,4, (0, 0)
<8, (0. 0)
= A ()
Forall o, x € A,
Aq(0x) A1(x) = 8,4, (0, 0x) 84, (0, %)
=84, (00, 0x) 8, (0, %)

=64, ((0, ) (0, ¥)) 84, (0, %)

AN

84, (0, ®)

A (w)

Thus, A, isaFDzl.

Proposition 3.13. If &, and its complement 6, © areaFDzI, then &,,is constant.
Proof. we know that, 54, (0) <84, (w) ............. (1)

Then, 8,,(0) < 8,,“(®)

1-64, (0) < 1-8,, (w)
Spy (0)= 80, (@)oo, )
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From (1) and (2) §,, isaconstant.
4. Conclusion

Through this work, we present the definitions of the FDzl and study some relationship
among these types. The goal of our future effort is to study some concepts such as p-ideals, h-
ideals. To develop the theory of Z-algebras, the fuzzy ideal plays an important role. Also, we
have developed severa theorem of FDzl in z-algebras. Using above notion we can conclude
that the research aong this path can be continued for further developments of intuitionistic

fuzzy doubt z-ideals in Z-algebras and their applicationsin various agebra.
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Abstract

Pentapartitioned Neutrosophic Binary Set is a new concept endowed with five degrees
of membership functions over two universes. It is an important tool to deal certain problems
that require two universes rather than a single one. In this paper, the concept of a-level set of
a pentapartitioned neutrosophic binary subgroups are studied and also its some interesting

theorems are analyzed.

Keywords:. level set, pentapartitioned neutrosophic binary set, pentapartitioned neutrosophic
binary subgroup.

2020 M athematics Subject Classification (AMS): 03E72, 08A72, 20N99.

1. Introduction

The concept of the neutrosophic set was presented by Smarandache in 1998. As a
continuation of neutrosophic set, Pentapartitioned neutrosophic set was established by Surpati
Pranamik and Rama Malik. It's a five-valued logic set where each x in X has a membership
that represents a truth, a contradiction, ignorance, unknown, and falsehood. In 2024, A. Anit
Y ohaand M. Jaslin Melbha established a new set called Pentapartitioned Neutrosophic Binary
Set and applied it in a group structure. Awolola introduced the Concept of a - Level Sets of
Neutrosophic Set in 2020. This paper concentrates on a-level set of a pentapartitioned
neutrosophic binary subgroups and its theoretical implementations

2. Preliminaries

Definition 2.1. A neutrosophic set (NS) 4 over X isdefined as follows:
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A ={<u,u;(w),vi(w),yz(u) >:u € X}, Where uz(u),vz(u),yz(u) are the truth,
indeterminant, and falsity membership values of each u € X.

S0, 0 < pz(u) +vz(uw) +yz < 3.

Definition 2.2. Let U and V be two universes of discourse. The Pentapartitioned
neutrosophic binary set (4;,4,) < (U, V) isgiven by

(A, dy) = <u,pgz,(w),oz, (W), 9z, (W), ¢z, (W), vz, W) >,
VRS < v, (), 0z,(), 9z, (W), pz, ), va,(w) > u€U,vEV

Where pz (w), 0z, (W), 9z, (W), ¢z, (w),vz,(w):U — [0,1] are the degrees of the
membership of truth, contradiction, ignorance, unknown, and falsity membership values of
u €U and uz, (v),0z, (v),9z, (v), ¢z, (v),vz, (v):V — [0,1] are the degrees of the
membership of truth, contradiction, ignorance, unknown, and falsity membership values of
vevV such that 0<uz,(W+oz,w+9z W+ ¢z, (W +yz,w <5
and 0 < uz, (v) + 0z, (v) +9z, (v) + ¢z, (v)+yz, () <5.

Definition 2.3. Suppose (43, 4,) represents a Pentapartitioned Neutrosophic Binary Set
(PNBS) over two universes U and V. A Pentapartitioned Neutrosophic Binary Subgroup
(PNBSG) isastructure Bz, 4,) = (G4, 4,)*) Where Gz, 4,y = (G = {U U V},x) formsa

group under abinary operation = which satisfies, the following B, z,) inequdity:

(l) PNB(ALAZ)(TH, Tl) z PNB(ALAZ) (m)/\PNB(Al,AZ)(n)

(i)  PNB, 4,)(m™") > PNB(4, 4,)(m) ; foreverym,n € G

That is, for every m,n € G,
() My, a) (M n) = wa,, i, (M) A ua, i, M),
0 iy(mn) = o, i, (M) Ao, 5, (M),
Vi, iymn) <9 1,(M) VIy, 1,1,
b, i) (M n) < ¢, a,)(M)V da, i, M),

Ya,i)(mn) <va, i, (M) Vya, i,)n) and

(i) pa a,)Mm™) = wa, i,)(M)oa, i,(m™) = o, 4,,(m),
Vi iym™) <9, 4,(M), b, i, (M) < ¢, 1,,(M);

Yo iy M™) < va, a,)m).
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Definition 2.4. Let A be any neutrosophic set in a non-empty set X. Then for any a € [0,1],
the a- lower level and the a- upper level sets of A denoted by L(4,a) and U(4,a) are
respectively defined as follows:

L4 a)={u€eX:uzs(u) = a,vz(u) = a,y;(w) < a}and

U(da)={ueX () < avi(u) < ay;w) = a}

Proposition 2.5. If (4;, 4;) represents a PNBSG with structure B, 4,y = (G, i,)*)
iff PNB(z, 4,)(m * n71) = PNB4, 4, (M)A PNB;z, 4,,(n), forevery m,n € Gz, 4,)-

Remark 2.6. Every subgroup of an abelian group is abelian.

3. Main Results

Definition 3.1. If (4, 4,) represents aPNBSG with structure B, 4,y = (G, 4,)*)
over U and V then the a- level set of (4, 4,) denoted by (/Tl,/Tz)a and is defined as

follows: for any a € (0,1],

(A11A2)a = {m € G(Al'gz): PNB(AI,AZ)(TR) z CZ}

Theorem 3.2. If (4, 4,) representsaPNBSover U and V. Then (4,4, ) isPNBSG
of agroup Gz, 1, = (U U V,x) iff (A,4;)_isasubgroup of G, 1, for al a €

(0,1], where PNB(4, 4,y(e) > a and e appears as the identity in Gz, 4,)-

Proof. Assume (4;,4;) is PNBSG of a group G, 4, = (UUV,x), where
PNBz, 1,)(e) > a and e appears as the identity in Gz, 1)
Clearly, (4,4;)  # @ as€ (4;,4;) - Let m,n € (4;,4;)  beany two elements.
Then PNBz, 1,(m) > @ and PNB(z, 1,,(n) >
= PNB(4, 4,,)(m *n™1) = PNB(4, 1,y (M)APNB(z, 4,,(n) > a [As(4,,4,) is
aPNBSG of Gz, 4,)]
=>ms*nl€ (ﬁl,ﬁz)a
= (/Tl,/fz)a isasubgroup of Gz, 4,)-
Conversely, Let (4;,4,) represents aPNBS over U and V such that (/Tl,/Tz)a isa
subgroup of Gz, ,) for al a € (0,1].
Letm,n € G4, 4,) and let a = PNB4, 1,)(m)APNB4, 1,)(n)
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Then PNB(4, 1,)(m) > @ and PNB 4, 1,)(n) > @

Thatism,n € (Al,ﬁz)a
= mxn~" € (4, 4,;) [since (4;,4;) isasubgroup of Gz, z,)]
= PNB(4, 4,)(m *n™') > a = PNB(;, 4,)(m)APNB;, 1,,(n)
= PNB4, 4,)(m *n™") > PNB(;, 4,,(m)APNB;, z,)(n)

Therefore, (4;,4,) is PNBSG of agroup G, 4,)- [By Proposition 3.5]

Definition 3.3. If (4, 4;) represents a PNBSG with structure B, 4,y = (G, 4,)*)
over U and V, then it is said to be pentapartitioned neutrosophic binary normal
subgroup (PNBNSG) in Gz, 4,y if PNB4, 4,)(m *n) = PNBy4, 4,,)(n *m) for every

m,n e G(ALAZ)'

Remark 3.4.1f (4,,4,) represents aPNBSG with structure B, 4,y = (G, 4,)*)
over U and V, then it is said to be normal in G, 4,y iff PNB(, 4,,(g"'mg) =

PNB(Al‘AZ)(m) for everym € (41:42):9 € G(Al,gz).

Theorem 35. If (4,,4,) represents a PNBS over U and V. Then (4,,4,) is
PNBNSG of agroup Gz,,1,) = (U U V,*). Then (4;,4;)_isanormal subgroup of
G, i, for al a € (0,1], where PNB(4, ,)(e) > a and e appears as the identity in
G(A‘Tpgz)'
Proof. Let m € (A'I,A'z)a and g € Gz, z,) be any element.
Then PNB 4, 4,(m) > a. Also, (4;,4,) is PNBNSG of agroup G, 4,)-
Therefore, PNB(z, 1,)(9~"mg) = PNBz, 1,)(m) foral € (4,,4;) , g € Gz, x,)-

= PNB (3, 4,)(g"'mg) = PNB(;, ,,(m) > a

= PNB(z, 1, (g"'mg) >

= g~'mg € (4, 4;),,

Hence, (/Tl,ﬁz)a isanormal subgroup of G, ..

Definition 3.6. If (4;,4;) represents a PNBSG with structure B ;) =

(G, a,)*) over U and V, then (4,,4,) is called a pentapartitioned neutrosophic
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binary abelian subgroup (PNBASG) of Gz, 4,) if (41,42)  isan abelian subgroup
of G, i, foral a € (0,1].

Theorem 3.7. If Gy, 4,) is an abelian group, then every PNBSG of G, 4, isa
PNBASG of Gz, 1,)-

Proof. Let (4;,4,) be a PNBSG of G, 4,y ad given that Gz, z,) is an abelian
group.

= (/Tl,/Tz)a is a subgroup of Gz, 4,y [BY theorem]

= (Al,,iz)a is an abelian subgroup of G, 4., [By remark]

= (4,,4,) isaPNBASG of G, z,) [By definition]

Remark 3.8. The converse of Theorem 3.7 does not hold in general, as shown by

the following counterexample:

Let U={+1,+i} and V ={—-1,+4i,+j,tk} be two sets under
consideration. Therefore we get the combined set Gz, 4,) = {UUV}. Clearly
(Gai,p*) = {*1,+i,+j, +k} forms agroup. Let (4;, 4,) be aPNB set defined over
U and V asthe following table:

for |u=1]| u?=1, |u*=1, for v2=1 | vt=1,
u+xl u+=+1 v#+—1
pa, (W) 2 15 a na, () A A2
oz,(w) | 29 A A2 oz,(v) 2 .19
vz, (w) | .09 1 .18 vz, () .25 .18
¢z, ()| 095 .65 8 ¢z, (v) .099 7
va,(w) | .06 .07 .95 Ya, () A .93

ISBN: 978-93-48505-23-1

33

The membership grade of combined PNB set is given by



Proceedings of the Inter national Conference on Algebraic Graph Theory,
Graph Theory and Topology — 9" & 10" January 2025

Clearly, (4;,4;) is a PNBSG of Gz, z,)- Additionally, al (4;,4;)  are abelian

subgroup of G, z,) for any a € (0,1]. Hence, (4;,4,) isaPNBASG of G, 4,),

but Gz, 4,y is not an abelian group.

Theorem 3.9. If (4,,4,) represents a PNBASG with structure B, 4,y =
(G(A1JA2)'*) over U andV. Then H(‘ql’gz) = {u € G(/’il,gz): PNB(ALAZ)(UU) =
PNB(z, 1, (vu) forallv € Gz, 1,)} isan abelian subgroup of Gz, 7,)-

Proof. Let (4,,4,) beaPNBASG of agroup G, 1,)-
Then by definition, (/L,/Tz)a is an abelian subgroup of G4, 4, for al a € (0,1].

Clearly, Hz, 4,y # D ase € Hz, 4,)-

for m=1 m>=1m=1 mi*t=1m=1
a2y (M) 0.2 0.15 0.12
2y (M) 0.29 0.2 0.19
EINC) 0.09 0.1 0.18
b 20 (M) 0.095 0.099 0.7
Y a1 0.06 0.07 0.93

Let m,n e H(ALAZ)
= PNB@LAZ)(mu) = PNB(Al’AZ)(um) and
PNB(ADAZ)(TLU) = PNB(ADAZ)(UTL) foral u e G(gl,gz)

Now, for u € Ga, i) PNB(gl_gz)((mn)u) = PNB(gl,gz)(m(nu)) [asnu € G(/ﬁ.gz)]

= PNB(Allgz)((nu)m)
= PNB(4, 4,)(n(um))
= PNB(Al,gz)(n(mu))
= PNB@LAZ)((nm)u)
Therefore, m,n € Hz, 4,)
Also, letm € Hz, 7,
= PNB(z, 1, (mu) = PNB(z, a1, (um) fordlu € Gz, 4,y -----. (D)

By substituting u = v~'in (1), we get PNB(;, 4,y(mv~") = PNB(;, ;,,(v™'m)
34
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Now, PNB(Al’AZ)(m_lv) = PNB@l,gZ)((m_lv)_l)
= PNB4, 4,)(v™'m)
= PNB(4, 4,)(mv™")
= PNB(4, 4,)((mv~1)™1)
= PNBz, 4,,(vm™1)V v € Gz, 4,
Hencem™ € H;, z,). Therefore Hz, z,) isasubgroup of Gz, ,)-
Now, to prove that Hy, z,) is an abelian subgroup of G, 7,)-
Let m,n € Hy, 7,y be arbitrary. Without loss of generdlity let a; < «; for i # j
such that PNB 4, 4,y(m)=a; and PNB;, 4,,(n) = a; where a;, a; € (0,1]
Thenm € (/Tl,ﬁz)ai andn € (Al,ﬁz)aj
= PNB(z, 1, (W=a; > «q;
= ne (Al’AZ)ai
Thusm,n € (/Tl,/fz)ai so that mn = nm
Hence H z, z,) is an abelian subgroup of Gz, ,)-
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Abstract

A dominating set Sisaminimal dominating set of H if and only if for every vertex x €
S,pn[x,S] # 0. ie, for every vertex x € S, has at least one private neighbour in S. This article
explores the concept of Irredundance Number in Cluster Hypergraphs. A set S is irredundant
if for every vertex x € S, pn[x,S] # @. Anirredundant set S is called aMaximal Irredundant
Set if no proper subset of S is irredundant. The minimum cardinality of a irredundant set is
caled the Irredundance Number and is denoted by ir(H). The maximum cardinaity of a
irredundant set is called the Upper Irredundance Number and is denoted by IR (H). It is proved
that ir(H) < IR(H), ir(H) <y(H) and T'(H) < IR(H). Also, some theorems and results
related to the concept of Irredundance Number in Cluster Hypergraphs have been discussed

and demonstrated in this article.

Keywords: cluster hypergraphs, irredundant set, maximal irredundant set, upper irredundance

number

2020 M athematics Subject Classification (AMS): 05C65
1. Introduction

Themajor research areain graph theory isthe study of domination and related concepts
such as independence, irredundance and covering. This article focuses mainly on irredundance
number. The concept irredundance number was introduced by Cockayne, Hedetniemi and
Miller. A set S isairredundant set if for every vertex v € S, pn[v, S] # @. Anirredundant set
S is caled a maximal irredundant set if no proper subset of S is irredundant. The minimum
cardinality of amaximal irredundant set in a graph G is called the irredundance number of G
and is denoted by ir(G). The maximum cardinality of a maximal irredundant set in agraph G
is called the upper irredundance number of G and is denoted by IR (G)[1].
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A set S isaminimal dominating setin H if and only if for every vertex y € Vyx(H) such
that N[y] n S = {x}. The vertex y is called the private neighbour of x with respect to S.
pn[x,S] iscalled as the set all private neighbour of x with respect to S.

A dominating set S isaminimal dominating set in H if and only if for every vertex x €
S, pn[x,S] # 0. le., for every vertex x € S, hasatleast one private neighbour. Thisminimality
condition for adominating set explores another concept called irredundance. C. Mary Christal
Flower and J. Befija Minnie together introduced the concept of Irredundance Number in
Cluster Hypergraphs. Also, some theorems and results related to the concept of Irredundance

Number in Cluster Hypergraphs have been discussed and demonstrated in this article.

2. Main Results

Definition 2.1. Let H = (Vx, E) be a cluster hypergraph. A subset S < Vy(H) is said to be
independent if it does not contain an edge E in H with |E| > 1. The independence number or
independent number a(H) of acluster hypergraph H is defined as the maximum cardinality of

amaximal independent set in H.

The set S € Vyx(H) is caled a strongly independent set if no two vertices in S are
adjacent. The maximum cardinality of amaximal strongly independent set isdenoted by S (H)
and is called the strongly independence number or strongly independent number[2].

Definition 2.2. Let H beacluster hypergraphs. A set S © Vy(H) iscalled an irredundance set

in H if for every vertex x in S has atleast one private neighbour with respect to S.

Theorem 2.3. A dominating set S of acluster hypergraph H isaminimal dominating set in H
if and only if S isboth adominating and airredudant set.

Proof. Let H be acluster hypergraph. Assumethat, S isaminima dominating setin H. Then
by definition, S isboth airredundant and dominating set in H.

Conversaly, assume that, S is both airredundant and dominating set in H. To prove S
isaminimal dominating set in H. Let x € S, Since S is irredundant set in H, by definition
pn[x,S] # ¢. Let y € pn|[x, S]. Then y isnot adjacent to any vertex in S\{x} and so S\{x} is
not adominating setin H. It follows that S isaminima dominating set of H.

Theorem 2.4. Every minimal dominating set S in a cluster hypergraph H is a maximal

irredundant set of H.
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Proof. Let H be acluster hypergraph and let S be a minima dominating set in H. Then by
theorem 3.2, S isan irredundant set in H. Therefore, it is enough to prove that S is a maximal
dominating set of H. Suppose not, there exists a vertex x € Vy(H)\S such that S U {x} isa
irredundant setin H. It followsthat pn[x, S U {x}] # ¢.Lety € pn[x,S U {x}]. Then no vertex
in S is adjacent to y. This implies that, S is not a dominating set in H which gives a

contradiction. Hence, S isamaximal irredundant setin H.

Definition 2.5. The minimum cardinalily of amaximal irredundant set in acluster hypergraph
H is called the Irredundance Number, and is denoted by ir(H). The maximum cardinality of
an irredundant set in a cluster hypergraph H is called the Upper Irredundance Number and is
denoted by IR(H).

Observation 2.6. For any cluster hypergraph H, ir(H) < IR(H).
Observation 2.7. For any cluster hypergraph H, ir(H) < y(H) and I'(H) < IR(H).
Theorem 2.8. For any cluster hypergraphs H, IR(H) + §(H) < |Vx(H)|.

Proof. Let H be acluster hypergraph and S be a maximal irredundant set with |S| = IR(H).
Suppose x € S. Since S is an irredundant set in H, there exists avertex y in H such that y €
N[x]\N[S\{x}] . Consider the following two cases.

Case(i)x =y.

In this case, the vertex x is not adjacent to every vertex in S and so it must have atleast
6(H) neighbours in Vy(H)\S. Hence, |Vx(H)|—IR(H) = |Vx(H)\S| = 6(H) and so,
IR(H) + 6(H) < |Vx(H)].

Case(ii) x # y.

By thechoiceof y,y ¢ Sand N(y) NS = {x}. Then N[y]\{x} < Vx(H)\S. It follows
that, |Vx(H)| —IR(H) = |Vx(H)\S| = IN[y]\{x}| = §(H) and hence, IR(H) + §(H) <
[Vx (H)I.

Corollary 2.9. For any cluster hypergraph H, I'(H) + 6 (H) < |Vx(H)| and B(H) + 6 (H) <
[Vx (H)].

Theorem 2.10. For any cluster hypergraph H IR(H) + 6 (H) = |Vx(H)| ifandonlyif I'(H) +
§(H) = [Vx(H).
39

ISBN: 978-93-48505-23-1



Proceedings of the Inter national Conference on Algebraic Graph Theory,
Graph Theory and Topology — 9" & 10" January 2025

Proof. Let H beacluster hypergraph such that I'(H) + 6 (H) = |Vx(H)|. By observation 2.6,
I['(H) < IR(H).It followsthat, |Vyx(H)| < IR(H) + 6 (H). By theorem 2.7, it is concluded that
IR(H) + 6(H) = |Vy(H)|.

Conversaly, assume H be acluster hypergraph suchthat IR(H) + §(H) = |Vx(H)|. To prove
that I'(H) + 6 (H) = |Vx(H)|. Let S beamaximal irredundant set in H with IR(H) = |S|. First
to prove that, S itself is a dominating set in H. Suppose S is not a dominating set in H, then
there is avertex y € Vy(H)\S such that y is not adjacent to any vertex in S. Thus, N[y] <
Vx(H)\S. But [N[y]|=d(y)+1=6(H)+1. It follows that, §(H)+1<|N[y]| <
|V (H)\S| = |Vx(H)| — IR(H). Here it is obtained that, IR(H) + 6 (H) < |Vx(H)| — 1. This
impliesthat, IR(H) — §(H) < |Vx(H)|, whichisa contradiction. Hence, S is adominating set
in H. Since S is an irredundant set, by theorem 3.2., S isaminimal dominating set in H. So,
['(H) = |S| = IR(H) = I'(H) impliesthat IR(H) = I'(H). Hence, ['(H) + §(H) = |Vx (H)|.

Theorem 2.11. Let H be any cluster hypergraph and let S be any dominating set in H. Then
[V (H)\S| < Xxes d(x). Further, theinequality holdsif and only if S isastrongly independent
setin H and for every x € Vx(H)\S, thereisunique vertex y € S such that N(x) N S = {y}.

Proof. Let H beacluster hypergraph and let S be any dominating set in H. Then, by definition,
every vertex in Vy (H)\S adds atleast one vertex to the degree of some vertex x in S. It follows
that, [Vx (H)\S| < Xxes d(x).

Next, assume that |Vy (H)\S| = Y.xes d(x). To provethat S is a strongly independent
set in H. Suppose S is not a strongly independent set in H, then there exists verticesx,y € S
such that x and y are adjacent. Since S isadominating set in H, by definition, every vertex in
Vx(H)\S is counted or added in the sum s d(x). Furthermore, the vertex x is counted or
added in d(y) and the vertex y is counted or added in d(x). Also x,y € S, impliesthat x,y ¢
Vxy(H)\S. This shows that, Y,cs d(x) > |Vx(H)\S| = |Vx(H)\S| + 2, implies that
Yxes d(x) > |Vx (H)\S| + 1, whichisacontradiction. Thus, S isastrongly independent set in
H. Now to demonstrate that, for every vertex x € Vy(H)\S, thenthereisauniquevertex y € S
suchthat N(x) NS = {y}. Since, S isadominating set in H, it is sufficient to show that N (x) N
S={y}. That is, [IN(x) n S| = 1. Suppose, [N(x) N S| = 2. Let y,z € N(x) N S. Then the
sum ). es d(x) exceeds|Vy (H)\S| by atleast one, sincethevertex x iscounted or added atleast
twice (onein d(y) and one in d(z)). SO Y.,es d(x) > |Vx(H)\S|, which is a contradiction.
ThusN(x) n S = {y}.
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Conversdly, if S isastrongly independent set in H. For every x € Vy(H)\S, thereisa
uniquevertex y € S suchthat N(x) N S = y then obviously thesum Y,.cs d(x) = [Vx(H)\S|.

3. Conclusion

In this article, the concept Irredundance Number in Cluster Hypergraphs have been
introduced and the same concept is extended to prove some theorems and results related to the
Irredundance Number in Cluster Hypergraphs.
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Abstract

LetG = (V,E) be a connected graph. A monophonic dominating set M is both a
monophonic set and a dominating set. A monophonic dominating set M is said to be a secure
monophonic dominating set S,,, ( abbreviated as SMD set ) of G if for eachv € V\M there
existsu € M such thatv is adjacent tou and S,, = (M \ {u}) U {v}is a monophonic
dominating set.The minimum cardinality of a secure monophonic dominating set of G isthe
secure monophonic domination number of G and is denoted by y.,,(G). In this paper we
investigate the secure monophonic domination number of special graph structureslike Jellyfish

graph, Ladder graph and Lollipop graph.

Key words : Monophonic path, monophonic domination number, secure domination number,

secure monophonic domination number.

2020 Mathematical Subject Classification (AM S): 05C69
1. Introduction

By agraph G = (V, E), wemean afinite and undirected connected graph without loops
or multiple edges. The vertex set and edge set of G are respectively denoted by VV(G) and E(G).
For basic graph theoretic terminology, we refer to [5]. A chord of a path P is an edge which
connects two non-consecutive verticesof P. For two verticesu and v, theclosed interval J[u, v]
consists of all the vertices lying in au — v monophonic path including the vertices u and v. If
u and v are adjacent , then J[u, v] = {u, v}. For aset M of vertices, let J[M] = Uy, yen J[w, v].
Then certainly M < J[M]. A set M € V(G)is caled a monophonic set of G if J[M] =V . In
[8], Haynes et a introduced the concept of domination in graphs. A subset D € V(G) iscalled

a dominating set if every vertex v € V(G)\Dis adjacent to a vertex u € D. The domination
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number, y(G), of agraph G denotes the minimum cardinality of such dominating setsof G. For
eachu € V\S there exists v € S such that v is adjacent to u and (S \ {v}) U{u} is a
dominating set of G. In this case we say that u is S — defended by v or v S — defends u. A
dominating set S in which every vertex in V\S isS - defended by avertexin S iscalled asecure
dominating set of G. The secure domination number y,(G) is the minimum cardinality of a
secure dominating set of G[11]. Thisconcept wasintroduced by Cockayneet a in[7]. A subset
M of V is said to be a monophonic dominating set of agraph G if M is both a monophonic set
and a dominating set. The minimum of the cardinalities of monophonic dominating sets of G
is called the monophoni c domination number and is denoted by y,,,(G). In 2012, John et al [10]
introduced the concept of monophonic domination number of a graph. In this paper we
introduce the concept secure monophonic domination number of graphs.

Definition 1.1. [7] A dominating set D is called a secure dominating set if for each v € V\D
thereexistsu € D suchthat visadjacenttou and S = (D \ {u}) U {v} isadominating set.

Definition 1.2. [14] A chord of a path P is an edge which connects two non-adjacent vertices
of P. Anu — v path is called amonophonic path if it isachordless path. A monophonic set M
of G isaset M < V(G) such that every vertex of G is contained in a monophonic path joining
some pair of verticesin M. A monophonic dominating set M is both a monophonic set and a
dominating set. The minimum of the cardinalities of monophonic dominating setsof G iscalled

the monophonic domination number and is denoted by y,,,(G).

Definition 1.3. A monophonic dominating set M is said to be a secure monophonic dominating
set S, (abbreviated as SMD set) of G if for eachv € V\M there existsu € M such that v is
adjacent tou and S,, = (M \ {u}) U {v}is a monophonic dominating set.The minimum
cardinality of a secure monophonic dominating set of G is the secure monophonic domination

number of G andisdenoted by y,, (G).
2. Observation

i.  Each end vertex of aconnected graph G belongs to every SMD set of G.

3. Main Results

Theorem 3.1. For the Jellyfish graph G = J,, ,, with prime edge, y5,,(G) =m+n+1

(mn=>1).
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Proof. Let G = J,,,, be Jellyfish graph obtained from 4-cycle with vertices f, f’, go, 9o
including the prime edge connecting f and f'. Appending m pendant edgesto g, and n pendant
edgesto g,. Theresultant graphis/,, , whosevertex set V(G) = {f, ', 9o, 90, 90, 9; / 1 < i <
m, 1<j<n} and edge set E(G) ={ff".fgo f90 90f" 90 [ 90g1,90'9;' /1 <1 <
m,1<j<n}suchtha [V(G)|=m+n+4and |E(G)|=m+n+5.LetZ={g;g; /
1<i<m,1<j<n}bethem + n endvertices of G. By observation, Z is a subset of every
SMD set of G. Since the vertices f and f’ are not dominated by any vertex of Z, Z is not a
SMD setof G and s0 ¥, (G) =2 m+n+ 1. LetZ' = Z U {f}. Clearly monophonic path exists
and V(G) — Z' isdominated by atleast one element of Z'. Therefore Z' isa SMD set of G, SO
that s, (G) =m+n+ 1.

Theorem 3.2. For the Jellyfish graph without prime edge G ol Ysm(G) =m+n+1

(mn=1).

Proof. Let /., be Jellyfish graph with vertices V(Jyr) = {f. /', 90, 90,90, 9j / 1 S i < m,
1<j<n} and edges E(Jmn) = {ff', 90, f90" 9of 1 90'f" 9091, 90'9;' /1 S i <m,1 <
j<n} Let G =], beobtained by removing prime edge ff" from Jellyfish graph J;, »
whose vertex set V(G) = {f, ', 90, 90,91, 9; / 1 <i<m, 1 <j <n}and edge set E(G) =
{f90.90" 90f", 90’1 9091,90'9;" / 1 <i<m,1 <j<n} such that [V(G)|=m+n+4
and |[E(G)| = m + n + 4. Then by similar arguement as in theorem 1. Hence y,,,(G) = m +
n+1.

Theorem 3.3. For the Extended Jellyfish graph G = EJ i, Ysm(G) =m+n+1+
2(mn,l>=1).

Proof. LetJ*, . beJellyfish graph with verticesV(J*,. ) = {f. ", 9o, 9o, 9 9} / 1 < i < m,
1<j<n} and edges E(]m,n) ={f" f90,f90 90f " 90'f" 909, 90’9 / 1 <i<m,1<
J £ n}.Let G = EJp,, bean extended Jellyfish graph from jellyfish graph j*, . without prime
edge. Appending arbitrary [ vertices(ay, 1 < k <) in I such a way that they all are
connected to vertex f and f’. The resultant graph is EJ,,,; Whose vertex set V(G) =
{f.f. 9090 909pax /1<i<m 1<j<n1<k<l} ad edge st E(G)=

{f90,f90,90f 90’ f' 909,909, fax, fla/1<i<m1<j<n1<k<]I} such that
V(@ =m+n+l+4and [E(G)|=m+n+2l+4 Let Z={g;,g;' /1<i<m1<
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j < n} bethem + n end vertices of G. By observation, Z is a subset of every SMD set of G.
Since the vertices f and f', a, (1 < k < 1) are not dominated by any vertex of Z, Z isnot a
SMD setof G and SO Y5 (G) =2m+n+1l+2.LetZ' =ZU{f,f',ar(1 < k < 1)}. Clearly
monophonic path existsand V(G) — Z' is dominated by atleast one element of Z'. Therefore Z'
isaSMD set of G,sothat Yo, (G) =m+n+1+2.

Theorem 3.4. For the Lollipop graph G = Lp,, ,(m = 4,n = 7),

IZ[+m+1 if n = 1,3 (mod?)

Ysm(G) =
. [37n] +m lf n= 012;4‘;5;6(m0d7)

Proof. Let {f;(1 <i<m),h;(1 <j<n)} bethe vertices of G, whose edge set E(G) =

m(m-1)

E(K,) U {fnhy, hihysy (1 < i <1 — 1)} such that [V(6)| = m +n and |E(G)| = +

n.Letm > 4,n > 7. Consider the following cases.
Case a: Subcase (i): n = 0(mod7)

Teke G = Lp,, ,(m = 4). Choose S, = {f;(1 <i <m—1), hy, hs, hs, h;}. Remove any
vertex x € S, and add another vertex y € V\S,,, to S,,, such that x is adjacent to y. Hence the
set S, isagain a secure dominating set of G. Also the monophonic path exists and it contain
all the verticesof G. S0 S,,, = {f;(1 <i <m —1), hy, h3, hs, h;} isaminimum SMD set of

G. In general Sy, = UZ5{h7j41, hyjs3, hojes} U {fi(1 < i < m— 1)} U {h,} is a minimum
SMD set of G. Therefore |S,,| = [37"] + m.
Subcase (ii): n = 2(mod7)

Teke G = Lpyo(m = 4). Choose S, = {f;(1 < i <m—1), hy, h, hs, hy, hg}. Then by
similar argument asin subcase (i), S, = {f;(1 <i <m —1), hy, h3, hs, h;, hg} isaminimum

SMD set of G. In generd S, = USZo{hsjs1 hyjua hojas} U {1 Si<m— 13U
{h,,_5, hy,} isaminimum SMD set of G. Therefore |S,,| = [37n] + m.
Subcase (iii): n = 4(mod7)

TakeG = Lpy, 11(m = 4).ChooseS,, = {f;(1 < i <m —1), hy, hs, hs, hy, ho, hy1}. Thenby

similar argument as in subcase (i), S;, = {f;(1 <i<m—1), hy,h3, hs, h;,hg,hy1} IS A
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minimum SMD set of G. Ingeneral S, = USZg{hyj11, h7jes hyjas} U {1 <i<m—1D}u

{hy_4, hy_y, hy} isaminimum SMD set of G. Therefore |S,,,| = [3771] +m.
Subcase (iv): n = 5(mod?7)

Take G = Lpy,12(m = 4). Choose S,,, = {f;(1 < i <m—1), hy, hs, hs, hg, hyp, hi2}. Then
by similar argument as in subcase (i), S;, = {fi(1 < i <m —1), hy, hs, hs, hg, hyg, hi2} iSa

minimum SMD set of G. Ingeneral S, = USZg{hyj11, h7jes hyjas} U {1 <i<m—1D}u

{hy_4, hy_y, hy} isaminimum SMD set of G. Therefore |S,,,| = [3771] +m.
Subcase (v): n = 6(mod7)

Take G = Lppy,13(m = 4). Choose S, = {f;(1 £ i <m—1), hy, hs, hs, hg, hyg, hys, hy3}.
Then by smilar agument as in subcase (i), Sp={i(1<i<m-1),
hi, hs, hs, hg, hig, hi2, i3} IS @ minimum SMD set of G. In generd S, =

UZo{hsjs1 hrjes hojas} U{i(1 < i <m — D}V {hy_s, hy_3, hn1, By} IS @ minimum

SMD set of G. Therefore |S,,| = [37"] + m.
Caseb: Subcase (i): n = 1(mod7)

Take G = Lppg(m = 4). Choose S, = {f;(1 <i <m—1), hy, h3, hs, h;,hg}. Then by
similar argument asin subcase (i), S,, = {f;(1 < i <m —1), hy, hs, hs, h;, hg} isaminimum

SMD set of G. Ingenerdl S, = USZg{hyjs1, hyjas hyjrs} U {fi(1 S i <m — 1), hyq, by} is

aminimum SMD set of G. Therefore |S,,| = [37"] +m+ 1.
Subcase (ii): n = 3(mod7)

TakeG = Lpy,10(m = 4).Choose S, = {f;(1 < i <m —1), hy, hs, hs, hy, hg, hyp}. Thenby
similar argument as in subcase (i), S, = {f;i(1 <i<m—1), hy,hz, hs, h;, hg, hyo} IS A

minimum SMD set of G. In general S,, = USZg{hyj11, hyjus hyjs} U{fi(1 <i<m—

1), hy—3, by, hy } isaminimum SMD set of G. Therefore |S,,| = [3711] +m + 1. From all the
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above cases, findly we conclude that S,, = UfZg{hsj+1, h7j4s. hyjes} U{fi(1 <i<m—

( h, if r=0)
hy—1, hy, if r=1
hTL—Z' hTL lf r = 2
DY YUY s b if =3
h‘l’l—‘l-’ hn_z, hn lf r = 4,5

\ h‘l’l—5' hn_3, hn—l» hn lf r = 6 J

[Z]+m+1 if n = 1,3 (mod7)
Therefore Sy, | = 4 (5,
Z|+m  if n=02456(mod7)

Theorem 3.5. For the Ladder graph G = Ld,,(n = 4),

n if n =456
6n . _

Ysm(G) = [7] +1 if n = 0,1,2,4,5,6 (mod7)
[67n] if n = 3(mod7)

Proof. Let {f;,9:(1<i<n)} be the vertices of G, whose edge set E(G)=
{fi9:i(1 < i <)} U {fifir1,9:9i+1(1 < i <n— 1)} such that [V(G)| =2n and |E(G)| =
3n—2.If n=4, then G = Ld,, S;, = {f1, f3, 92, 94} 1S minimum SMD set of G. Therefore
Ysm(G) = 4. If n =5, then G = Lds, S,, = {f1, f5, 5, 92, 94} 1S Minimum SMD set of G.
Therefore y,,,,(G) = 5.1f n = 6,then G = Ldg, Spn = {f1, f3, f5, 92, 94 G} iSMinimum SMD
set of G. Therefore vy, (G) =6. Hence y,,(G) ={n if n=456}. Let n>7.
Consider the following cases.

Case a: Subcase (i) n = 0(mod?7)

Take G = Ld,. Choose S,,, = {f1, f3, [5, [7, 92, 94 96} REMOVE any vertex x € S, and add
another vertex y € V\S,,, to S,,, such that x isadjacent to y. Hence the set S,,, is again a secure
dominating set of G. Also the monophonic path exists and it contain al the vertices of G. So

Sm={fi,f3f5: 7,92, 94,96} 1S @ minimum SMD st of G. In genegd S, =

Ufz_(}{f7j+1:f7j+3:f7j+5»g7j+2:g7j+4:g7j+6} U {fn} is a minimum SMD set of G. Therefore
1Sml = |Z] + 1.
Subcase (ii): n = 1(mod7)

Take G = Ldg. Choose S,, = {f1, f3, fs, 7, 92, 94, 9, 9g}- Then by similar argument as in
wbca%(l), Sm = {fl’f3'f5'f7'gzl94196198} |S amlnlmum SMD set Of G.In general Sm =
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U?;(}{f7j+1'f7j+3'f7j+5;g7j+2fg7j+4;g7j+6}U{fn—l'gn} is @ minimum SMD set of G.

Therefore |S,,| = [67"] + 1.
Subcase (iii): n = 2(mod7)

Take G = Ldy. Choose S,,, = {f1, 3, f5, f7, for 92, 9a» G6» 9s}- Then by similar argument as in
subcase(i), S = {f1, f3 5 f7) for 920 Ga» Gor 9} 1S@Minimum SMD set of G. In generd S, =
U?;(}{f7j+1'f7j+3'f7j+5»g7j+2»g7j+4»g7j+6} U {fn-1 fo Gn-1} iIsaminimum SMD set of G.

Therefore |S,,| = [67"] + 1.
Subcase (iv): n = 4(mod?7)

Take G = Ldy;. Choose Sy, = {f1, f3, fs. fa, f10, 92, 94 96, 99, 911}- Then by similar argument
as in subcase(i), S, = {f1, f3, fs, fer f100 920 9a» G6» 9o, 911} 1S @ minimum SMD set of G. In
generd S, = U?;(}{f7j+1:f7j+3»f7j+5».97j+2:97j+4'97j+6} U{fr-3 fa—1,9n-2,92} 1S @

minimum SMD set of G. Therefore |S,,,| = [67"] + 1.
Subcase (v): n = 5(mod?7)

Teke G = Ldy,. Choose Sy, = {f1, 3, fs, fer fr0, f12) 92, 94 96, 9o, 911} Then by similar
argument asin subcase(i), Sy = {f1, f3, f5, fo f10 f120 92, Gar 960 G9) 11} IS@MINIMUM SMD
set of G. In general Sm = U?;ol{f7j+1'f7j+3'f7j+5'g7j+2'97j+4'97j+6} U

{frn-u fn-2 o> Grn—3> Gn—1} iS@aminimum SMD set of G. Therefore |S,,,| = [67n] + 1.
Subcase (vi): n = 6(mod?7)

Take G = Ld,3. Choose Sy, = {f1, f3, f5, fe f10) f120 92, 94r 96, 99, 911, 913} Then by similar
argument asinsubcase(i), Sy = {f1, f3, f5, fo f10 f120 92, 94 960 G9) G11, 913} iS@Minimum
SMD st of G. In generd S, = U?;&{fﬁﬂ'f7j+3'f7j+5'g7j+2'g7j+4'97j+6} U

{frn-s -3 fr-1> Gn-a>Gn-2, 9n} iSaminimum SMD set of G. Therefore |S,,| = [67"] + 1.

Case (b): n = 3(mod7)

Take G = Ld,,. Choose S, = {f1, f3, f5, fa» f10, 92, 9a» Gs» 9o} Then by similar argument asin
subcase(i). S0 S, = {fi, f5, fs0 for f100 920 Ga» 96r 9o} 1S @ mMinimum SMD set of G. In genera

m = Ufz_(}{f7j+1;f7j+3'f7j+5'g7j+2'g7j+4'g7j+6} U {fn-2, fn» Gn—1} isaminimum SMD set
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of G. Therefore |S,,| = [67n] From al the above cases, finally we conclude that S, =

k_
Uj:é{f7j+1» f7j+3 [7j+50 97420 97+ g7j+6} U

( fn if r =0
frn-1,9n if r=1

) fr-20far Gn-1 if r=23 >
fr-3 fa-1,9n-2,9n if =4
fr—a fn-2 fro Gn-3 In-1 if r=>5

\ fn—Slfn—3'fn—llgn—él»)gn—Zugn if r=6)J

[6771] +1 lf n=0,1,24,5,6 (m0d7)
Therefore |Sp,| =
[7 if n = 3(mod7)
n if n=4,5,6
6n . _
Hence |S,,| = J [7 +1 if n =0,1,2,4,5,6 (mod7)
ue_n if n = 3(mod7)

7

4. Conclusion

In this paper, we investigated the secure monophonic domination number of Jellyfish

graph J,,, ,, Ladder graph Ld,, and Lollipop graph Lp;, .
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Abstract

We show in this paper the emerging Topological Gradient Method (TGM) which isa
new way for modelling and we use it in detecting the skin lesions using edge detection. The
irrelevant objects are destructed and the relevant objects are constructed with topological
properties and objects are separated from the noisy background of an image. The devel oped
pipeline integrates multiple stages of image processing to ensure high accuracy and reliability
in lesion detection. The objectiveisto assist the cliniciansin accurately extracting lesions from
surrounding skin and enhancing subsequent diagnosis and treatment, it becomes feasible to
monitor their progression over time using MATLAB.

Keywords. Image Processing, Topological Image Processing, Topological Gradient Method,
Edge detection, Skin lesion, Noise Removal, MATLAB.
2020 Mathematics Subject Classification (AMS): 54H30
1. Introduction

Skinlesions are abnormal changesin the skin's colour, texture, or appearance. They can
be classified based on their characteristics, causes, and whether they are primary (directly
associated with a disease process) or secondary (arising from the progression of a primary
lesion). The primary skin lesions are macule, plague, wheal, tumor etc. The secondary skin
lesions are crust, fissure, ulcer, scar etc. The common causes of skin lesions are infections,
alergies, injuries, cancer and other conditions like acne or benign growth like moles or

lipomas.

Topological image processing is an advanced technique in image anaysis that uses
principlesfrom topol ogy to understand and manipulate the structure and properties of an image.
Unlike traditional methods that focus on pixel intensity or gradient-based features, topological

approaches emphasize the connectivity, shape, and spatial relationships within an image.
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Applications of topological image processing are widespread, ranging from medical imaging,
whereit can identify complex anatomical structures, to material science and data visualization.
Its strength liesinitsresilience to noise and its ability to extract meaningful information about

an image's global and local topological structure.
2. Preliminaries

2.1 Topological Gradient Method

The Topological Gradient is amethod from topological image processing that can be used
for edge detection and segmentation tasks. It usestheidea of topology (connectedness and local
structure) to detect edges and boundaries in images. In topological image processing, the
topological gradient is often applied in tasks like segmentation, where we look for regions of
interest and boundaries by detecting abrupt changes in topological structures. The topol ogical
gradient is essentially a measure of how much a certain property (e.g., pixel intensity or

gradient) changes when a small perturbation is made to aregion of the image.[2]
2.2 Grayscale Transfor mation

Gray-scale transformation is a technique used to simplify image processing by converting
images to grayscale, thus reducing computational |oad and focusing on essential features. In an
RGB image, each pixel comprises red, green, and blue components. The grayscale conversion
process involves combining these components into a single intensity value. Thisis typicaly
done using a weighted sum of the red, green, and blue values, reflecting the human eye's
sensitivity to different colours. For example, the formula

Gray =0.2989 x R + 0.5870 x G + 0.1140 x B

is commonly used, where R, G and B are the intensities of the red, green, and blue channels
respectively. This ensures the grayscale image accurately represents the perceived brightness
of the original RGB image.[5]

2.3 Histogram Equalization

To further enhance the quality of the grayscale images, histogram equalization is applied. This
technique redistributes the brightness values to span the entire range of possible values, thereby
enhancing the contrast of the image. Histogram equalization is particularly useful for making
features more distinguishable, which is crucia in medical imaging where clear visibility of

detailsis necessary for accurate diagnosis [5].
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2.4 Topological Gradient Approximation

The gradient of the image is computed using MATLAB’s gradient() function. This computes
the derivative of theimage in the x and y directions, effectively capturing the rate of changein
intensity across the image. The gradient magnitude is calculated by combining the gradientsin

the x and y directions using the formula:
Original Gradient Magnitude = V(Vx)? + (Vy)?2

This represents the magnitude of intensity change at each pixel, which is a good measure for

detecting edges.
2.5 Thresholding

The gradient magnitude is normalized using mat2gray() to scale it between 0 and 1. Then, a
threshold is applied to detect significant changes in intensity, which correspond to edges. We
can adjust the threshold value to control the sensitivity of edge detection. A higher threshold
will only highlight the most significant edges, while alower threshold will include more subtle

edges.
2.6 Noise Removal

During image pre processing, it is frequently essential to eliminate different forms of noise,
such as hair and other unwanted elements in the images, which may disrupt the precise
evaluation of skin lesions. The rationale behind this can be divided into three main reasons.
First, it enhances the clarity of images by eliminating obstructions that may obscure important
details, thereby reducing the risk of incorrect diagnoses or misinterpretations. Second, the
elimination of noise improves image quality, which in turn enhances the performance of
models used for tasks such as segmentation and classification. Lastly, it ensures consistency
by providing uniform images that are free from artifacts, thereby maintaining the integrity of
diagnostic procedures.[5]

2.7 Median Filtering

Median filtering replaces apixel'sintensity 1(x, y) with the median value of its neighbourhood
N(X, y). For ak xk kernel:

1(x, y)= median{l (p, q)|(p, q) € N

isthefiltered intensity. It effectively reduces salt-and-pepper noise while preserving edges.
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2.8 Gaussian Filtering
Smoothens the image to reduce Gaussian noise while introducing minimal blurring.

Applies a Gaussian Kernel

1 —x2 +yZ

e 202

H(X, y)=

2mo?

Where o controls the smoothing intensity.[6]
2.9 Bilateral Filtering

The bilateral filter calculates the intensity of each pixel in the output image as a weighted
average of the nearby pixels in the input image. The weights are based on the Euclidean
distance between pixels, as well as the radiometric differences between them, such as colour
intensity. The bilateral filter is effective for reducing noise and blocking artifacts.[ 6]

2.10 Edge Detection

Edge detection is crucia in image analysis across fields like medical imaging, industrial
inspection, and computer vision. It identifies significant discontinuities in intensity levels,
which represent edges. This process utilizes first- or second-order partial derivatives, with
methods like the Sobel row-edge and Prewitt column-edge detectors, or the Laplacian of
Gaussian detector, to detect changes in intensity. Advanced edge detection using the
topological gradient method identifies boundaries by evaluating how small topological changes
impact an energy functional representing image intensity. This approach robustly highlights
edges by analyzing structura information globally rather than relying on local intensity alone,
excelling in noise-prone scenarios and intricate boundary detection.

2.11 Overlaying Images

The overlayed image combines the original skin lesion image with highlighted edges (in red).

Thisvisualizes:

e Theboundaries of the lesion.
e Areasof textura or structural change.

¢ Regionswith sharp intensity gradients indicative of potential irregularities.
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The highlighted edges show the precise boundaries of alesion, which can help clinicians assess
the size, shape, and symmetry. Topological gradient and edge detection highlight areas with
sudden intensity changes, pointing to irregular textures within the lesion.

3. Conceptual Connection to Topology

Topology studies properties of spaces that are preserved under continuous deformations, such
as stretching or twisting, but not tearing or gluing. In image processing, these propertiesinclude
connectedness, holes, and the number of components in a space, which can be used to extract
meaningful features for analysis.

3.1. Topological Gradient: The topological gradient is closely related to how the image
intensity changes locally when perturbed. In this case, the gradient magnitude approximates by

calculating how the intensity changes in both the x and y directions.

3.2. Edge Detection as Topological Boundary Detection: The topological gradient can be
seen as identifying "boundaries® or changes in the image, similar to identifying connected
components or boundaries in topology. Significant intensity changes correspond to boundaries
between different regions (objects or edges), which aligns with the concept of detecting
boundaries in topological terms.

4. Application of Topological Gradient Method in Skin Lesions

Here we use a MATLAB Program to get the accurate image and assist the clinicians in
accurately extracting lesions from surrounding skin and enhancing subsequent diagnosis and

treatment, it becomes feasible to monitor their progression over time.
MATLAB code:

clc;
clear;

close al;

inputimage = imread('sk.jpeg’);
graylmage = rgb2gray(inputimage);
equalizedlmage = histeq(graylmage);
medianFiltered = medfilt2(equalizedimage, [3 3]);
h = fspecia(‘'gaussian’, [5 5], 1);
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gaussianFiltered = imfilter(medianFiltered, h, ‘replicate);
bilatera Filtered = imbil atfilt(gaussianFiltered);
cleanedimage = imnimfilt(bilateral Filtered);
[GX, Gy] = imgradientxy(cleanedlmage, 'sobel");
topological Gradient = sgrt(Gx."2 + Gy.*2);
thresholdV aue = graythresh(topol ogical Gradient);
binarylmage = imbinarize(topol ogical Gradient, thresholdValue);
edges = edge(binarylmage, 'Canny');
se=strel('disk’, 1);
cleanedEdges = imdilate(edges, se);
cleanedEdges = imerode(cleanedEdges, se);
overlaylmage = inputlmage;
if size(inputimage, 3) == 3

overlaylmage(;, :, 1) = uint8(cleanedEdges) * 255;
end
figure;
subplot(3, 3, 1); imshow(inputimage); title('Original Image’);
subplot(3, 3, 2); imshow(graylmage); title('Grayscale Image');
subplot(3, 3, 3); imshow(equalizedimage); title('Histogram Equalized’);
subplot(3, 3, 4); imshow(medianFiltered); title('Median Filtered);
subplot(3, 3, 5); imshow(gaussianFiltered); title('Gaussian Filtered');
subplot(3, 3, 6); imshow(bilateralFiltered); title('Bilateral Filtered);
subplot(3, 3, 7); imshow(topological Gradient, []); title('Topological Gradient’);
subplot(3, 3, 9); imshow(overlaylmage); title('Edges Overlay on Origina Image);

Output:
0’!9“_‘;" Image Grayscale Image Histogram Equalized
M il
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Gaussian Filtered Bilateral Fitered

Bl 9

Topological Gradient Edges Overlay on Original Image

5. Discussion

The analysis begins with loading the input image, which is then converted to grayscale using
the rgb2gray function to simplify processing by reducing the image's dimensionality. Contrast
enhancement is performed through histeq to redistribute pixel intensities, ensuring a uniform
intensity distribution. Noise is sequentially removed using multiple filters: medfilt2 for salt-
and-pepper noise, imfilter with a Gaussian kernel for Gaussian noise, imbilatfilt for edge-
preserving smoothing, and imnlmfilt for advanced non-local means denoising. The topol ogical
gradient of the denoised image is computed using the Sobel operator via imgradientxy,
determining intensity changes along the x and y directions, with the gradient magnitude
highlighting key features. Thresholding is performed using graythresh based on Otsu's
method, and the gradient image is binarized using imbinarize to segment significant regions.
The edges are refined using the Canny edge detector (edge), producing precise edge
delineation. Further enhancement is achieved through morphological operations: imdilatefills
gaps in the detected edges, and imer ode refines their boundaries, ensuring smooth contours.
The processed edges are then overlayed in red onto the original image by modifying the red
channel, creating a clear visualization for clinical interpretation. The results, visualized using
subplot, provide a step-by-step transformation of the image. The overlayed edges highlight
lesion boundaries, aiding clinicians in identifying critical features such as size, shape, and
texture. This pipeline effectively combines topological, morphological, and noise-removal

techniques to deliver enhanced, accurate images for medical analysis.
6. How it Helps Clinicians

This program significantly enhances clinicians ability to assess skin lesions by
providing clear visualizations and precise diagnostic tools. Overlayed edges, highlighted in red,
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delineate lesion boundaries, aiding in their clear identification. Grayscal e mapping emphasizes
intensity variationswithin thelesion, offering additional insights. By highlighting contrasts and
edges, the program facilitates a detailed assessment of lesion shape, size, and texture,
improving diagnostic accuracy. It supports both automated and manual segmentation, enabling
precise feature measurements for analysis and classification. The colour mapping further
enhancesinterpretation, with red representing detected edges and grayscal e indicating intensity
changes. This pre processing tool effectively extracts essential features from medical images,
streamlining diagnostic workflows and contributing to advanced research in dermatological

imaging.
7. Conclusion

This study introduces an integrated pipeline for enhancing skin lesion analysis using
topological image processing techniques. The process begins by converting the lesion image
to grayscale and enhancing contrast through histogram equalization. Advanced noise removal
methods, including median, Gaussian, bilateral filtering, and non-local means denoising, refine
the image while preserving critical features. A topological gradient approximation is applied
to capture significant intensity variations, identifying boundaries and regions of interest within
the lesion. Thresholding isolates key features, followed by the Canny edge detector, which
ensures precise delineation of lesion edges. Morphological operations further enhance these
boundaries, creating arefined binary representation. Thefinal step overlays the detected edges
onto the original image, highlighting lesion boundaries for clinical interpretation. This
approach aidsin analyzing lesion characteristics like size, shape, and texture, offering a robust
visual aid for diagnostics. The pipeline’s ability to handle noise effectively and extract features
with high precision underscores its potential to support dermatological assessments and
decision-making processes, advancing automated medical imaging techniques.
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Abstract

Problem solving in engineering, science and other disciplines often requires complex
analysis. A problem that requires effort is determining the value of electric current in acircuit.
This research presents an alternative approach to determine the implementation of Gauss
Elimination method in Electrical Circuits using PY THON. This method is effectivein finding
unknown values in a system of linear equations through matrix operations. A deep
understanding of currents in electrical circuits is essential in the design, analysis and
maintenance of electrical systems. The application of the Gauss Elimination method becomes
important in determining the value of current in complicated electrical circuits. Furthermore,
this research also presents the results of identifying the voltage value of the circuit accurately
and relevantly.

Keywords: Gauss Elimination, Electric Circuits, System of Linear Equations, Kirchoff's Law.
2020 Mathematics Subject Classification (AMS): 65F45

1. Introduction

The application of mathematical models is essential for addressing problems across
various domains, including the analysis of electrical circuits. When tackling such problems, it
is crucia to understand that electrical circuits often comprise numerous components-such as
resistors, capacitors, and inductors-connected through nodes. Calculating the current flowing
through each component is vital, as it significantly influences the overall performance of an

electrical circuit, including parameters such as voltage, power, and efficiency.

Several techniques can be employed for electrical circuit analysis[4], such asnode anaysis
and super node analysis. Nodes are points where two or more componentsin acircuit intersect.
These analytical methods are typically formulated into mathematical models, which are then
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represented numerically as Systems of Linear Equations (SLE). These models can become
complex, often involving multiple equations, necessitating efficient solutions. The Gauss

elimination method provides a systematic approach to solving such systems [1].

Gaussian elimination, widely recognized as the row reduction a gorithm, is amathematical
method for solving systems of linear equations. Thistechnique involves performing a sequence
of operations on the coefficient matrix to derive solutions. Its versatility makes it suitable for
various scenarios that can be modeled using SLES [5, 2]. Practical applications of Gaussian

elimination include solving problems related to nuclear fuel depletion.

This study introduces an alternative approach to determining the el ectric current in circuits
using the Gauss Elimination method, facilitated by Python programming. The research
emphasizes transforming electrical circuit problems into matrix form, demonstrating the
process for efficiently obtaining accurate and relevant solutions to electrical engineering

challenges.
2. Preliminaries

Electric Current

Electric current is the time rate of flow of electric charge through a circuit

element or conductor.
Kirchhoff's Law

Kirchhoff s law are valid for all circuits and are considered essential tools for

analyzing electrical circuits.
Current Law

Kirchhoff's first law or the node law, “This law states that the total current
entering anode in acircuit must equal the total current leaving the node”. Thisis because

chargeis conserved
2 [in =X Tout
Voltage Law

“This law states that the total voltage around any closed loop in a circuit must equal zero”. This

is because energy is conserved
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e +XIR=0
Augmented Matrix

A matrix obtained by appending a-dimensiona column vector, on theright, as a

further column to a-dimensional matrix.
Augmented matrix =[A/B]

3. Research Method

This study contains five processes (shown in Figure 1). These areinitializing the
research, Deriving Equation by Kirchoff's law, transform equation to matrix, solved by

Gauss elimination method and anal yzing the result.

—

Derivation of
equations with
Kirchoff’s Law

Research
Initialization

Transform
the equation

to matrix
Solved by

Gauss
Elimination
Method

Anayze
(= )—( Fan )—

Fig 1. Research workflow

3.1. Research I nitialization

At this stage, research defines its objectives, and studies literature to find simple
electrical circuits to be used as ssimulation materia. In addition, research determines the

parameters to be studied, such as current and voltage on each component.
3.2. Kirchhoff'slaw

Kirchhoff’s first law declares, “The amount of electric current entering (X lin) a node
in a circuit must be equal to the amount of electric current leaving (Xlout) the node”, by

equation (1).

Kirchhoff’s second law relates to Kirchhoff s voltage law or loop. The law states, “The
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sum of the voltage (R) drops in a loop in the circuit must be equal to the sum of voltage
increases”, by equation (2).

2l in = XI out (1)

T ¢+ 2IR =0 )

3.3. Gauss Elimination Method

This study focuses on the Gaussian elimination method, a technique used to solve
systems of linear equations by performing three types of matrix row operations on an
augmented matrix. The process involves two main stages. forward elimination and back

substitution.

3.3.1. Forward elimination
This step simplifies the matrix into its row echelon form. The primary objective here

is to determine whether the system of equations has:

a. A single unique solution,

b. Infinitely many solutions, or

c. Nosolution at al. If the system isfound to have no solution, further steps are unnecessary.

3.3.2. Back Substitution
If solutions are possible, this step is performed to further simplify the matrix into its

reduced row echelon form.

The Gaussian elimination rules are the same as the rulesfor the three basic row operations,

in other words, you can algebraically act on a matrix's rows in the following three ways:

a. Interchanging two rows, for example, R2 <> R3
b. Multiplying a row by a constant, for example, Rl — kR1 where k is some nonzero
number.

C. Adding a row to another row, for example, R2 — R2 + 3R1.

4. Application of Gauss Elimination Method in Electrical Circuit using
Python

The electrical installation was shown in an electrical circuit (Fig 2). The condition is
an example of areal case to be simulated and determined the value of the voltage generated

63

ISBN: 978-93-48505-23-1



Proceedings of the International Conference on Algebraic Graph Theory,
Graph Theory and Topology — 9" & 10" January 2025

from each loop with the Gauss elimination method. There are four loopsin the electrical circuit
and four sources of electric current. Each loop isidentified with the first Kirchhoff's law
Loopl: iy +2i,—iz+i,=6
Loop 2: —iy + i, +2i3— iy =3
Loop 3: 2i; — iy + 2i3 + 2iy, = 14
Loop4: i; +i, —i3+2i, =8

Q:A.rla

Fean.

Fig 2: Example of electrica circuit

3.1 Gauss Elimination Result
Furthermore, the SPL of loop is transformed into a 4 x4 matrix, according to the number

1 2 -1 11][i 6
-1 1 2 -=1|liz| _|3
~ |14

8

of eectric current variables.

2 -1 2 2|l
1 1 =1 21lia
The Gauss elimination method is used to determine the value of each electric

current. The solution steps are as follows: First iteration: operated (R2+R4) in other
words adding row 2 and 4. So that the resulting equation

1 2 =1 110k 6 1 2 -1 11[6
-1 1 2 -=1|liz] |3 -1 1 2 -1||3
2 -1 2 21llis| |14 R2+R4= 2 -1 2 21|14

1 -1 2 1 1111

1 iy 8 | 0 2 1

The second iteration operates on the first row such that all values of the first
column (except diagonal 1) are 0. The third row is operated with 2R2+ R3 and the

second row is operated with R1 + R2. Meanwhile, the fourth line is not operated

because it is aready O.
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1 1 2 =1 117[e6
-1 2 -1 1 2 -1/|3
2 - 2 2R2+R3 0 1 6 0/]20
0 1 0 2 1 11l11

The third iteration operates on the second row so as to obtain the identity matrix

Component

1 1 2 —-1 116
—11 2 0 3 1 offl9

0 1 6 R1+R2 0 1 6 0]]20

0 2 1 0 2 1 1ll11

1 2 -1 1 1 2 -1 1

0 3 1 0 9 0 3 1 o0||lo9

01 6 020M01 6 0]] 20
0 2 1 1ll11 0 0 —11 1ll-29
1 2 =1 11[ 6 ] 1 2 -1 1

03 1 0|9 |p _gp |03 1 0

0 1 60202_3,00—170—51

0 0 —11 1]1-29] 0 0 —11 1]1-29]

1 2 =1 11 6 ] 1 2 =1 17[ 6
0 3 1 o0||lo9 0 3 1 0 9
0 0 —17 o0]||-51 '11R3+17R4=0 0 —17 0]]|-51
0 0 —11 1]1-29] 0 0 0 17]l 68
1 2 =1 11[ 6 1 2 -1 1

0 3 1 0 9 0 1 1/3 0

0 0 —17 0 —511/iR2,0 0 —-17 0 —51
0 0 0 171168/ 00 0 17

1 2 -1 17[ 6 1 2 -1 17[6
01 1/3 0 3 | 0 1 1/3 0|3

0 0 —17 ol-s1| Y Rslo 0 1 ol|3

0 0 0 17/le68. 0 0 0 17]l68
1 2 -1 17[6 1 2 -1 11[6

0 1 1/3 0|3 0 1 1/3 0f|3

0 0 1 0 3@,00 1 0]|3

0 0 0 17]le8 0 0 0 1ll4

This research produces an identity matrix in the ninth iteration, the final result is the
matrix below. At the ninth iteration, the strong current value in each loop is obtained. The
current valueineachloopi; = 6,i, = 3,i3 = 3,i, = 4.
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1 2 -1 11[6
0o 1 1/3 of|3
oo 1 ofl3
o0 o 1lla

This study not only manually applied the Gauss elimination method but a so executed
in agorithm using Python programming. To simplify calculations, the process of determining
electric current values was effectively implemented in Python. The results from the two
approaches showed only a small difference, ranging between 3-6%. Thus, it can be concluded
that both methods produce nearly identical outcomes with no significant variance.

Gauss Elimination Using Python

4.2. Voltage Analysis

The next step involves analyzing the voltage (V) in each loop of the circuit. The
voltage is calculated using Kirchhoff's second law (V = YIR). Analyzing voltage values in
electrical circuits is essentia for diagnosing issues and maintaining electrical systems in
circuits and other applications. The voltage values for the electrical circuit are represented in

the matrix below.
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1 2 -1 1 0.66] [5.98

-1 1 2 —1‘){[1.86‘{2.96

2 -1 2 2 34| |16.3
1 -1 2

1 5 9.12

5. Conclusion

From the identification, simulation, and analysis of the electrical circuit, it has

been demonstrated that the Gauss elimination method is effective in determining the electric

current in electrical circuits. To reduce the computational process, the Gauss elimination

method can be executed using Python programming. In summary, this study successfully

determined the current and voltage values in the analyzed electrical circuit. The mathematical

approach is used to be efficient in addressing the problem, providing valuable insights into the

characteristics and behavior of complex electrical circuits.
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Abstract

Thiswork utilized the concept of Simplex algorithm, an aspect of linear programming
to alocate raw materials to competing variables (big size, small size, medium size) in making
the traditional sweet Adhirasam for the purpose of profit maximization. The analysis was
carried out and the result showed that 880 pieces of medium size, 500 pieces of small size and
0 pieces of big size should be produced respectively in order to make a profit of 220580. From
the analysis, it was observed that medium size of pieces contribute objectively to the profit.
Hence, more of medium size of pieces are needed to be produced and sold in order to maximize

the profit.

Keywords: Linear programming model, Simplex method, Decision variables, Optimal result
using PYTHON LAB.

2020 Mathematics Subject Classification (AMS): 90C05
1. Introduction

Linear programming isafamily of mathematical programming that is concerned with or useful
for allocation of scarce or limited resourcesto several competing activities on the basis of given
criterion of optimality. In statistics, linear programming (LP) isaspecial techniques employed
in operation research for the purpose of optimization of linear function subject to linear equality
and inequality constraint. Linear programming determines the way to achieve best outcome,
such as maximum profit or minimum cost in a given mathematical model and given some list
of requirement as a linear equation. The technique of linear programming is used in a wide
range as applications, including agriculture, industry, transportation, economics, health system,

behavioural and socia science and the military. Although many business organization see
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linear programming as a “new science” or recently development in mathematical history, but
there is nothing new about the maximization of profit in any business organization, i.e in a

production company or manufacturing company.
2. Literaturereview

The lack of good literature on the relationship between linear programmingutilization
and optimization of raw materials in the breadbaking industry in Nigeriais another issue that
has triggered this research work.To authenticate this, for instance, Akpan and Iwok (2016)
investigated the application of linear programming to optimizeraw materialsin a bakery. They
found that a small loaf, followed by a big loaf, contributes objectively to the profit [1].

In their work titled “use of linear programming for optimal production” in Coca-Cola
Company, they were able to applied linear programming in obtaining the optimal production
process for Coca-Cola Company. In the course of formulating alinear programming model for
the production process, they identified the decision variables to be the following Coke, Fanta,
Schweppes, Fanta tonic, Krest soda etc. which some up to nine decision variables and the
constraint were identified to be concentration of the drinks, sugar content, water volume and
carbon (iv)oxide. The resulting model was solve using the simplex algorithm, after the data
analysis they came to a conclusion that out of the nine product the company was producing
only two contribute most to their profit maximization, that is Fanta orange 50cl and Coke 50cl
with a specified quantity of 462,547 and 415,593 in order to obtain a maximum profit of
N263,497,283. They advise the company to concentrate in the production of the two products

in order not to run into high cost [2].
3. Preliminaries

Constraints are a series of equalities and inequalities that are a set of criteria necessary to

satisfy when finding the optimal solution.

Optimal solution of a maximization linear programming model are the values assigned to
the variablesin the objective function to give the largest zetavalue. The optimal solution would

exist on the corner points of the graph of the entire model.

Simplex method is an approach to solving linear programming models by hand using slack
variables, tableaus, and pivot variables as a means to finding the optimal solution of an

optimization problem.
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Slack variables are additional variables that are introduced into the linear constraints of a

linear program to transform them from inequality constraints to equality constraints.

Decision Variable are quantities that influence the objective function of a mathematical
optimization model. They are represented by mathematical symbols and can take on any of a

set of possible values.
4. Linear Programming Model

The general linear programming model with n decision variables and m constraints can

be stated in the following form

Optimize (max or min) Z = cyxq + cyxp+... +cpxy

Subject to a11%X1 + x5+ Fax, (S, =,2)by
Ay1X1 + AppX+... +ay,x, (S, =,2)b,

Am1X1 + QX+ Famp X (S, =,2) by,

The above model can a'so be expressed in a compact form as follows.

Optimize (max or min) Z = ¥7_; c;x;...(objective function)

Subject to the linear constraints

Z= Y a;x(<S,=2)b,i=12,...,mandx; 2 0,j=1,2,...n

.....

the value of the objectivefunctionand a1, as,,..., az1 A2z .., A1 Az, - - -, Amprepresent the
amount of resource per unit of the decision variables. The b; represents the total availability of
the i*" resource. Z represent the measure of performance which can be either profit, or cost or

reverence etc[1, 2, 3, 4].

4.1. Standard form of a Linear Programming M odel

The use of the simplex method to solve alinear programming problem requiresthat the
problem be converted into its standard form. For n decision variables and m constraints, the

standard form of the linear programming model can be,

Optimize (max or min) Z = cyx; + ¢yx+... +cpxy, + 051 + 0s,+...+0s),
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Subject to linear constraints — a;1x; + ayx+... +a X, +... +51 = by
Ay1X1 + AppX+... FayXp+...+5, = by
Am1X1 + QX+ . +aQmpXp+... +Sym = by

X1, X2, Xn,S1,S2, - S;=>0

This can be stated in a more compact form as.

Optimize (max)Z = 71 ¢jx; + Xj=; 0s;

Subject to the linear constraints

Z= ¥j-1a;%s;=b;,i=1,2,...,mand x;s; > 0, (for al i and )

4.2 Data Presentation and Analysis

The data for this research project was collected from Marudham Adhirasam,
Vadambacheri, Coimbatore, Tamilnadu. The data consist of total amount of raw materials
(flour, jaggery and oil) available for daily production of three different sizes of Adhirasam (big
size, small size, medium size) and profit contribution per each size of Adhirasam produced.
The data analysis was carried out with PY THON software. The content of each raw material

per eachpiece of Adhirasam produced is shown below.
Flour

Total amount of flour available = 32kg

Each size of big piece requires 0.025kg of flour

Each size of small piece requires 0.02kg of flour

Each size of medium piece requires 0.025kg of flour
Jaggery

Total amount of jiggery available = 16kg

Each size of big piece requires 0.017kg of jaggery
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Each size of small piece requires 0.01kg of jaggery

Each size of medium piece requires 0.0125kg of jaggery

Oil

Total amount (volume) of oil available = 9L

Each size of big piece requires 0.0083L of ail

Each size of small piece requires 0.007L of ail

Each size of medium piece require 0.00625L of oil

Profit contribution per unit product (size) of adhirasam produced

Each unit of big size = 320

Each unit of small size =213

Each unit of medium size =316

The above data can be summarized in atabular form.

Raw materials Product Availability of
Big size Small size Medium size raw materials

Flour (kg) 0.025 0.02 0.025 32

Jaggery (kg) 0.017 0.01 0.0125 16

Oil (L) 0.0083 0.007 0.00625 9

Profit () 20 13 16

4.3 Model formulation

Let the quantity of big size to be produce = x,

Let the quantity of small size to be produce =x,

Let the quantity of medium size to be produce = x5

Let Z denote the profit to be maximize. The linear programming model for the above

production datais given by

Max Z = 20 x; +13 x, + 16x5

ISBN: 978-93-48505-23-1

72




Proceedings of the Inter national Conference on Algebraic Graph Theory,
Graph Theory and Topology — 9" & 10" January 2025

Subject to constraints

0.025x; + 0.02x,+ 0.025 x5 < 32

0.017 x; + 0.01x, + 0.0125 x; <16
0.0083x; + 0.007 x, + 0.00625 x3< 9

X1, X2,%3>0

Converting the model into its corresponding standard form;
Max Z = 20x,+ 13x, + 16 x3+0s; +0s, +0s3
Subject to constraints

0.025x;+ 0.02x, + 0.025 x5+ s; = 32
0.017x;+ 0.0Lx, +0.0125 x5+ s, =16
0.0083x,+ 0.007x, + 0.00625 x5 + 55 = 9
X1,X2, X3,51,52,53 > 0

The above linear programming model was solved using PY THON software, which gives an
optimal solution of: x; =0, x, = 500, x; = 880.Z = 20580.

4.4 Interpretation of Result

Based on the data collected the optimum result derived from the model indicates that
two sizes of Adhirasam should be produced, small size and medium size. Their production

quantities should be 500 and 880 respectively. This will produce a maximum profit of 320580.
4.5 Simplex Method using PY THON
from scipy.optimize import linprog

# Define alarge value for Big-M
M =1e6 # Big-M pendlty for artificial variables

# Objective function coefficients (Max Z -> Min -Z)
# Variables: x1, x2, X3, s1, s2, s3, al, a2, a3
c=1[-20,-13,-16, 0,0, 0, M, M, M]

# Coefficients of the constraints (LHS)
A=
[0.025, 0.02,0.025, 1,0, 0, 1, 0, 0], # Constraint 1
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[0.017,0.01, 0.0125, 0, 1, 0, 0, 1, O], # Constraint 2
[0.0083, 0.007, 0.00625, 0, 0, 1, 0, 0, 1] # Constraint 3
]

# Right-hand side (RHS) of the constraints
b=[32, 16, 9]

# Bounds for the decision variables (all non-negative)
x_bounds = (0, None) # All variables must be >=0

# Solve the linear programming problem using the simplex method
result = linprog(c, A_eg=A, b_eq=b, bounds=[x_bounds] * len(c), method="highs))

# Display results
if result.success:
print("Optimal solution found:")
print(f"x1 = {result.x[0]:.2f}, x2 = {result.x[1]:.2f}, x3 = {result.x[2]:.2f} ")
print(f"Maximum Z = { abs(result.fun):.2f}")
else
print("No optimal solution found.")

(3]

3 335

5. Summary

The objective of this research work was to apply linear programming for optimal use of

raw material in Adhirasam production. Marudham Adhirasam was used as our case study. The

decision variables in this research work are the three different sizes of Adhirasam (big size,

small size and medium size) produced by Marudham Adhirasam. The researcher focused

mainly on three raw materials (flour, jaggery and oil)used in the production and the quantity
of raw material required for each variable (Adhirasam size). The result shows that O piece of
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big size, 500 piece of small size and 880 piece of medium size should be produce respectively

which will give a maximum profit of 320580.
6. Conclusion

Based on the analysis carried out in this research work and the result shown, Marudham
Adhirasam should produce the three sizes of Adhirasam (big size, small size and medium size)
in order to satisfy the customers. Also, more of medium size should be produce in order to

attain maximum profit, because they contribute mostly to the profit earned by the company.
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Abstract

The Pythagorean Neutrosophic fuzzy magic graph is the combination of Pythagorean
Neutrosophic Fuzzy set and graph model which is mainly applied across various fields.
Pythagorean Neutrosophic set composed of elements with dependent Membership function
(<), Non Membership function (y) and independent indeterminancy function () with the
condition that 0 <«?+ B2 + 2 < 2. The concept of Pythagorean Neutrosophic fuzzy graph
extended to Pythagorean Neutrosophic fuzzy magic graph. In this paper we define some
operations that can be performed on Pythagorean Neutrosophic magic graph include Cartesian
Product, Composition, Complement, Union, Intersection, and investigate their important

properties.

Keywords. Pythagorean Neutrosophic fuzzy magic graph (PNFMG), Cartesian Product,

Composition, Complement, Union, Intersection

2020 Mathematics Subject Classification (AMS): 05C72, 05C76, 05C78
1. Introduction

Fuzzy set was coined by Zadeh L.A in 1965. Atanassov presented the concept of
intutionistic fuzzy set. A set which has only one component with degree of membership
between 0 and 1 is a fuzzyset, while in intutionistic fuzzy set has two components namely,
degree of membership and degree of non-membership value lies between 0 and 1. Thus this
intutionistic fuzzy set was extended into neutrosophic set. To deal with intricate vagueness and
ambiguity, Pythagorean fuzzy set was developed by Yager, which is sum of square of
membership and non-membership value must lies between 0 and 1. Smarandache introduced
the concept of neutrosophic fuzzy set, which is the generalisation of fuzzy and intutionistic

fuzzy set includes three constraints as membership, non-membership and indeterminancy
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function and their sum must be lies between 0 and 3. In 2016, Smarandache developed the
Pythagorean Neutrosophic set, which isthe fusion of neutrosophic and Pythagorean set holding
membership and non-membership grades as dependent and indeterminancy grade as
independent components in which total square of membership, non-membership and

indeterminancy value must lies between 0 and 2.

Pythagorean Neutrosophic fuzzy graph is the combination of Pythagorean
Neutrosophic set and fuzzy graph theory. In recent years, some kinds of fuzzy graphs have
been introduced. In this paper, we define some operationslike Cartesian Product, Composition,
Complement, Union and Intersection of Pythagorean Neutrosophic fuzzy Magic Graph and

also investigate and discuss some of its properties.
2. Preliminaries

Definition 2.1. A fuzzy set A in X isdefined as A = {(a, u,s(a))/ a € X} where u,(a) €
[0, 1] is called the membership fuction for the fuzzy set A.

Definition 2.2. A fuzzy graph defined by G = (o, 1) isapair of functionso:V - [0, 1] and
uw:VxvV—-[0,1]whee Vuv eV, u(uv) < o(u) Aa(v)

Definition 2.3. A magic labeling on G will mean a one-to-one map A from V(G) U E(G) onto
the integers 1,2,...,v+e, where v = |V(G)| and e = |E(G)|, with the property that, given any
edge (x,y), A(x) + A(x,y) + A(y) = k, for some constant k.

Definition 2.4. A fuzzy graph G = (o, p) is said to be a fuzzy labeling graph, if o:V — [0, 1]
and u:V xV - [0,1] is bijective such that the membership value of edges and vertices are

diginctand for al w,v € V, u(u,v) < a(u) Aa(v).

Definition 2.5. Pythagorean Neutrosophic Fuzzy Graph (PNFG) isG = (V,E) where V =
{vy,v,, ..., vy} SUch that u;,Byand o; from Vto[0,1] with 0 < u(v)? + By (v)% +
o,(v;)? < 2V v; € V signifies membership, indeterminacy and non-membership functions

correspondingly and E € V X V where u,, 8, and o, fromV X V to [0, 1] such that
pa (Vi V) < i (0p) A g (V)
B2 (v vj) < Br(v) AB1(v))
o,(v; vj) < 01(v;) Vo1 (V)

With 0 < (s, (v; v)))” + (B2 (Wi 1)) + (02 (v v)))* < 2V vyv; € E
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3. Pythagor ean Neutrosophic Fuzzy Magic L abelling Graph

Definition 3.1. A Pythagorean Neutrosophic Fuzzy Graph G = (V,E) is said to be
Pythagorean Neutrosophic Fuzzy magic graph if there exist a magic graph M such that

u@) + a(v; v;) + u(v;) having a constant value denoted by m,

n(v;) + B(v; v;) + n(v;) having a constant value denoted by m’ and

§(v;) +y(vi v;) + 8(v;) having a constant value denoted by m” v v;,v; € V

We denote a Pythagorean Neutrosophic Fuzzy Magic Constant by M,(G) = (m,m’,m"")

Example:

1,(0.8,0.6,0.7) u,(0.5,0.9,0.6)
(0.2, 04, 0.1)

(0.1, 0.5, 0.4)

(0.2, 0.4, 0.2) o

u3(0.6,0.8,0.3) u, (0.7,0.7, 0.9)

Figurel
4. Main Results

Definition 4.1. Let ¢' = (V,,E;) and G" = (V,, E;) be two PNFMG’s where V; = (u,1,5)),
V,=u*,n*, §)andE; = (a,B,v)),E;, =a*, B*, y*). The Cartesian Product G' X G" =
(Vy xV,, E; X E;) isdefined by
() (e xp)(ug,up) = minfu(u), p(uz)}
( X ") (uy, uz) = min{n(uy), n"(uz)}
(6 X 8")(ug, up) = max{s(uy), 6" (uz)} Vuy,u, €Vy XV,
(i) (a x a)((w, up), (u,v,)) = min{u(w), a*(u, v,)}

(ﬁ X ﬁ*)((u, uZ)l (u, UZ)) = mln{n(u)' ﬁ*(uZ vZ)}
(y x y*)((u, u,), (u, vz)) = max{6(uw), y*(u, v,)} Vué€V,and u,v, €E,

(iii)(a x @) ((ug, w), (vy,w)) = min{a(u; vy), £* W)}
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(B x ,B*)((ULW), ( Ul»W)) = min{f(u, v,), (W)}
(y x Y*)((ul;W); ( U1;W)) = max{y(u; v1), §*"wW)} VweV,andu v, €E,;
Theorem 4.2. Let G' and G"' be two Pythagorean Neutrosophic fuzzy Magic Labelled Graph

then G’ x G'" isaPythagorean Neutrosophic Fuzzy Graph
Proof. Let u € V; and u,v, € E,. Then we get,

(@ x a)((w up), (u,v5)) = minfu(w), a*(u, v2)}
< min {u(u), (min( w1 (up), u*(vz)))}
= min{min(u(w), u*(uz)), min(uw), u*(v,))}
= min{(u X u*)(u,uz), (u x u*)(u, v,)}
(B x B (W uz), (w,v2)) = min{n(w), B*(u; v,)}
< min {nw), (min( 1" W), n'(v2))}
= min{min(n(w), 7*(up)), min(n(w), n*¥,))}
= min{(n x 1) (u, uz), (1 X n*) (4, v,)}
b x ) ((wup), (w,v,)) = max{sw), y*(u v,)}
< max {5(w), (max(8*(w), 5"(v,))))
= max{max(6(w), §*(u,)), max(8(w), §*(v,))}

= maX{(5 X 6*)(ul uZ)I (6 X 6*)(u, UZ)}
Letw €V, and u v, € E;. Then, we get

(a x a*)((ul,w), ( vl,w)) = min{a(u; v,), u*(w)}
< min {(min( u(ur), n(w), w'w))}

= min{min(u(u,), " W)), min(u(v,), u*(w))}
= min{(u X £7) (uy, w), (X p*)(v3, W)}
(ﬁ X ﬁ*)((ull W), ( U1, W)) = min{ﬁ(ul 171), T]*(W)}

< min {(min( 1(uy), u(vy)), "*(W))}

= min{min( n(uy), n*(w)),min(n(vl), n*(w))}
=min{(n X n*)(uy,w),(n x n*)(vy,w)}
(r xy)((ug, w), (v, w)) = maxfy (uy v,), 5*(w)}

< max {(max( §(uy),8(vy)), 5*(W))}
= max{max( S(ul),S*(w)),maX( 5(vy), 5*(W))}
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=max{(d X §")(uy,w), (8§ x 6)(v,w)}
This compl etes the proof
Definition 4.3. Let ' = (V,,E;) and G" = (V,, E;) be two PNFMG’s where V; = (4,1, 98)),
Vo= *n*, 6" andE; = (a,B,y)),E; =a*, B*, y*). Thecomposition G'[G"] = (V; o
V,,E; o E;) isdefined by
(i) (ueop)(ug, uz) = min{u(uy), p*(uz)}

(M o ") (ug, up) = min{n(uy), n*(uz)}

(606" (ug, up) = max{6(uy), §"(ux)} Vug,u, €V XV,

(i) (ao a*)((u, u,), (u, vz)) = min{u(u), a*(u, v,)}
(B o B ((w,up), (u, ) = min{n(w), B*(uz v2)}
(yo y*)((u, u,), (u, vz)) = max{§(uw), y*(u, v,)} Vue€V,andu,v, €E,
(i (a o a*)((ul,w), (vy,w)) = minfa(u, vy), &' (W)}
(B o B)((ug, w), (vy,w)) = min{B(uy v1), n* (W)}
(yo y*)((ul,w), ( vl,w)) = max{y(u, v;), 6*(w)} VweV,andu,v, € E;
(iv) (@ o a”)((uy,uz ), (v1,v2)) = min{a(uy vy), p*(uz), p*(v2)}
(B o B)((ug, 12 ), (v1,v2)) = min{B(uy v1), n* (uz), 1*(v) }
(o ¥) ((w,uz ), (vy,v2)) = max{y (ug v1), 6" (uz), 6" (v2)}
Yu, v, €EV,and uyv; € E;, u, # v,
Theorem 4.4. Let G' and G"' be two Pythagorean Neutrosophic fuzzy Magic Labelled Graph
then G'[ G"'] is aPythagorean Neutrosophic Fuzzy Graph
Proof. Let u € V; and u,v, € E,. Then we get,
(@0 a”)((wup), (,v;)) = min{u(u), a*(uy v2)}
< min {,u(u), (min( w(uy), ,u*(vz)))}
= min{min(u(u), ,u*(uz)),min(y(u), u*(vz))}
= min{(u o u*) (U, uz), (o u*)(u, v2)}
(B o B)((w up), (1)) = min{n(w), B*(uz v;)}
< min {n(u), (min( n*(uy), n*(vz)))}
= min{min(n(u), n*(uz)),min(n(u), 77*(772))}
= min{(n e ") (w, uz), M o ") (w, v2)}
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& oY) ((wup), (W, v,)) = max{(w), y*(u, v,)}
< max {S(u), (max(&*(uz), 5*(172)))}
= max{max(&(u), 6*(u2)),maX(5(u), 5*(772))}

= max{(§ o 6")(w, uz), (6 ° 6") (u, v,)}
Letw €V, and u v, € E;. Then, we get

(a ° a*)((ul,w), ( vl) W)) = min{a(ul 1.71), M*(W)}
< min {(min( u(uy), u(vy)), y*(w))}
= min{min(u(uy), £*W)), min(u(v,), u*W))}

= min{(u o p*) Cug, w), (o ") (vy, w)}

(:8 ° ﬁ*)((ull W)' ( U1, W)) = min{ﬁ(ul vl)' T]*(W)}

< min {(min( n(ul),u(vl)), n*(w))}
= min{min(n(ul), n*(w)),min(n(vl), n*(w))}
= min{(n o n")(u,w), (ne n")(vy,w)}
(v o ¥ ((ug, w), (v, w)) = max{y(uy vy), 6" (W)}

< max {(max( 6 (uy), 6(171)), 6*(W))}
= max{max( 6(uy), 6*(W)),max( 6(vy), 6*(W))}
=max{(§ o §")(u,w), (5o §)(vy,w)}

Agan, Let u,,v, €V,, uyv; € E;andu, # v,

(ao “*)((upuz)' ( 171,772)) = min{a(u,v,), p*(uy), u*(v2)}
< min{(min( u(ur), k@), 1w (wa), 1 (@2))}
= min{( pu(uy), u(w1)), 1*(wa), 1 ()}

= min{(u o ") (uy, up), (o u*)(vy,v,)}

(B o ﬁ*)((upuz), ( 171,772)) = min{f(u,v,), n"(w)}

< min {(min(1(uy), 1)), 1°@ws), 1" ()}

= min{( n(ul),n(vl)), n*(uz),n*(Vz)}
= min{(n o %) (uy, uz), M o ") (vy, 1)}
(o ¥ ((ug, up), (vy,v,)) = max{y(u, v,), 6" (W)}
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< max {(max( §(wy),8(vy)), 6*(uy), 6*(172))}
= maX{( 5(u1),5(v1))' 5" (up), 5*(772)}
= max{(d o 6")(uy,uy), (8 06")(vy,v2)}
This compl etes the proof
Definition 4.5. Let G' and G"" be two Pythagorean Neutrosophic fuzzy Magic Labelled
Graph, theunion of G’ and G" denotedasG' U G" = (V; UV,, E; U E,) isdefined as

u(uq) if uy €Vyandu, €V,
(i) wup)u) =qp () ifu €Viandu, €V,
max{u(u,), p* (w)}  if yy €ViNY,
n(uy) ifu €Vianduy €V,
(i) mun)(w) ={n"(uy) ifuy €Viandu, €V,
max{n(u,),n"(u)} ifu €VinY,
6 (uy) if u €eVyandu, €V,
min {6(u),6"(w)}  ifu €ViNV,
a(uguy ) if uyu, € E; and uyu, € E,
(iV)(aUa?)(uguy ) =<5 a*(uuy ) if uyu, € E; and uyu, € E,
max{a(uuy ), a*(uuy )} if wu, EELNE,
B(uiu, ) if uyu, € E; and uyu, € E,
(V) (BUB)(uuy ) =B (wuy ) if wu, € Ey and wyu, € E,
max{f(uiu, ), B (usu; )} if wyu, € E;NE,
y(uuy ) ifu; €Vianduy ¢V,
V)Y Uy (wu, ) =1 v (wius) ifui€Viandu, €V,
min{y(wu, ), y*(uuz )} if wu, EELNE,

Theorem 4.6. Let G’ and G'"' betwo Pythagorean Neutrosophic fuzzy Magic Labelled Graph
then G' U G" isaPythagorean Neutrosophic Fuzzy Graph.

Definition 4.7. Let G' and G” be two Pythagorean Neutrosophic fuzzy Magic Labelled
Graph, theintersection of G’ and G"' denotedasG' N G" = (V; N V,, E; N E,) isdefined as

(i) wnu)) =min{uu),u*(w)} ifu  €Viny,
mnn")(w) =min{n(u),n"(u)) }  ifyu €Vinl,
(6 Nnd)(wy) =max{u(u),u’(uy) 3 ifu €Vinl,

(i) (e na”)(uguy ) = min{a(uiu, ), a*(uuy )} if uyuy, EELNE,

(B 0B (uuy ) = min{Buu, ), B~ (uuy )} if uyu, € E; NE,
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¥ ny)(uuy ) = max{y(uiu, ),y (uuy )} if wyu, €E;NE,

Theorem 4.8. Let G’ and G"' betwo Pythagorean Neutrosophic fuzzy Magic Labelled Graph
then G' N G" isaPythagorean Neutrosophic Fuzzy Graph.

Definition 4.9. The complement of Pythagorean Neutrosophic fuzzy Magic Labelled Graph
G = (V,E)isdenoted asG: (u,n,8,,a,B,v),wherey,n,8,= (u,n,8 Yand a, B,y = (@, B,7),

where
a(u,v) = min{u(w), u(v)} — a(u, v)
B(w,v) = min{n(u),n(w)} - B(u,v)
7w, v) = min{6(w),§(v)} — y(w,v)
Theorem 4.10. The complement of complement of a Pythagorean Neutrosophic Fuzzy Magic

GraphGisGi.e,G =G

Proof. Let G = (V, E) be afuzzy magic Graph. Then the complement of Fuzzy magic Graph

isG:(wn,6,,a,B,v), whereyu,n,8,= (u,n,6)and a, B,y = (@ B,7), where

a(u,v) = minfu(uw),u(v)} —a(u,v) Vu,v eV
Now i = i = p and @(u, v) = min{a(uw), n(v)} — a(u, v)
= min{u(w), u(v)} — [minfu(u), p(V)} — a(u, v)]
= a(u,v) forallu,vevVv
Similarly, 7 =7 =n and f(u,v) = f(u,v) for allu,v € V and
§=6=6and y(u,v) = y(wv) forallu,v eV
G

5. Conclusion

Pythagorean Neutrosophic fuzzy graph is the fussion of graph theory and Pythagorean
neutrosophic set. The notion of Pythagorean neutrosophic fuzzy graph extended to Pythagorean
neutrosophic fuzzy magic graph. In this article, we define some operations like cartesion
product, composition, complement union and intersection and also investigate their properties.
In future we devel op amodel using this defined graph and appliesit in real life decision making

problems.
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Abstract

Let G = (V,E) beasimple graph. A dominating set S is a certified dominating set of
G if S has either zero or at least two neighboursin V — S. Let B(3,n) be the triangular book
graph with n 4+ 2 vertices. Let D..,-(B(3,n),i) denote the family of al certified dominating
setswith cardinality i of B(3,n). Let dg.-(B(3,n),i) = |Deer(B(3,1),1)| . Inthispaper, we
obtain aexact formulafor d..,-(B(3,n),i). Using this formula, we construct the polynomial,
D.er(B(3,n),x) = ¥%*%d,..(B(3,n),i) x*, which we cal the certified domination

polynomial of B(3,n) and also obtain some properties of this polynomials.
Key words: Certified domination number, Certified domination polynomial.

2020 Mathematics Subject Classification (AMS): 05C69,05C31,05
1. Introduction

Let G = (V,E) be asimple graph of order |V| = n. For any vertex v € V, the open
neighbourhood of v istheset N(v) = {u € V / uv € E} and the closed neighbourhood of v is
the set N[v] = N(v) U{v}. For a set S €V, the open neighbourhood of S is N(S) =
Uyes N (v) and the closed neighbourhood of S isSN[S] = N(S) U S.

The concept of certified domination in graphs was introduced by Dettlaf et al., 2020.
A set S € VVisadominating set of G, if every vertex inV — S isadjacent to at |east one vertex
inS. A dominating set S is acertified dominating set of G if S has either zero or at least two
neighboursinVV — S. The certified domination number y,.,-(G) of G isthe minimum cardinality
of certified dominating set.
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Triangular book with n pages is defined as n copies of cycle C; sharing a common
edge. The common edge is called the spine or base of the book. This graph is denoted by
B(3,n). Let B(3,n) bethetriangular book graph with n + 2 verticesand V(B(3,n)) = X U
Y,where X ={x;/i=12}andY ={y;/1 <i<n}and E(B(3,n)) = {x;x,} U {xiyj/l <

i <nj.
In the next sections, we construct the certified domination polynomials of B(3, n).

Definition 1.1. Let G be asimple connected graph. Let D, (G, i) be afamily of al certified
dominating sets of G with cardindity i and let d..,(G,i) = |Dger(G,1)|. Then the certified
domination polynomia D, (G, x) isdefined as

vV(&)|
Deer(G,x) = Z Aeer (G, 1) xt
i=Ycer(G)

Where y,.,-(G) isthe certified domination number of G.

2. Certified domination polynomial of B(3,n)

Observation 2.1. For atriangular book graph y..,.(B(3,n)) =1, fordln e N
Lemma2.2. Let G bethe graph with n vertices. Then

(i) deer(G,m) =1

(i) deer(G,0) = 0ifandonly if i < yeer(G)Ori=mn—10ri>n

(iii) D¢ (G, x) has no constant term.

Lemma 2.3. Let B(3,n) beatriangular book graph with n + 2 vertices, thenfor al n > 2,

2, if i=1
n
(i—Z)' if 2<i<n—landi=n+2
dC€T(3(3rn);i) = n ) )
(,_,)+1 if i=n
\ 0, if i=n+1

Proof. Let B(3,n) be atriangular book graph with n + 2 vertices. Let V(B(3,n)) =X UY,
where X = {x;/i = 1,2} andY = {y;/1 <i <n}

Wheni =1,
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{x,} and {x,} are the only certified dominating sets. Therefore d...,-(B(3,n),1) = 2
When2 <i<n-1andi=n+ 2,

for the certified dominating set, we need to select all verticesfrom X and i — 2 vertices

from Y. Thismeansthereare (,",)sets
Wheni = n,

for the certified dominating set, we need to select all verticesfrom X and i — 2 vertices
from Y. In addition to that Y isalso acertified dominating set. Thismeansthereare (,",) +

1sets
Wheni=n+1,
by Lemma2.2, d...(B(3,n),n+1) =0
Lemma 2.4.
() deer(B(3,n),i) =dcerr(B(3,n),n—i+4),wheren >7andi =2,n+2,5ton—1
(i) Foral n = 5,

deer (B(3,1),1)

dCBT(B(3'n - 1)'i - 1) + dcer(B(&n - 1),0 if 3<i<n-2
={d.;(B3n—1),i—1) +der(B3n—-1),0)—1 if i=n—-1

deer(B(3,n —1),i — 1) + (n — 1) if i=n
Proof .
(i) deer (B(3,m),1) = () (by Lemma 2.3)
= (a2 (nCy = nCny)

=der(B(3,n),n—i+4)
(iiyWhen3 <i<n-2,
deer(BB,n—1),1) = (,",) (by Lemma2.3)
=D+ (O=0M+CD)
=de(B(3,n—1),i — 1) + dpr (B(3,n — 1), i)
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Wheni=n—1,
dcer(Btn:n - 1) = (n713)
=) H{G3R) +1}-1
=deer(B3,n—1),n—-2)+d.,,(B3n—-1),n—-1)—-1
Wheni = n,
deer(Btp,m) = (nfz) +1
=)+ +1
=deey(BEn—-1),n-1)+(n—-1)

Theorem 2.5. For the triangular book graph B(3,n), D..-(B(3,n),x) = x*[(1 + x)™ —
nx™ 1] 4+ (x™ + 2x), for dl n.

Proof.

Deer(B(3,1n), %) = deer(B(3,1),1)x + deer (B(3,n),2)x% + -+ + deer (B(3,n), n + 2) x™+2
=20+ (D)xZ + (M3 + -+ (1) + 1™ + 0+ (a2
= 2x + 2 {Trmo(7) 2 = ()" + 2
= x*[(1+ )" = nx™ ] + (2" + 2x)

Remark 2.6. Sum of co-efficients of a certified dominating polynomial of the triangular book
graphis2™ — (n — 3), foral n > 3.

nfi 1 2 3 4 5 6 7 8 9 10 11 12

1 3 0 1
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6 2 1 6 15 20 16 0 1

7 2 1 7 21 35 35 22 0 1

8 2 1 8 28 56 70 56 29 0 1

9 2 1 9 36 84 126 126 84 37 0 1

10 2 1 10 45 120 210 252 210 120 46 0 1

Tablel: d...(B(3,n),i), the number of certified dominating sets of Bt,, with cardinality i.
3. Conclusion

In this paper, we have derived the important relation of d.,-(B(3,n),i). Using this relation

we haveto found out the certified domination polynomial of the triangular book graph B(3,n).
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Abstract

Assignment model comes under the class of linear programming model, which looks
alike with the transportation model with an objective function of minimizing the time or
cost of manufacturing the products by allocating one job to one machine or one machine to
one job or one destination to one origin or one origin to one destination only. Basically
assignment model is a minimization model. In this paper to introduce a new approach to
assignment problem namely an approach to assignment using play fair cipher method and
the result is verified using PY THON.

Keywords: Assignment problem, Hungarian method, Cost matrix, Optimization,
Cryptography, Play fair cipher, Encryption.

2020 Mathematics Subject Classification (AMS): 90C05

1. Introduction

The assignment problem is a special structure of transportation problem, in which
number of jobs (tasks) is equal to number of persons (facilities). Thus the objective of the
problem is how the assignment should be made to archieved allocation. In the assignment
model worker represent source and jobs represent destination. The supply amount at each
source exactly 1. For example if n = 3 person can assigned to 3 jobs. Then the possible
ways is 3!=6. These dlocation will take large time. There are many methods to develop

such problem. Hungarian is one of them [1, 3].

Cryptography is the study of mathematical techniques related to aspects of information

security such as confidentiality, data integrity, entity authentication, and data origin

authentication. In this, play fair cipher is aclassic cryptographic method developed in 1854 by

Charles Wheatstone [9]. It is a systematic encryption technique that encrypts text using a 5x5

matrix of letters based on the key, offering a secure and systematic approach to data
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confidentiality. This paper explores the intersection of these two areas by addressing the

assignment problem using the fair play cipher-based method.
2. Hungarian method for solving assignment problem:

2.1 Numerical example

Three men are available to do three different jobs. From past records, the time (in hours), that

each man takes to do each jobsis known and is given in the following table.

JOB/MAN | A B C
1 8 7

2 5 7 8
3 6 8 7

Solution:

Step 1: Subtract the least element from every column of each row.

Step 2: Subtract the least element from every column of each column.

JOB/MAN | A B C
1 2 1

2 0 3
3 0 1

JOB/MAN | A C
1

2 0 3
3 0 1

Step 3: Assigning the zeros to the matrix in regular manner, the matrix is reduced. Since
the row 3 and column 3 has no assignment, we proceed with the minimal number of lines

being drawn.
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JOB/MAN | A B C
1 2 ) 5
2 ) 1 3
3 < 1 1

assignment. Hence the optimal solution is obtained.

JOB/MAN [ A B C
1 2 ©)

2 ) o 2
3 -~ g ©)

The obtained assignment isgivenas1 - B,2 - 4,3 - C

Minimal assignment = 7+5+7= 19.

3. Approach to assignment problem using play fair cipher

The new algorithm is as follows:

1.

Subtract the smallest element of each row from every element of the
correspondingrow.

Subtract the smallest element of each column from every element of the
corresponding column.

Consider the location of the zero at each row. If thereisno zero in any of the row,
then subtract the least number from the particular row. Now consider the number
next to zero in each row and each column. And consider the least number from
the each row and each column. Here rows and columns are the two conditions.
Subtract the least element in the first row and first column and it forms the
matrix.Then again consider the least element from the second row and second
column fromthe obtained matrix.

Repeat the process for al rows and columns that we have taken.
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6. Now we assign the zeros. If thereis no assignment , then we proceed the minimal
line condition of the assignment problem.
Now we obtain the encrypted optimal solution.

8. Here now we use the keyword to decrypt the optimal solution that we obtained
by assignment method. The keyword varies for each problem according to

obtained optimal solution.

3.1 Numerical Problem

Three men are available to do three different jobs. From past records, the time (in hour)

that each man takes to do each job is known and is given in the following table.

JOB/MAN | A B C
1 8 7 6
2 5 7 8
3 6 8 7

Solution:

Step 1. Subtract the least element row each column of every element.

JOB/MAN | A B C
1 2 0 0
2 0 1 3
3 0 1 1

Step 2: Subtract the least element from each column of every element.

JOB/MAN | A B C

1 2 0

2 0 1 3

3 0 1 1
93
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Step 3: Now we consider the numbers next to zeros in each row and column. Here row and

column are the two conditions.

ROW COLUMN
1- 0,2 A-0,2
2-1 B-1
3-1 C-3

Step 4: Now we consider least number in the first row and the first column. Here the least

element is 0, subtract the number in first row and first column

JOB/MAN | A B C
1 0

2 0 1 3
3 0 1 1

Step 5: Consider the least number in second row and second column. Here the least number
is 1. Subtract the number in second row and second column. Repeat the same process for
the third row and column. The process takes upto the number of columns and the row that

we have taken.

JOB/MAN | A B C
1 2 1 0
2 1 0 2
3 0 0 1
JOB/MAN | A B C
1 2 1 1
2 1 0 1
94
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3 1 1 0

Step 6: Sincethefirst row does not have any zeros, subtract the least number from all other

elementsin the row. Assign zeros to the matrix.

JOB/MAN | A B C
1 1 & ©)
2 1 0) 1

3 1 1 -

Step 7: Since the third row does not have the assignment, we draw minimal number of
lines. Then the encrypted optimal solution is obtained. The encrypted optimal solution is

givenas 1-C, 2-B, 3-A

JOB/MAN | A B C
1 B & ©)
2 1 ©0) 2

3 ) o< 6

The encrypted optimal solutionisgiven as 1-C, 2-B, 3—A
Minimal solution for encrypted problem = 6+7+6 = 19
Here the encrypted keyword is taken as 2n. The value of n is taken as number that gets
repeated maximum timesin the final assigning step.
Here there is no repeatation, the n value is zero. Hence by decrypting the optimal valueis 5.
4. Result verification by Python
import numpy as np
from scipy.optimize import linear_sum_assignment
#Define the cost matrix
cost_matrix = np.array ([

[8,7, 6],

[5,7, 8],

[6,8,7],
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)

# Use the Hungarian algorithm to solve the assignment problem
row_indices,col_indices=linear_sum_assignment(cost_matrix)
optimal_assignment = list(zip(row_indices, col_indices))
minimum_cost = cost_matrix[row_indices, col_indices|.sum()

# Output the results

print("Optimal Assignment(Job to Machine):",optimal_assignment)

print("Minimum Total Cost:", minimum_cost)

' o o G

irpor’t nurpy as np
from scipy.op! ¢ lmport 1inear 4

Cost_matrix = np ([ Out
{e.7,0],
% } Cptimal Assignment (Job 1o Wachine) (NP anTeL(0), no. 1
1 ) Lal Cost
1))
rfow _Indices, <al_Indices = linear_§
aplimal_ossigrment « (tip{row )
minisun_cost & cost_matrix[row_ing)
peintCOptizal Assizme

5. Conclusion

In this paper, the use of play fair cipher method in the assignment has provided
valuable insights into the application of the polygraphic encryption techniques. By
employing a 5x5 matrix for digraph substitution, the play fair cipher enhances the security
of the plaintext beyond basic substitution ciphers, offering a more complex approach of
encryption. Throughout the assignment, the process of constructing the matrix, and
applying cipher encryption and decryption is explored in detailed. This assignment has
helped reinforce the importance of cryptographic methodsin information security and play
fair cipher provides avaluable educational tool for learning the fundamentals of encryption
and cryptanaysis.
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Abstract

Graph theory is one of the approaches used to secure data protection and message
transmission, which is one of the most crucial methods used in cryptography. Many techniques
are available to encrypt and decrypt the info[ 13]. Cryptography is especially used to make the
text unintelligible and non-readable so that the opponents cannot understand the meaning of
the text. Cryptography provides privacy and security for the key information by hidingit. It is
done through mathematical technique. This paper provides the concept of secure
communication by using graph theory in cryptography.

Keywords. Cryptography, Substitution, Adjacent Matrix, Data Encryption.
2020 Mathematics Subject Classification (AMS): 94A60

1. Introduction

Cryptography is the study of techniques to secure communication by making it
unreadable to unauthorized parties. It deals with protecting sensitive information from hackers
and ensuring the privacy, integrity, and authenticity of data. The main goal of cryptography is
to enabl e secure data transmission over insecure channels. Thisis achieved through encryption,
which converts plaintext (readable data) into ciphertext (unreadable data). Only authorized
parties can decrypt the ciphertext to retrieve the origina message.

Graph theory, abranch of mathematics, playsacrucial rolein cryptography. It involves
the study of graphs, which are used to model relationships between objects. Graph theory has

been successfully applied to develop stronger encryption algorithms that are resistant to
hacking. This paper presents anew cryptosystem that combines cryptography and graph theory
principles to provide high security and efficient data processing.
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2. Preliminaries

Plain text- Plain text, also known as cleartext or plaintext, refers to unencrypted and
human-readable text data. It istext that has not been encrypted or encoded in any way, making

it easily readable and understandable by anyone who has access to it.

Cipher text- Cipher text is encrypted text that has been transformed from plain text
using an encryption algorithm and a secret key. The resulting cipher text is unreadable and
unintelligible to anyone without the corresponding decryption key or algorithm.

Key- In the context of cryptography and encryption, a key is a unique string of
characters, numbers, or symbols used to encrypt and decrypt data. Keys are used to control the
encryption and decryption processes, ensuring that only authorized parties can access the

encrypted data.

Encipher- Encipher, also known as encrypt, is the process of converting plaintext
(readable data) into ciphertext (unreadable data) using an encryption algorithm and a secret

key.

Decipher- Decipher, also known as decrypt, is the process of converting ciphertext
(unreadable data) back using a decryption algorithm and a secret key.

Encryption and Decryption- The process of encoding a message using some key or
method so that it is the meaning is not easily understood. The reverse process of the ciphertext

conversion encryption method into plain text is decryption.

Brute Force Attack- A brute force attack is a type of cyber attack where an attacker
attempts to guess or crack a password, encryption key, or other type of secret information by

systematically trying all possible combinations.

Graph- A graph isanon-linear data structure consisting of nodes or vertices connected
by edges. Each nodes represents an entity, and the edges represent the relationships or

connections between these entities.

Cycle- A cycle is a path in a graph that starts and ends at the same node, and passes
through at least one edge. In other words, acycle isa closed path in a graph.

2.1 Adjacency matrix

Thisisamatrix representation of the graph. It is used in computer processing. In graph
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theory and computer science, an adjacency matrix is a square matrix used to represent afinite

graph. The matrix elements indicate whether a pair of verticesin the graph are adjacent or not.
3. Proposed Algorithm

Use the proposed agorithm to encrypt and decrypt data. (Send key2 in the form of
graph)

3.1 Encryption Algorithm

This algorithm is used to convert plain text to cipher text.

e Input Message: Receive a message from the user to be encrypted.

e Shift Characters. Use a secret key (Key 1) to shift each character in the message.

e Encrypt Message: Replace each letter with the shifted character based on Key 1.

e Matrix Formation: Arrange the encrypted message in amatrix format, with
dimensions (n-1) x n, where n is the number of digitsin Key 2.

e Column Permutation: Read the matrix row by row and rearrange the columns
according to a predetermined permutation.

e Re-Matrix Formation: Rearrange the permuted columns into a new matrix.

e Cipher Text Generation: Read the final matrix row by row to obtain the encrypted

cipher text.
3.2 Decryption Algorithm
This algorithm is used to convert cipher text to plain text.

e Cipher Text Input: Receive the encrypted cipher text.

e Matrix Formation: Use Key 2 to arrange the cipher text in a matrix format, with
dimensions (n-1) x n, where n is the number of digitsin Key 2.

e Column Rearrangement: Rearrange the matrix columns using Key 2.

¢ Row-by-Row Read: Read the rearranged matrix row by row to obtain the intermediate
decrypted text.

e Re-Matrix Formation: Rearrange the intermediate decrypted text in a matrix format,
column by column, using Key 2.

e DecryptionwithKey 1: UseKey 1 to decrypt the rearranged matrix, reversing theinitial
encryption process.

e Plain Text Recovery: Obtain the original plain text after decryption.
100
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3.3 Example: Encryption

First take a message or plain text from user which we have to encrypt. For ex. TEACHERS
INSPIRE YOUNG MINDS DAILY.

e Usekeyl to shift character.

e Supposekey 1=+4

e Encrypt the message by replacing each letter by decided key 1.

e YIFHMIWXNSXUNWJIDTZSLRNSLRNSIXIFNQD

e Write encrypted message in the form of matrix(where (n-1) x n where n = number of
digitsin key2) which is decided by sender and receiver.

e Key2issharedintheform of adjacent graph, sender and receiver haveto calculate key2
from the given graph

V1

V2 V6

V5

V3

V4

Fig.1: Graph for the calculation for key2

Convert the above graph into adjacent matrix which isused as key 2.
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Table 1: Adjacent matrix of key?2

V1 V2 V3 V4 V5 V6
V1 1 1 1 1 1 1
V2 1 1 1 1 0 0
V3 1 1 0 1 0 0
V4 1 1 1 1 1 0
V5 1 0 0 1 0 0
V6 1 0 0 0 0 0

Now thekey2is643521

Table 2(a): Message creation from key2

6 3 5 2
Y F H M
W N S X
N J D T
S R N S
X F N Q

Read off the message row by row and permute the order of column
JUZIDMXTSQFNJRFIXWLIHSDNNYWNSX.

The output of step 5, write in matrix form again and read row by row.
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Table 2(b): Message creation from key2

6 4 3 5 2 1
J U Z | D M
X T S Q F N
J R F J X W
L | H S D N
N Y W N S X

After reading row by row, we get our cipher text.
MNWNXDFXDSZSFHWUTRIY IQJSNJXJLN(cipher text to be sent)
3.4 Decryption

It takes the cipher text and use key2 to write cipher text in the form of matrix (where (n-1) x

n, where n = number of digitsin key2) which is decided by sender and receiver.
Received cipher text is. - MNWNXDFXDSZSFHWUTRIY IQJSNJXJLN
Arrange the cipher in matrix form column by column using key2.

Table 3(a): Cipher text in matrix form

6 4 3 5 2 1
J U z | D M
X T S Q F N
J R F J X W
L | H S D N
N Y W N S X

Read message row by row. JUZIDMXTSQFNJRFIXWLIHSDNNYWNSX.
Again, arrange the cipher of step 3 in matrix form column by column using key 2

103

ISBN: 978-93-48505-23-1



Proceedings of the Inter national Conference on Algebraic Graph Theory,
Graph Theory and Topology — 9" & 10" January 2025

Table 3(b): Cipher text in matrix form

6 4 3 5 2 1
Y J F H M J
W X N S X U
N W J D T Z
S L R N S |
X | F N Q D

Received cipher text is: - YIFHMIWXNSXUNWJIDTZSLRNSLRNSIXIFNQD
Now decrypt the message with keyl. Keyl= (-4)

Finally, we get plain text.

Result: Teachers inspire young minds daily.

4. Conclusion

The Double Transposition Column method, which leverages graph theory as the key,
offers significant advantages over basic algorithms. By incorporating a graph to generate the
key, cryptanalysis becomes more complex, enhancing security and making the plaintext output
nearly impossible to crack. This approach eliminates the possibility of brute-force attacks,
thereby overcoming the limitations of the traditional Caesar cipher. Furthermore, the algorithm
is adaptable and can easily be integrated into new applications. It supports the creation of
multiple keys, making it ideal for secure applications like online banking, e-commerce, and
electronic voting. However, due to the use of graph theory, the implementation may require

additional memory, making the simple Caesar cipher more challenging to implement.
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Abstract

The term “Domination” refers to the act of exerting control or influence over someone
or something. In graph theory, the concept of domination has spread all over the world in
various fields and has a special impact in maximizing the efficiency with minimum input.
Along with distance parameter, the concept of domination has been improvised in many aspects
by providing solutions to unsolved real — life problems. Middle graphs, though primarily a
theoretical construction in graph theory, have several uses and applications in various areas of
research and practical problem-solving. It provides a direct way to model these edge-to-edge
relationships. This can be useful in problems related to symmetry breaking such as
crystallography. In this paper, we calculate the signal domination number of middle graph of
some common graph families.

Keywords. Signal number, signal domination number, middle graph.
2020 Mathematics Subject Classification (AMS): 05C12, 05C69, 05C76
1. Introduction

In the domains of mathematics and computer science, graph theory is the study of graphs,
which concerns the relationships among vertices and edges. A graph is a pictoria
representation of aset of objects where some pairs of objects are connected by links. Formally,
agraph G is anon-empty finite undirected graph with no multiple edges or loops. It iswidely
used in designing circuit connections, representing data organization, networks of
communication, flow of computation, molecular and chemical structures, as well as in
algorithms such as Kruskal’s, Prim’s, and Dijkstra’s, among many other branches of biological
and applied sciences. For a better understanding on graphs, refer [4].

The study of domination in graphs originated from the 8 x 8 chessboard, where the
minimum number of queens required covering all 64 squares was investigated. This problem
of dominating the squares of a chessboard can be formulated as the problem of dominating the

vertices of a graph. The theory of domination has a wide range of applications in computer
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networking, communication networks, and also in the fields of transportation. For a detailed
study, refer [8].

Throughout this paper, we consider G to be a connected graph. A subset D of vertices
inagraph G isadominating set if each vertex of G that isnot in D is adjacent to at least one
vertex of D. The size of the dominating set with minimum number of elements among all
dominating sets in G is called the domination number of G and is denoted by y(G). For a
vertex u € V(G), the open neighborhood N (u) is the set of all vertices that are adjacent to wu,
and N[u] = N(u) U {u}isthe closed neighborhood of u. The degreeof avertex v is defined
by deg(v) = |N(v)|. A x — y path of length d(x,y) inagraph iscaled x — y geodesic. A
vertex v issaid to be an internal vertex of x —y pathif it liesin the x — y path. The shortest
distance between any two vertices u and v in a graph G is known as geodesic distance. For a
detailed study on distances in graphs, refer [3].

In the year 2010, Kathiresan introduced a distance parameter called signal distance refer
to [6]. Through research on signal distance, Sethu Ramalingam and Balamurugan introduced
the concept of the signal number [7]. Furthermore, Balamurugan and Antony Doss worked on
the signal number, and the signal chain was constructed [2]. In this paper, we estimate the
values of signal domination number of middle graphs of some common families of graphs.

2. Preliminaries

Definition 2.1. [6] Thesignal distance between apair of verticesu and vin agraph G isdefined
asmin{d(u,v) + (deg(u) — 1) + (deg(v) — 1) + XYeu—v (deg(w) — 2)}, whered(u, v) is
the length of the u — v path and w isthe internal vertices of u— v path The signal path between
uand v iscalled as the geosig path.
Definition 2.2. [7] Thesubset S € V iscalled the signa set of G if every vertex u in G liesin
a geosig path between the vertices in S and the minimum cardinality of the set S is called as
the signal number of agraph. It is denoted by sn(G).
Definition 2.3. [5] A set SV is caled a signal dominating set of a graph G if S is a
dominating set of G as well as a signal set of G. The minimum cardinaity of the signd
dominating set is called the signal domination number and it is denoted by v, (G).
Definition 2.4. [1] The middle graph M(G) of a graph G is the graph whose vertex set is
V(G) U E(G) and two vertices x, y in the vertex set of M(G) are adjacent in M(G) if one of
the following conditions holds.

1 x,y € E(G)andx,y areadjacentinG.

2. x € V(G),y € E(G)andx,y areincidentinG.
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3. Main Results

Proposition 3.1. For apath B, ys,(M(B,)) = n.

Proof. Let uq, u,, ..., u,, bethe vertices of a path graph P, whose edge set is {v,, vy, ..., Vp_1 }.
By the definition of middle graph, B, is transformed into M(B,), where
wiv), (Vjvjs1), (Wipv) With 1<i <n—1and 1 <j <n—2 forms and edge set in
M(B,) and |[V(M(B,))| = 2n — 1. Since u; and u, are pendant vertices, 2 < sn(M(B,)).
Since the signal distance between the pendant vertices is 3n — 4, the u; — u,, geosig path
covers v; (1 <j <n—1) whilew; (2 <i <n-—1) are not covered by the geosig path,
Hencethe set {u; /1 < i < n} formsasignal basis of M(P,). Furthermore, the signal basis
set dominates every vertices of M(B,). SO v, (M(B,)) = n.

Proposition 3.2. For acycle C,, withn > 3, we have ys,(M(C,)) = n.

Proof. Let {x;,x,, ..., x,} be the vertex set of a cycle C, with the corresponding edge set
{y1,¥2, ..., y»}. According to the definition of middle graph, C,, is transformed into M(C,,)

whose vertex setisV(M(C,)) = {x;y; / 1 < i < n}with |V(M(C,))| = 2n and the edge set
is formed in such a way that y,,y,,...,y, induces a cycle of length n and N(y;) =
{(Vi+1, Yie1, X x4} fOr 1 < i <nwith E(M(C,)) = 3n. Sincex; and x; are not adjacent in
M(C,) for every i # j, the geosig path formed by every distinct pair of x; and x; can cover
V(M(C,)) and so sn(M(C,)) < n. Supposesn(M(C,)) = n — 1, thenthere exist avertex x;
in M(C,) suchthat x; isnotinsn(M(C,)). However x;_; — x;,, geosig path only coversy; ;
and y; leaving x; behind which leads to a contradiction. So sn(M(C,)) = n. In addition, the
sn- set of M(C,,) dominates every vertices of M(C,). Therefore y,,(M(C,)) = n.
Proposition 3.3. For acomplete graph Ky, v, (M(K,)) = n.

Proof. Let K,, be acomplete graph of order n whose vertex set is {u,, u,, ..., u, } and the edge

set is{el, €2, ue) en(n_l)}. By the definition of middle graph, |V (M (K,,))| = @ Sinceitisa

2

complete graph, the signal distance between u; and w; with i # j in M(K,) is 4n — 6 and
d(ui,uj) = 2. Clearly the geosig path formed by every pair of u;’s covers every vertices of
M(K,) and forms a signa basis of M(K,,). Therefore, sn(M(K,)) = n. Moreover, the set
{uy, uy, ..., u, } dominates every vertices of M(K,,). S0 ys,(M(K,)) = n.

Corollary 3.4. ysu(M(Ky)) = ¥sn (Kp).

The proof is obvious.
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Proposition 3.5. For astar graph K ., ¥sn (M(Kl,n)) =n+1.

Proof. Let K, ,, be astar graph of order n + 1 whose vertices are x, xy, x5, ..., x, Where, x is
the central vertex and let e; = xx; (1 < i < n) be the edges of K, ,,. Upon transforming K, ,,
to obtain itsmiddle graph M (K, ,, ), we get [V(M(K, ,))| = 2n + 1 and e;e; becomes an edge
in M (Kl,n) where i and j are distinct. It is obvious that all the pendant vertices are contained
inthe signal set and so sn (M(Kljn)) > n.Sincee;e; (i # j) isanedgein M(Ky ,), the geosig
path formed by any pair of x;’s does not cover x. So we conclude that sn (M (Kl,n)) =n+1.

Furthermore, the set {x;,x,,..,x,} forms a dominating set of M(K,,). Hence
Yo (M(Kyn)) =n+1.

Corollary 36. v, (M(Kl_n)) =y (Kin) +v(Kyp).
The proof is obvious.
Theorem 3.7. For any connected graph G, v, (G) < ys,(M(G)).
Proof. Let G be aconnected graph of order n and sizem. Let S; and S, be the minimum signal
dominating sets of G and M(G) respectively. Clearly, S; < n. Since M(G) contains n + m
vertices, S, < n + m. If §; = n, then the result is obvious. Suppose not, let S; = n — a where
a is any positive integer with a < n. Then S, < S; + a + m. Since a + m is positive, we
conclude that Y5, (G) < Ysn (M(G)).
4. Conclusion
Continued research into this area will likely unveil more sophisticated methods and
applications, advancing our knowledge of graph theory and its practical implications. Since
middle graph is constructed based on edge to edge relation, we can have a better understanding
regarding the relationship between vertices and the potential for optimization in network
design, resource alocation, and other applied fields. Moving forward, further research into the
nuances of signal domination in middle graphswill deepen our understanding of their structure,
ultimately advancing both theoretical frameworks and practical strategies for solving complex
problems in diverse domains.
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Abstract

Meteorological forecasting is one of the most underappreciated and challenging
operational roles of worldwide meteorological agencies. Temperature is the most important
factor in al seasonal processes in life for humans. Severa approaches for predicting
temperature distribution have been presented using fuzzy time series data, but accuracy remains
aserious challenge. The goal of this study isto compare the performance of severa fuzzy time
series approaches. In this work, 42 years of temperature data from the Chennai region using
the statistical tools Mean Squared Error (MSE) and Mean Absolute Error (MAE).

Keywords:. Inverse Fuzzy Number, Forecasting, Temperature, Fuzzy Time Series.

2020 M athematics Subject Classification (AMS): 62M 10, 62A86, 90C70.
1. Introduction

Song and Chissom proposed a fuzzy time series in 1993. Forecasting is anticipating
future events, in which decision-makers examine connected facts and graphs to make the best
judgmentsfor the future. The model specifiesthe collection of inaccurate dataat equally spaced
discrete time intervals, which are then characterized as fuzzy variables. The collection of
discrete fuzzy data constitutes a fuzzy time series, and it aso specifies that chronological
sequences of imprecise data are called time series with fuzzy data.

A discrete domain isaset of input values that are either afinite or countable infinite set

of numbers. Discrete domains are used to represent signal s that are not continuous functions of
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a variable. Discrete domains can be used to represent data that is disconnected or
separate. Discrete domains are used in probability distributions, such as Bernoulli, Poisson,
Binomial, and Multinomial. A Fuzzy number A is afuzzy set on the red line R, must satisfy
the following conditions:

)] Ua(xo) IS precewise continuous.
i) There exists atleast one x, € R with u,(x,) = 1.

iii) A must be normal and convex.

Inverse fuzzy number is the inverse of fuzzy number. If A isafuzzy number andif A * B =1,
then B isthe inverse of A, where * is any binary operator. A time series including fuzzy data
is known as a fuzzy time series. Severa fuzzy time series (FTS) models have been studied in
the scientific literature for the past twenty years. This article proposes a forecasting model
different from fuzzy time series forecasting approaches. Chennai district temperature statistics
over the previous 42 years (1981-2022) demonstrate the suggested approach's forecasting
procedure. Mean Squared Error (M SE) and Mean Absolute Error (MAE) are the two statistical

criteria used to analyze the comparative data.
2. M ethodology

The data used in this investigation is yearly temperature data, taken over 42 years for
the Chennai district.

2.1 Construction of Fuzzy Time SeriesModel
Step 1: Let D be the discrete domain

D=E —E_
Where, E; are the historical data.

Step 2: Compute the inverse fuzzy number

_1+0.0001
Vo = T 0.0001
da  da+1

0.0001+1+0.0001
Vo = 0.0001 1 0.0001 ,1983< a <2022

da-1 da da+1

0.0001+1
Vo = 0.0001 1
da-1  da
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Step 3: Compute the forecasted value using formula
Fy = Exq — U
Where,

Fy, E._, and v, are forecasting data, historical data and inverse fuzzy numbers

respectively.
Step 4: The accuracy error of the fitted model is measured by using the following formula.

|Forecasted value—Actual vale|

Mean Absolute Error (MAE) = Y17

n

(Forecasted value—Actual vale)?

Mean Squared Error (MSE) = Y1,

n

3. Result and Discussion
3.1 Fuzzy Time Series Model
Step 1: The discrete domain D are calculated using formulaD = E; — E;_4

Where, E; are the historical data.

Discrete domain | Discrete domain
diogy = 0.17 dy003 = 0.11
d1og3 = 0.49 dyo0s = —0.74

di9g4 = —0.58 dyp0s = 0.41

diogs = —0.08 | dyp0s = —0.08
di9g6 = 0.49 dyo07 = —0.17

d1987 =0.2 dzoog = 0.02
d1988 = —-0.21 d2009 = 058
di9gg = —0.1 dzo10 = —0.4
d1990 =0.13 d2011 =-0.1
d1991 =0.17 d2012 = 025

dygop — 0.19 dyo1z = —0.19
digos = —0.17 dyora = 0.19
dyig0s = 0.07 dyors = —0.11
dyigos = —0.52 dyore = 0.24
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d1996 = 025 d2017 = 002
d1997 = 059 d2018 = _005
d1998 = 0.21 d2019 == 0.29

diggo = —0.62 | dygz0 = —0.47
dz000 = 0.12 doz1 = —0.28
d2001 = 0.33 dz022 = 0.03
d2002 = —0.03

Table 1 Discrete Domain of Temperature

Step 2: We have computed the inverse fuzzy numbers using above mentioned formula

__ 1+40.0001
V1982 = 1 +o.ooo1
d19g2 di1983

_ 1+0.0001
V1982 = —T 00001

0.17 0.49

v _1.0002
1982 ™ 588255702

171982 == 0170011

_ 1.0002
V1983 = 0.0001, 1 '0.0001

{ {
d19g2 di1983 d1984

_ 1.0002
V1983 = 50001 1 _0.0001
0.17 049 -—0.58

_1.0002
T 2.04123215

171983 = (0.489998

_ 1+0.0001
V2022 = 0.0001+ 1
d2021 d2022

__ 10002
V2022 = vo001 1

—0.28 0.03
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1.0002

v =—
2022 ™ 333329762

V2022 = 0030003

Step 3: We have computed the forecasting value using the above-mentioned formula and the
values are given in the table below 3.2.

Year E F, Year E; F;
1981 274 - 2002 28.12 28.11999
1982 2757 2757001 | 2003 28.23 28.23006
1983 28.06 28.06 2004 27.49 27.48928
1984 27.48 2748024 | 2005 27.9 27.90032
1985 274 2739998 | 2006 27.82 27.81999
1986 27.89 27.89028 | 2007 27.63 27.62983
1987 28.09 2809005 | 2008 27.65 27.65
1988 27.88 27.87998 | 2009 28.23 28.22852
1989 27.78 27.77998 | 2010 27.83 27.83005
1990 27.91 2791003 | 2011 27.73 27.72998
1991 28.08 2808003 | 2012 27.98 27.98015
1992 27.89 27.88996 | 2013 27.79 27.78993
1993 27.72 27.71994 | 2014 27.98 27.98009
1994 27.79 2779002 | 2015 27.87 27.86887
1995 27.27 27.2694 2016 28.11 28.10981
1996 27.52 2752005 | 2017 28.13 28.13
1997 28.11 2810981 | 2018 28.08 28.07998
1998 28.32 2832004 | 2019 28.37 28.37024
1999 27.7 2769937 | 2020 27.9 27.89991
2000 27.82 27.82002 | 2021 27.62 27.6197
2001 28.15 2815034 | 2022 27.65 27.65

Table 2 Observed and Estimated Value of Temperature
Step 4
Mean Absolute Error = 0.652543
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Mean Squared Error = 17.87524
4. Conclusion

Thisresearch aimsto improve prediction accuracy by eliminating detected outliersfrom
the dataset. In this paper, we calculated and compared the forecasted values of the Chennai
district's temperature data using the forecasting models and fuzzy inverse numbers. The
experimental findings indicate that the forecasting error for mean absolute error is 0.652543,

and the mean squared error is 17.87524.
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Abstract

The field of graph theory is vast and evolving quickly. Duplication is the process of
generating a new graph in graph theory by appending vertices or edges to an aready existing
graph. In this research, we study certain duplication parameters in relation to the radio contra
harmonic mean D-distance graph, including duplication of a vertex, duplicate graph and anti-
duplication of vertex. The radio contra harmonic mean D-distance |abeling process establishes

several outcomes on the resulting graphs.

K eywords: D-distance, D-diameter, rchm®Pn(G), Duplication.
2020 Mathematics Subject Classification (AMS): 05C07, 05C12, 05C78.
1. Introduction

By a graph G we mean a finite undirected simple graph. The concept of radio contra
harmonic mean D-distance of graphs was introduced by Ashika T S and Dr. Asha S and also
they calculated its radio contra harmonic mean D-distance number [1]. Sampathkumar E
introduced the notation Duplication of graphs [5]. Jayasekaran C, Ashwin Shijo M introduced
the concept Anti-duplication of a vertex in graphs and investigated some properties of the
resultant graphs [2]. Thulukkanam K, Vijayakumar P, and Thirusangu K studied some kinds
of duplication parameters like extended duplication of graph in the paper titled Various
Harmonious Labeling in Some Duplicate Graphs [6]. Throughout this paper for some basic
graphs we referred Gallian [3].

2. Preliminaries

Definition 2.1. [4] Duplication of avertex v of graph G produces anew graph G' by adding a

new vertex v’ suchthat N(v') = N(v).
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Definition 2.2. [5] Let V' beaset suchthat V N V' = ¢, |V| = |[V'|and f: V — V' bebijective.
For a € V wewrite f(a) asa’ for convenience. Consider the graph DG on the vertex set V U
V', whose edges are given as follows: In the graph G, ab isan edgeif and only if both ab’ and
a'b areedgesin DG. The graph DG is called the duplicate of G.
Theorem 2.3. [5] For a connected graph G

(i) DG isconnected if and only if G contains an odd cycle.

(i) DG = 2G iff G hasno odd cycle.
Definition 2.4. [2] Anti duplication of avertex v in G produces anew graph G’ by adding a

new vertex v’ such that N (v') = [N, [v]]c. The graph obtained from G by anti-duplication
of the vertex v isdenoted by AD (vG).

Definition 2.5. [1] The Radio contra harmonic mean D-distance labeling of a connected graph
G isaninjectivefunction f: V(G) —» Z* such that for any two distinct vertices u, v

D
d”(w,v) + [ F+f @)

>1+diam?(G)Vu,veV(G) ................ (1) or

D
d”(w,v) + [ F+f @)

> 1+ diamP(G)Vu,v € V(G)

where dP (u, v) denote D-distance or D-length between u and v of G and diamP (G) denote
the D-diameter of G, then G isaradio contraharmonic mean D-distance graph. Theradio contra
harmonic mean D-distance number of f is represented as rchmPn(f) is the highest integer
allocated to any vertex v € V(G) under the mapping f. Further, the radio contra harmonic
mean D-distance number of G is presented as rchm®Pn(G), which is the smallest span of
rchmPn(f) taken across every radio contra harmonic mean D-distance labeling of G. If
rchmPn(G) = |V(G)| then G is called radio contra harmonic mean D-distance graceful graph.
Further, if u and v are vertices of connected graph G, the D-length of a connected u — v path
s is defined as dP(u,v) = min{lP(s)}, IP(s) = I(s) + deg(v) + deg (w) + X deg(w),
where the sum runs over al intermediate vertices w in s of G and diamP(G) =
max{d® (u,v)}.

3. Main Results

Theorem 3.1. Every connected graph is radio contra harmonic mean D-distance graph.

Proof. Let G be a connected graph. Then for every distinct vertices u and v there exist u — v
path. Thereforefor every distinct pair of vertices (u, v) wecan obtain D-distanceasd? (u, v) =
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min{lP(s)}, IP(s) = I(s) + deg(v) + deg (u) + X deg(w), where degree of all
intermediate vertices w in s of G are added together and diam? (G) = max{d® (u,v)}. Thus

G admitsradio contra harmonic mean D-distance |abeling.
Hence G is a contra harmonic mean D-distance graph.

Theorem 3.2. For any connected graph G with |V(G)] =2 and diam(G) < 3 then
rchmPn(G) = |V(G)| if any one of the following hold

(I) G = K|V(G)|
(i) G isan acyclic graph.

Proof. Let G be aconnected graph with |V (G)| = 2 and diam(G) < 3.
To proverchm?n(G) = |V(G)|
Case(i): G = Ky (), then diam(G) = 1.

Let |[V(G)] =n such that G be a complete graph K, with vertices v,,v,,...,v, and
diam®(K,) = 2n — 1.

Forn > 2, diamP(K,) = 2n — 1. Therefore equation (1) reducesto

D (Fa)+(F@))*
d’(u,v) + [—f(u)+ o) > 2N 2

Defineafunction f: V(K,) — Z* suchthat f(v;) =i,1 <i < n. Alsofor every distinct pair
of vertices (v, v;),dP(v;,v;) = 2n—1for1 <i,j <n,i # j such that [%] > 1.
Clearly f isaone to one mapping and every distinct pair of vertices and will hold (2) and the
largest integer assigned to the vertex v, isn. Therefore rchm®n(K,) = n.

ThusrchmPn(G) = |V(G)].

Case (ii): G isanacyclic graph

Without loss of generality let G be a graph with diameter 2 such that there exist au — v path
such that deg(u) = deg(v) = 1 and d(u, v) = 2. Also the intermediate vertex of u and v is
denoted by w. Defineafunction f: V(G) — Z* suchthat f(u) =1, f(v) = 2 and f(w) = 3.

Subcase (i): deg(w) = 2
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Then dP (u, v) = 6 and dso whichisthe diam? (G) and RHS of inequality (1) reduces

(1)2+(2)2

to 7. Thereforefor thepair (u, v) weget 6 + [ ] > 7 isobvious. Alsoforthepair (u, w)

2 (2)2
weget 4 + [—(1) )

] > 7 and similarly for the pair (v,w), we get 4 + [w] > 7 which

satisfies the radio contra harmonic mean D-distance condition and 3 = |V (G)| is the largest
label assigned to the vertex w. Hence rchm®Pn(G) = |V (G))|.

Subcase (ii): deg(w) = 2

Then w have adjacency with some vertices v;, 1 < i < n(say) other than u and v and which
are digoint with u and v since G is acyclic and diam(G) = 2. Thus deg(w) = n + 2 and
{u,v,v; : 1 <i < n} aretheverticeswith degreeone. Now assigh f(v;) =3 +1i,1 <i<n

under the defined mapping f and diam?(G) = n + 6, RHS of inequality (1) reduceston + 7.

Therefore for the pair (w, x), where x may be either u orvorv; : 1 <i <n, then we get

2 2
n+4+ [—(3)3:3) ] >n + 7 isobvious. Also for the pair (x,y), where x may be either u or v

[(X)2

orv;:1 <i<n,x#ythen wegetn+6+ +(y)]>n+7WI|| hold. Here n 4+ 3 =

|[V(G)| isthelargest 1abel assigned to the vertex v,,. Hence the proof.
Theorem 3.3. If rchmPn(G) = |V(G)| then rchmPn(G) < rchmPn(G").
Proof. Assume that rchmPn(G) = |V(G)|.

Let f:V(G) — Z* be the function defined at which the graph G attains its least upper
bound with respect to radio contra harmonic mean D-distance labeling. Let v € V bethe vertex
which is to be duplicated and v' is the resultant vertex obtained by duplicating the vertex v.
Now |[V(G")| = |V(G)| + 1.

ThereforerchmPn(G') = |V(G")| = |V(G)| +1
> |V(6)]
= rchm®n(G)
Hence rchmPn(G) < rchmPn(G")
Corollary 3.4. The converse of the above theorem is not true.

Result 3.5. If rchmPn(G) = |V(G)| then

120

ISBN: 978-93-48505-23-1



Proceedings of the Inter national Conference on Algebraic Graph Theory,
Graph Theory and Topology — 9" & 10" January 2025

(i) rchmPn(G) < rchmPn(ED(G))

(i)  rchmPn(G) < rchmPn(DG)
Theorem 3.6. If G is a n—1 regular graph with n vertices then rchmPn(G’) =
2rchm®Pn(G) —1.

Proof. Let G bean — 1 regular graph with |V (G)| = nand V(G) = v4, vy, ..., v,. Let v] bea
vertex which exist due to the duplication of any vertex v, (say) and G’ be the resultant graph.
Then diam(G") = 3n. Therefore equation (1) reducesto

d”(wv) + fF+f @) =
Defineafunction f: V(G') - Z* suchthat f(v;)) =n—1and f(v;)) =n—1+i,1<i<n.

(n—1+0)?+(n—1+))?
2n—2+i+j

For the pair of vertices (v;, v;),d” (v;,v;) = 2nforl <i,j <n,i#}, ] >
3n+1—dP(v;, v)).

(n—-1+i)%2+(n-1)2
2n—2+i

For the pair of vertices (v;, v}), d (v, v),) = 2nfor1 <i <n, ] >n+1.

Clearly f isaone to one mapping and every distinct pair of vertices and will hold (3) and the
largest integer assigned is 2n — 1 to the vertex v, and rchm®n(G") = 2n — 1. By Theorem
2.2, rchmPn(G) = n. Hence rchm®n(G') = 2rchm®n(G) — 1.

Theorem 3.7. Let G be a connected graph with n vertices. If v € V(G) then there exist
rchmPn(AD (vG)) if and only if deg(v) <n — 1.

Proof. Let [V(G)| = n.
Assume that deg(v) < n — 1. To prove rchmPn(AD (vG)) exist.

Let v € V be the vertex which is chosen for anti-duplication in agraph G and v’ isthe
resultant vertex occurred by anti-duplicating the vertex v and let the graph be AD (vG). By our
assumption, 1 < deg(v) < n — 2. Since |[V(G)| = n, there is atleast one vertex which is not
adjacent to v in G. Then by the definition of anti-duplication of vertex, the graph still remains

connected.
By theorem 4.1, rchmPn(AD (vG)) exist.

Conversely, assume that rchmPn(AD (vG)) exist. To prove deg(v) < n — 1.
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Suppose that deg(v) = n — 1. Then v is adjacent to every vertices in the graph G. By
anti-duplication of vertex v the resultant vertex is non adjacent to any vertex of G. Thusv' is
an isolated vertex. Then AD(vG) is a graph with two components. Therefore, AD (vG) is an
disconnected graph and hence rchmPn(AD (vG)) will not exist which is contradiction to our

assumption.
Hencedeg(v) < n — 1.

Theorem 38. If G is a graph with n+1 vertices and n pendant edges then
rchmPn(AD (v,,G)) = rchmPn(G) + n.

Proof. Let G be a graph with n + 1 vertices and n pendant edges. Since there are n pendant
edges, there must be n pendant vertices vy, v,, ..., v, and let the vertex with degreen be u. Let
v, be the new vertex by anti-duplication of the vertex v, of G and the resultant graph is
AD (v, G) with diam(AD (v, G)) = 2n + 5. Therefore equation (1) reduces to

(Faw)*+(r@)* -

D
W) + | e |2

Define a function f: V(AD(v,G)) —» Z* such that f(u) = 2n, f(v),) =2n+ 1 and f(v;) =

n—14+i,1<i<n.

For the pair of vetices (v,v;),d°(v,v;))=n+5 for 1 <ij<n,i#]j,

(n—1+0)%2+(n—-1+j)?
2n—2+i+j

] >2n+ 6 —dP(v;,v)).

(2n)2+(n—1+i)2] .

For the pair of vertices (u,v;),d”(w,v;) 2n+2for1 <i,j<n,i#j, [ n_1ti

2n+ 6 —dP(v,vy).

(n—1+i)2+(2n+1)2] >
3n+i -

For the pair of vertices (v;,v,,),d° (v, v)) =n+2for1 <i,j<n,
2n+ 6 —dP (v, v).

2+(2n+1)?

For the pair of vertices (u, vy),d” (u, vy,) = 2n + 3, [(Zn) gl ] >3

Clearly f isaoneto one mapping and every distinct pair of verticeswill hold (4) and the largest
integer assigned is 2n + 1 to the vertex v;, and hence rchm®n(AD(v,G)) = 2n + 1. By
theorem 3.2, rchm®n(G) = n + 1.

Hence rchmPn(AD (v,G)) = rchmPn(G) + n.
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Theorem 3.9. For a connected graph G, rchmPn(DG) exist if and only if G contains an odd
cycle.

Proof. Let G be a connected graph.
Assume that rchmPn(DG) exist. To prove G contains an odd cycle.

Suppose G contains no odd cycle then by theorem 2.3 (ii), DG = 2G. Thus DG is a

disconnected graph with two components which contradicts the existence of rchm?n(DG).
Hence G contains an odd cycle.
Conversealy, assume that G contains an odd cycle.
To prove the existence of rchmPn(DG).

Since G contains an odd cycle, by theorem 2.3(i), DG is connected. By theorem 3.1, DG

isaradio contra harmonic mean D-distance graph.
Hence, rchmPn(DG) will exist.
4. Conclusion

In this study, we investigated the labeling of graphs with radio contra harmonic mean
D-distance under different duplication parameters. The resulting graph'sradio contra harmonic
mean D-distance number is computed based on the criteria. These kinds of outcomes can be
extended to triplicate parameters and applied to other radio mean labeling parameters.
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Abstract

The connected domination polynomia of a graph G of order n is the generating
function of the number of connected dominating setsof G of any size. Let D.(G, i) bethefamily
of connected dominating sets of agraph G with cardinality i and Let d.(G,i) = [D.(G,i)|. Then
the connected domination polynomial D.(G,x) of G is defined as D.(G,x)=

V(@)
Li=y,(6)

study the connected domination polynomials of zero-divisor graphs of ring Z,,, where n €

D.(G,i)x', wherey,(G) isthe connected domination number of G. In this paper, we

{2p,p?, pq} for distinct prime numbersp and g, andp > q > 2.
Keywords. Connected Domination Polynomial, Connected Domination set, Zero-divisor
graph.

2020 Mathematics Subject Classification (AMS): 05C69, 05C25.
1. Introduction

The domination polynomial of a graph is introduced by Saeid Alikhani and Y ee-hock
Peng in the year 2009 [7]. While extending the concept of domination polynomial in view of
connected dominating set, we came across with many interesting relations among the
connected domination polynomials of different graphs, which is defined by Sampathkumar and
H.B WIlikar in the year 1979 [§].

Let G = (V,E) beasimple graph. For any vertex v € V, the open neighbourhood of
vistheset N(v) = {u € V : uv € E} and the closed neighbourhood of v isthe set

N[v] = N(v) U {v}. For aset S € V, the open neighbourhood of S isN(S) =U,cs N(v) and
the closed neighbourhood of S isN[S] = N(S)U S. A set S € V isadominating set of G, if
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N[S] =V, or equivalently every vertex in V\S is adjacent to atleast one vertex in S. The

domination number Y(G) isthe minimum cardinality of adominating setin G [7].

Let G be asimple connected graph of order n. A connected domination set (cd-set) of
G isaset S of vertices of G such that every vertex in V\S is adjacent to some vertex in S and
the induced subgraph < S > is connected. The connected domination number y.(G) is the

minimum cardinality of a connected dominating setin G [8].

Zero-divisor graph of a commutative ring was introduced in the work of Beck. Beck
was interested in colouring of rings and the vertex set of graph consists of al elements of the
ring in hisdefinition. Later, the definition of zero-divisor graph of acommutative ring has been
modified by Anderson and Livingston [4]. They defined the zero-divisor graph of a

commutative ring on nonzero zero-divisor elements of the ring [2].

In recent years, the study of zero-divisor graphs has grown in various directions.
Actually, it is the interplay between the ring theoretic properties of aring R and the graph
theoretic properties of its zero-divisor graph [1,2]. There are many papers which studied some
parameters and topological indices of the zero-divisor graphs. Recently, Gursoy, Ulker and
Gursoy in [6] have studied the independent domination polynomias of some zero-divisor
graphs of therings.

This paper consists of four sections. In Section 2, we give some notions. In section
3, we collect the basic definitions that are needed for the subsequent sections. In section 4, we
investigate the connected domination polynomial of some zero-divisor graphs of the rings Z,,

forp > q > 2 where p, g are distinct prime numbers.

2. Notation
> D.(G,x) : Connected domination polynomial of agraph ¢
> d.(G,i) : Number of connected dominating sets of G of cardinality i
> v:.(G) : Connected domination number of G
> N[v] : Closed neighbourhood of the vertex v of agraph G
» N(v) : Open neighbourhood of the vertex v of agraph G
» D(G,x) : Domination polynomial of agraph G
> cd-set : Connected dominating set
» cd- polynomial: Connected domination polynomial
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3. Preliminaries

Definition 3.1. [8] Let D (G, i) be the family of connected dominating sets of a graph G with
cardindity i andLetd.(G,i) =|D.(G, i)|. Then the connected domination polynomial D.(G, x)
of G is defined as D(G,x) = ZIXHL do(G, D)x, wherey,(G) is the connected domination

number of G.

Definition 3.2. [2] Let Z,, be the ring of integers modulo n. The zero-divisor graph
I'(Z,) isthe simple undirected graph without loops which has its vertex set coincides
with the nonzero zero-divisors of Z,, and two distinct vertices u and v in I'(Z,,) are

adjacent whenever uv = 0in Z,,.

Example 3.3. [6] For the graph I'(Z;s), we have |V(T(Z;s))|=34 and

|[E(T(Z,5))| = 86.

Aninteger d is called aproper divisor of nif 1 <d <n and d|n. Let d, ..., dy

be the distinct proper divisors of n. For 1 < i < k, consider the following sets:
Vaq, = {x€Zy :gcd(x,n) = d;}.

Thesets Vg, ..., Vg, are pairwise digoint and we can partition the vertex set of I'(Z,,)
k
V(r(z,) = Uvdi.
i=1

The following lemma gives the cardinalities of each vertex subset of I'(Z,,).

Lemma 3.4. [2] Let n be a positive integer with distinct divisors dq,d,,...,d,. If
Vg, = {x€Zy : gcd(x,n) = d;}for=1,2,...,7 ,then |Vy,| = p(n/d;) where ¢ isthe
Euler’s Totient function.

Lemma 3.5. [5] For i,j € {1, ..., k}, avertex of V,, isadjacent to avertex of Va; in
['(Zy) if and only if n divides d;d;.
Corollary 3.6. [5]

i. Forie{l,..,k}, theinduced subgraph I'(Vy, ) of I'(Zy) on the vertex set
Vg, iseither the complete graph Ky, /4,y Or its complement graph qu(n /dy)-
Indeed, I'(Vy, ) isKgny/a, if and only if n divides d?.
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ii.  For i,j€{1,..,k},withi#j avertex of V, isadjacent to either al or none

of the vertices of Va; inT(Zy).

4. Main results

In this section, we study connected domination polynomial of zero-divisor

graphs of rings Z,,, wheren € {2p, p?, pq} for distinct prime numbers p and q.
Theorem 4.1. For primep, Dc(T'(Zy2),x) = (1 + x)?® —1

Proof. Given p is a prime number, then integer p is only proper divisor of p2. By
corollary 3.6 T'(Z,2) is the complete graph Ky, where ¢ is the Euler’s totient
function. Let K,, be the complete graph on n vertices. D(K,,,x) = (1 + x)"-1, Also
D.(Kpx)=A+x)"1land¢p =p—1,s0

_ (P~ 1\ p-1 (p—l) p-2 (p—1> p-3 4 ..o (P~ 1),z2
DC(F(sz),x)—<p_1)x +{p_2)¥ i, o3)P +( 5 )x+

= (1 +x)¢® —1
Hence the result.
Theorem 4.2. For prime p, D.(T'(Z,),x) = x(1 + x)*®

Proof. Given p is aprime number. The vertex set of the graph can be partitioned into

two distinct subsets as
Vo = {p}
V,={2x:x=1,..,p—1}

Since the integers 2 and p are the proper divisors of 2p. By corollary 3.6, I'(Z,,) is
the star graph K1,¢(p)'

(P~ 1\, » (p—l) p-1 (p—l) p-2 4 ..o (P~ 1,3
DC(F(ZZP),x)—(p_l)x o) m ) +( 5 )x +

R EST (N
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:x{<p_1)xp—1+ (p_l)xp—2+(p_1)xp—3+...+
p—1 p—2 p—3

=x(1+ x)¢(p)
Hence the result.

Theorem 4.3.If p > q > 2 are prime numbers, then, D.(T'(Z,4),x) = [(1 + x)P~* —
1] [(1+x)9t—1]

Proof. Givenp > q > 2 , where p and q are prime numbers. The vertex set of the graph can

be partitioned into distinct subsets as,
V,={px:x=1,..,q—1}and
Vo={qx:x=1,..,p—1}
Since the integers p and g are the proper divisors of pq. Consequently, by corollary 3.6,
I'(Z,q) isthe complete bipartite graph K, _; ;1.
since p(p) > ¢(q) > 107, (F(qu)) =2

Any dominating set of size i is a connected dominating set if there are connected

between some of the vertices of the I, and V, subsets.

Dominating sets that are not related are the subsets 1, and 1;, which have cardinality
q — 1 andp — 1, respectively

Fori = 2,

~_ (d(T(Zpg).j)—1  ifj=q—1lorp—1
de(T(Zpq).j) = {d(F(qu),j) otherwise

Since, De(Kmqp, ) = [(1+ )™ = 1][(1 +x)" = 1] and ¢p(p) =p —1,¢(q) =g —1

De((Zpq). ) = IO+ (D2 + (2D )x 4+
[(pz1) (ngis) 4ot (pi;;) (qzl)]xp+q—3
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- R e

(G (p 1+q 1- 1)+ +(p 1+q 1— 1) (971 tram11
=[P )x+ (P)a% + (z:i) xP=1]

[(q;1)x + (qzl)xz + (Z:i) xq_l]

_ -1 : _ -1 )
zz?zg(pj )xj Z;lzg(q ; )xl
=[(1+x)P P =1][(1 +x)97 1 —1]
Hence the result.

5. Conclusion

In this paper, the connected domination polynomials of the zero-divisor graphs of rings
Z,, wheren € {2p, p?, pq} for distinct prime numbers p and g has been derived by identifying
its connected dominating sets. Further we can generalize connected domination polynomial of
zero-divisor graphs of rings Z,,, wheren € { p?q, pqr, p*} for distinct prime numbersp, g and

T.
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Abstract

Let G = (V,E) beagraph. A subset D of V(G) issaid to be a chromatic restrained dominating
set (or crd-set) of G if D is a restrained dominating set of G and x(< D >) = x(G). The
minimum cardinality taken over all minimal chromatic restrained dominating setsis called the
chromatic restrained domination number of G and is denoted by y<(G). In this paper, the
chromatic restrained domination number on the direct product of certain standard graphs were
obtained.

Keywords. Domination, Restrained Domination, Chromatic Number, Direct Product

2020 M athematics Subject Classification (AMS): 05C15, 05C69
1. Introduction

All the graphs G = (V, E) = (n,m) considered here are simple, finite and undirected,
with neither loops nor multiple edges. For D < V, the subgraph induced by D is denoted
by (D). A k —vertex coloring of a graph, or simply a k —coloring, is an assignment of
k —colors to its vertices. The coloring is proper if no two adjacent vertices are assigned the
same color. A coloring in which k — colorsare used isa k —coloring. A graphis k —colorable
if it has a proper k —coloring. The minimum k for which agraph G is k —colorable is called
its chromatic number and denoted by x(G). Graph Theory terminol ogies which are not defined

here can be seenin [2] and [7].

A set D C V of verticesin agraph G iscalled adominating set if every vertex u € V is
either an element of D or is adjacent to an element of D. The minimum cardinality taken over
all minimal dominating setsis called the domination number of G and is denoted by y(G). A
set D € V isarestrained dominating set if every vertex in V — D is adjacent to avertex in D
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and another vertex in V — D [4]. The minimal cardinality taken over all minimal restrained

dominating sets is called the restrained domination number of G and is denoted by v,.(G). A
set D isay, —set if D isarestrained dominating set of cardinality y,.(G).

For graphs G and H, the direct product G x H (also known as the tensor product, cross
product, cardinal product, kronecker product) is the graph with vertex set V(G) x V(H) where
two vertices (x, y) and (v, w) are adjacent if and only if xv € E(G) and yw € E(H) [3].

A set D € V is a chromatic preserving set or a cp-set if x(< D >) = x(G) and the
minimum cardinality taken over al cp-set in G is called the chromatic preserving number or
cp-number of G, denoted by cpn(G) [5]. A subset D of V issaid to be adom-chromatic set (or
dc-set) if D isadominating set and x(< D >) = x(G). The minimum cardinality taken over
all minimal dom-chromatic setsin G is called the dom-chromatic number and is denoted by
Yen(G) [6]. In this paper, the chromatic restrained domination number on the direct product of

some standard graphs are obtained.
2. Main Results

In this section, we obtained the chromatic restrained domination number for the direct

product of some standard graphs.

Definition 2.1. Let G = (V, E) beagraph. A subset D of V is said to be achromatic restrained
dominating set (or crd-set) if D is a restrained dominating set and x(< D >) = x(G). The
minimum cardinality taken over all minimal chromatic restrained dominating sets is called

chromatic restrained domination number and is denoted by y¢ (G).

4 if n=23

Observation 2.2. £ (K, X K,,) = {3 otherwise’

Theorem 2.3. For any m,n = 3, y¥ (K, X K;,;) = min{m,n}.

Proof. Let V(K,,) = {uy, uy, us, ..., u,} and V(K,) = {vy, vy, v3, ..., v, } With |V(K,,)| = m
and [V (K,)| = n. Then V(K X K;)) = {(w, v;)/1 < i <m, 1 < j <n} with cardinality mn.
Each vertex in K,,, X K,,, say (u,, v;) is adjacent to all the vertices except (ul, vj), 2<j<n
and (u;,v;),2 < i <m and similar adjacency holds for every vertex of K,,, X K,,. Let m <
n. Then, for any 1 < j < n, (u,, v;) can be colored with color 1, (uy, v;) can be colored with
color 2,..., and (u,, v;) can be colored with color m. Thus, y(K,, X K,) =m. Let D =

{(uq,v1), (Up, v3), (U3, v3),..., (Um, )} Clearly, D is arestrained dominating set of K,,, X
133
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K,,. Since, each vertex of D is adjacent to all the other vertices of D, (D) forms a complete
graph on m vertices and y({D)) = m = y(K,, X K;;). This implies that, D is a chromatic
restrained dominating set of K,,, X K,, with cardinality m. Therefore, £ (K,, X K,,) < m. Since
(K X K,) =m, any chromatic restrained dominating set of K,, X K,, must contain a
minimum of m vertices and so, v (K,, X K,) = m. Therefore, v (K, X K;,) = m. Similarly
forn <m,y (K, X K,) = n. Thus, y¢ (K, X K,) = min{m,n}.

2n+1) if m=2

Observation 2.4. y7 (K, X K1) = { n+2 ifm=3"

Theorem 2.5. Form > 4, y* (K, X K1) = 3.

Proof. Let V(Kp) = {ug, up, us, ..., upy} and V(K; ;) = {vy, v1,v2,..., v, } Where v, is the
full degree vertex of Ki,. Then, V(Kp X Ky,) ={(u;,v))/1<i<m,0<j<n} with
cardinality (n + 1)m. Thevertex set of K,,, X K; ,, can be partitioned into two partite setsVy, 1,
whereV; = {(u;, v9)/1 < i <m}andV, = V(K,,, X K;,)\V;. Also, no two vertices of V; and
no two vertices of V, areadjacent. Thus, y(K,, X K; ,) = 2. Furthermore, every vertex (u;, vy)
inV; isadjacent to all theverticesof V, except (u;, vj),1 < i <m,1 < j < n. Also, each vertex
(u,v),1<i<m,1<j<nofV,isadjacent to al the vertices of V; except the vertex with
samei. Let D = {(uq,vy), (uz, vy), (ug,v1)}. Then D is arestrained dominating set of K,,, X
K, , and y,. (K, X K1) < |D| = 3. Since K,,, X Ky ,, is a bipartite graph, every restrained
dominating set must contain a vertex from V/; and another vertex fromV,. Let x € V;, y € 1,
and xy & E(K;, X Ky ). Then x = (uq,v) and y = (uy,v;) for any j # 0, and (u,, v;) for
remaining j's is not dominated by x and y. Thus, choosing another vertex from V; dominates
al the remaining vertices which are not dominated. Suppose xy € E(K,, X K; ). Then, x =
(uy,v9) and y = (up, v1) dominates all the vertices except (u,, vy) € V; and (uy, v;) € V5.
Thus x,y and (u,,v,) forms a restrained dominating set. From both the cases, ¥, (K, X
K; ) = 3. Therefore, v, (K, X K1 ,,) = 3. Since (uy, vo)(uy,v1) € E(Kyy X K1), x({D)) =
2 = x(Kyy X K1 5,). Therefore, D is a chromatic restrained dominating set of K, X K, and
yE (K X K1) = D] = 3.

2?n-I—Z if n=0(mod 3)
Observation 2.6. Forany n = 3, (K3 X B,) = { 2 EJ + 2 if n = 1(mod 3).
\2[5] +1 if n = 2(m0d 3)
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I(z?n+1 if n=0(mod 3)
Theorem 2.7. Forany m > 3 andn = 2, yf(Kmen)=42l§J+2 if n=1(mod 3)
2 §]+1 if n = 2(mod 3)

Proof. Let V(K,,) ={w;/1<i<m} and V(P,) ={v;/1<j<n}. Then V(K, X P,) =
{(u,v)/1<i<m,1<j<n}and|V(Ky, X P,)| =mn. Now, the vertex set can be divided
into two subsets V, V, where V; = {(u;,v;)/1<i<m,1<j<nand j is odd }andV, =
{(upv)/1<i<m,2<j<nand j is even}. Also, V; NV, = &. Furthermore, no two
vertices of V; and no two vertices of V, are adjacent. Then, y((V;)) = 1 and y({V;)) = 1. This
implies that, (K, X B,) = 2. Moreover, {(uy,v;)/1 < j < n} represents the first row of
K,, X B, and {(u;,v;)/1 < i < m} representsthefirst column of K,,, X B,. Likewise, K,,, X P,

contains m rows and n columns. Now, let us consider the following three cases.
Case (i): n = 0(mod 3)

Let Dy = {(uy, v1), (U1, V2), (U2, V), (Uz, s), (Ug, V7), (Us, Vg), o, (Uy Vn—2), (Ui, V1),

(up, vp_)}where k=1, l=2ifnisodd and k =2, [ =1 if n is even. Then, D; isa
dominating set of K,,, X P,, sincetheverticesof V (K,,, X P,)\D; which belongsto thefirst row
aredominated by avertex of D; belonging to second row, theverticesof V (K,,, X B,)\D, which
belongs to the second row are adjacent to a vertex of D; belonging to the first row and al the
verticesin the remaining rows are adjacent to some vertex of D;. Since(V (K,, X B,) — D;) has
no isolated vertices, D; is arestrained dominating set of K,,, X B, and y,.(K,,, X B,) < |D;| =
2+ 1.8ince y(Km X B) =2+ 1, 1K X B) 2 2+ 1. Therefore, y,(Kp X B) = 2+
1. Since at least two vertices of any minimum restrained dominating set of K,,, X B, isadjacent,
x({Dy)) = 2 = (K, X B,). Therefore, D, is a chromatic restrained dominating set of K,,, X

Po A ¥ (K X By) = [Dy| =2+ 1.
Case (ii): n = 1(mod 3)

Let D, = {(u1,v1), (U1, v2), (Uz,vs), (Up,vs), (Ug,V7), (ug,Vg), ..., (Ug, Vp—3), (Ug,

Vn_2), (U, vn_q), (u, vp)}wherek = 1,1 =2 ifnisevenand k = 2,1 = 1 if nisodd. Then,

D, isadominating set, since every vertex in V(K,, X B,)\D, is adjacent to at |east one vertex

of D,. Also, every vertex of V(K,, X B,)\D, is adjacent to at least one another vertex of

V(K X P,)\D; and so D; isarestrained dominating set. Thus, v, (K, X P) < D] = 2|5] +
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2. Since there exists no restrained dominating set with cardinality less than 2 EJ + 2, 7, (Kp X
) =23 +2. AlSo, (U vno2) (@, Vn1) € E(Kin X B, X((D2)) = 2 = X(Kyn X By).
Therefore, D, isachromatic restrained dominating set of K,,, X B, and y,*(K,, X B,) = |D,| =
2|3 +2.

Case (jii): n = 2(mod 3)

Let D3 = {(uy, v1), (U1, V2), (Uz, V4), (Uz, Vs), (Ug, V7), (Uy, Vg), - -+, (U, Vn—1), (Uk, V) }

wherek = lif nisevenand k = 2 if n isodd where |D;| = 2 E] Clearly, D5 isarestrained

dominating set of K,, X P, since every vertex of V(K,, X B,)\D; is adjacent to at |least one
vertex of D; and is adjacent to at |east one other vertex of V (K,,, X B,)\Ds. Therefore, y,.(K,,, X

P)<|Ds| =2 E] Since y(K,,, X B,) = 2 E] V(K X B)) = 2 E] Thus, y, (K, X B,) =
2 E] Since any subgraph induced by a minimum restrained dominating set contains only

isolated vertices, y({(D3)) = 1 # x(K,, X P,). Therefore, D; is not a chromatic restrained
dominating set of K,,, X B,. Consider D, = D3 U {u;,v,}wherel = 1ifk =2andl =2ifk =
1. Since (uy,Vnp_1)(uyvy) € E(Ky X By, x({Dy)) =2 = (K, X B,). Also, D, is a
restrained dominating set of K,,, x B,. Therefore, D, is a chromatic restrained dominating set

of KpXB, and yS(Kp X B,) <|Dy4|l =|D3|+1=2 E] + 1. Suppose, there exists a
chromatic restrained dominating set S such that |S| < 2 E] + 1. Then |D3| < |S| < |Dy| =
ID;| + 1, which is not possible. Therefore, y.(K,, X B,) = 2 [g] + 1, wheren = 2(mod 3).
Theorem 2.8. Let [V (K, X C,,)| =nandn = 2m. Then

E] if n=1(mod 3)

(i) if m isodd, £ (K, X Cp,) = [g] +1 if n=2(mod 3)
k§+2ianMmM3)

( 2[%] if m=1(mod 3)
anwmsammﬁagxq@=!20§y+0ifmzzwwda.
2(3+1) if m=0(mod3)
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Proof. Let V(K;)={uy,u,} and V(C,) = {vi,v3,vs3,...,v}. Then V(K, X Cp,) =
{(uy, vy), (uy,v;)/1 < i <m} and |V(K, X Cp,)| = 2m where n = 2m. Now, the vertex set
V(K, X C,,) can be bipartitioned into digoint subsets V; = {(u,,v;}/1 <i<m}and V, =
{(uz,v))/1 <i <m}. Since, no two vertices of V; and no two vertices of V, are adjacent,
x({(Vi) =1 = x({V,)). Then, x(K, x Cp,) = 2. Clearly, K, X C,, contains two rows and m

columns.
Case(i): misodd

Then K,xC, is a cycle on 2m verticess i.eC,, and Y (K, X Cp) =
|{ E] if n=1(mod 3)
4 2|+ 1 if n = 2(moa 3).

§+2 if n=0(mod 3)

Case (ii): miseven

Then K, x C,, is the union of two cycle graphs C,,. Thus, (K, X C,) = v,-(Kz X C,) +
¥r (K3 X Cpy).

Subcase (i): m = 1(mod 3)

Then, ¥ (Cpy) = ¥, (Cpy) = [g] Therefore, (K, X Cp) = 2 [%]

Subcase (ii): m = 2(mod 3)

Then 1 (Cu) = 1+ (C) = | 5| + 1. Therefore, v (K, x C) = 2|5 + 1),

Subcase (iii): m = 0(mod 3)

Then 1, (C) == and 7 (C) = = + 2. Therefore, (K, X Cu) = 2+ 2 +2=2(5 + 1).
Theorem 2.9. yi(P, x P) = 2 [=2| + 4.

Proof. Let the vertex set of P, be V(P,) = {uy,u,} and the vertex set of B, be {v,, v,,v3, ...,

vn}- Then1 V(PZ X Pn) = {(u1; vl)' (ul; UZ)' (ulr Ug), LA (ulr Un)' (UZ: Ul)' (uZ' UZ)I LR (uZI vn)}
where cardinality of P, x P, is 2n. Clearly, there exists two digoint partitions V;, V, on the
vertex set of P, x B, where V; = {(uy, 1), (uy, vy), (Uyg,v3), ..., (uy,v,)} and V, =
{(uz, vl), (uZ, VZ), (uZ, V3), ey (uZ, Un)}. SH'ICG V1 and VZ ae |ndependent, X(<V1>) =
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x({(V,)) = 1. Then, y(P, X B,) = 2 and P, X B, is a bipartite graph containing n columns.
Now, P, x P, isthe digoint union of two path graphs P; and P, where |V(P,)| = |[V(P,)| = n
and y,£ (P, X B,) = v~ (B,) + v-(B,). Now, the following three cases can be considered.

Case(i): n = 0(mod 3)

n

Then KB =rnE)=2+2 ad yPExP)=(+2)+(+2)=2(%)+4

Therefore, y, (P, X B,) = 2 [ ] + 4.
Casg(ii): n = 1(mod 3)

Then 1,(R) = [5| and %f(B) = [5] + 2. Now, yé(P, x B = [3] + [5| +2 =25 + 2.

Therefore, v (P, X B,) = 2 [ ] + 4.
Case (iii): n = 2(mod 3)

Then ¥(By) = (B = |3 + 1 and %£(P, x B) = 2[3] + 2. Therefore, (P, x By) =
2= + 4.

From all the cases, y,£ (P, x By) = 2|=2| + 4.

n+5 if n=1,3(mod4)

Theorem 2.10. Letn = 5. Thenyf(Py X B,) = {n +4 if n=0,2(mod 4)

Proof. Let V(P,) = {uy,uy, u3, u,} and V(B,) = {v;/1 < i < n} where |[V(B,)| = n. Then
V(Py X By) = {(uq, vy), (Uy, vy), (U3, v;), (ug, v;)/1 < i < n} with cardinality 4n. Now, the
vertex set can be divided into four digoint subsets V;, V,, V5, V, where V; = {(uy,v;)/1 <i <
n}, Vo ={(u,,v))/1<i<n}, Va={(us,v;)/1<i<n} and V, ={(uyv;)/1<i<n}
where the vertices of each subset represents arow. Clearly, V,V,, V5 and V, are independent
and so, y({V;)) = 1,j = 1 to 4. Also, there exists adjacency between vertices of (i) Vy, V,, (ii)
V,,Vs and (iii) Vs, V,. Thus, y(P, X B,) =2. Moreover, P, X B, contans n columns

{(uj, v1), (5, v2), (uj, v3), ..., (uj,vy)/1 < j < 4} where each j represents a column.
Case (i): n = 0(mod 4)
Let Dl = {(uz,v4), (u3,v4), (uZ'US)' (U3,U5), (UZ'US)' (U3,U8), (u2'v9)J (U3,U9),

(uz, Vn_a), (U3, Vn—a), (Uz, Vn—3), (U3, Vp—3) U {(Uq, V1), (Uz, V1), (U3, V1), (Ug, V1), (Ug, V),
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(uy, v), (usz, vy), (uy, vy)} and |D;| = 4 (nT_L}) + 8 =n+ 4. Clearly, D, is a dominating set
of P, X B, where the vertices of V (P, X B,)\D; which belongs to the first and third row are
dominated by the elements of D; belonging to second row, and the vertices of V (P, x B,)\D;
belonging to the second and fourth row are dominated by the elements of D; that belongs to
third row. Also, for each vertex of V(P, X B,)\D;, there exists an adjacent vertex in V(P, X
P)\D; and so D, is a restrained dominating set. Thus, y,.(P, X B,) < |D;| =n+4. On
removing any single vertex of D;, there exists at least one vertex in V(P, X P,)\D; which is
not adjacent to any vertex of D; and any other minimum restrained dominating set is of
cardinadity n+ 4. Thus, y,.(P, X B,) = n + 4. Since (D,) contains path on two vertices,
x(D1)) =2 = y(P, X B,). Therefore, D, isachromatic restrained dominating set of P, X P,
and yS (P, X B,) = n+ 4 wheren = 0(mod 4).

Case(ii): n = 1(mod 4)

Let D, = {(uz'vzlj): (u3,v4j), (uz»v4j+1): (u3:174j+1) /1<) < EJ} U {(uqg,v1),
(uz, v1), (U3, 1), (Ug, V1), (Ug, V), (Ug, V) } Where |D,| = 4 (nT_l) + 6 =n+ 5. Clearly, D,
isadominating set, since for every vertex in V\D,, there exists at |east one adjacent vertex in
D,. Also, D, is arestrained dominating set as (V (P, X B,) — D,) does not contains isolated
vertices. Hence, y,.(P, X B,) < |D,| = n + 5. Since, there exists no restrained dominating sets
of P, X P, with cardindlity lessthann + 5, y,-(P, X B,) = n+ 5. Thus, y,.(P, X B,) = n + 5.
Since (D,) contains path and isloated vertices, y({D,)) = 2. This implies that, D, is a
chromatic restrained dominaating set of P, x B,. Therefore, v, (P, X B,) = |D,| =n+5n =
1(mod 4).

Case (iii): n = 2(mod 4)

Let  D; = {(uy, V4j): (us, V4j): (uz, V4j+1); (us, V4j+1)/1 <js nT_z} U {(uq,v1), (uz,v1),
(us, v1), (s, 1), (113, V), (g, ¥)} @0l Dy isof cardinality 4 (=2) + 6 = n + 4. Clearly, D,

is arestrained dominating set since every vertex in V (P, X B,)\D5 is adjacent to at least one
vertex of D; and is adjacent to at least one vertex of V(P, X B,)\D3. Then, y,.(P, X B,) <
|D;| = n + 4. Suppose there exists arestrained dominating set S such that |S| < n + 4. Since
Yy(P,xB)=n+2 [1], n+2<|S| <n+4. But there does not exists a restrained
dominating set with cardinality n+2 or n+3. Thus, y.(P,%XB,) =n+4. Since
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(uy,v4)(us,v5) € E(Py X By), x({D3)) = 2 = x(P, X B,). Then, D5 isachromatic restrained
dominating set and v, (P, X B,) = |D5| = n + 4.

Case(iv): n = 3(mod 4)

. _n-3
Let Dy = {(uy, vaj), (U3, Vaj), (Uz Vajs1), (U3, Vajr1) /1 < j < nT} U {(uy, 1), (Uz, 1),

(us, 1), (Ua, V1), (Uq, V1), (Uay Vnoy), (Ug, Vn), (g, )} @A [Dy| = 4 (nT—s) +8=n+5.
Then, D, is a restrained dominating set of P, X B,, since (V(P, X B,) — D,) contains no
isolated vertex. Thus, y,-(P, X B,) < |D,| = n + 5. But, there does not exists any restrained
dominating set with cardinality lessthan n + 5. Thus, y,.(P, X B,) = n + 5. Also, y({D,)) =
2 = y(P, X B,). Therefore, D, isachromatic restrained dominating set of P, X P, and y, (P, X
B,) = |D4| = n+ 5, wheren = 3(mod 4).

Theorem 2.11. Form,n = 2, ¥ (Ky jy X K1) = mn + 3.

Proof. Let V(K m) = {ug, ug, Uy, ..., uptand V(K ,) = {vo, V1, v3,..., vy} Whereu, and v,
are the full degree vertices of K ,, and Ky ,,. Then V(Ky ;, X K1) = {(u;, )0 < i <m,0 <
j<n}and |[V(Kym X V(Kin)| = (m+ 1)(n + 1). Now, the vertex set of K ,, X Ky , can be
partitioned into three digjoint subsets V3, V,, V3 where V; = {(u, vo), (u;, vj)/1 < i<m,1 <
j=n}, Va ={(uev))/1 <j<n}and V3 = {(u;,v9)/1 < i <mj. Furthermore, vertices of
V; forms a star graph K; ,,,,, and the vertices of V, together with V5 forms a complete bipartite
graph. Also, V; n (V, U V) = @. Then y(K;pm X K15,) = 2. Let D = V3 U {(ug, v1), (ug, v0)}
where (uy, v1) € V, and (uy, vy) € V3. Clearly, D isarestrained dominating set of Ky ,, X K 5.
Then, v, (K1 m X K1,) < [D| = mn + 3. Since, any restrained dominating set of K ,,, X K1 ,,
must contain all the vertices of 1y, avertex from V, and a vertex from V3, y,-(Ky ;p X K1) =
mn+ 3. Therefore, y,(Kiym XKip)=mn+3. Also, x((D)) =2 = y(Kim X Ki ).
Therefore, D isachromatic restrained dominating set of K; ,, X K1 , and so, ¥, (Kym X Ky ) =
mn + 3.

2m+n—1if n=0,1(mod 4)

Observation 2.12. Forany n > 3, ¥ (Kym X P,) = {Zm +n—2 if n=23(mod4)

Observation 2.13. (i) ¥ (Kim X P,) = 2(m + 1) (ii) ¥ (Ky;m X P3) = 2m + 3.
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3. Conclusion

In this paper, we have determined the chromatic restrained domination number for the
direct product of certain standard graphs. An encouraging direction for future research is to
analyse the bounds on the direct product of graphs and characterise the extremal graphs that
represents the upper and the lower bound of the chromatic restrained domination number in

direct product of graphs.
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Abstract

In this paper, we find some properties of compressed gamma graph of zero-divisor
graph and extended gamma graph of zero-divisor graph. Let Z,, be a finite commutative ring.
The compressed gamma graph is a graph with vertex set as the collection of all gamma sets of
the compressed zero-divisor graph Iz (Z,,) and two distinct verticesr and s are adjacent if and
only if |r ns| = y(I3(Z,)) — 1. This graph is denoted by y. I;(Z,). The extended ganma
graph of zero-divisor graph is a graph with vertex set as the collection of all gamma sets of
extended zero-divisor graph ET'(Z,) and two (not necessarily distinct) vertices r and s are
adjacent if and only if [r n's| = y(ET'(Z,)) — 1. Thisgraph is denoted by y. E (I'(Zy,)).
Keywords: Zero-divisor graph, gamma graph, compressed gamma graph of zero-divisor
graph, extended gamma graph of zero-divisor graph.

2020 Mathematics Subject Classification (AMS): 05C25, 05C69, 05C10
1. Introduction

Over the past 20 years, there has been a growing interest in studying agebraic
structures that utilize graph characteristics, leading to a number of fascinating discoveries and
guestions. Let R be acommutative ring with identity and Z(R)* bethe set of all non-zero zero-
divisors of R. D.F. Anderson and P.S. Livingston [6], associate a graph called zero-divisor
graph I'(R) to R with vertex set Z(R)* and for two distinct x,y € Z(R)" , the vertices x and
y areadjacent if and only if xy = 0inR.[11] A set D € V of verticesinagraph G = (V,E)
is called adominating set if for every vertex u € V — D, there exists avertex v € D such that
v isadjacent to u. A dominating set D isminimal if no proper subset of D isadominating set.
The domination number of a graph G, denoted by y(G), is the minimum cardinality of a
minimal dominating set of G. A dominating set D inagraph ¢ with cardinality y iscaled y —
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set of G. There are so many domination parameters in the literature and one can refer [10] for
more details. The relationship between ring-theoretic properties of R and graph-theoretic
properties of I'(R) has been studied extensively.

For any elements r and s of R, definer ~ s if and only if anng () = anng(s). Then
~ isan equivalence relation on R; for any r € R, let [r]g = {s €| r ~ s}. For example, it is
clear that [0]z = {0},[1]x = R/Z(R), and [r]z S Z(R)/{0} for every r € R([0]z U [1]R).
Furthermore, the operation on the equivalence classes given by [r]z[s]g = [rs]g is well-
defined (i.e., ~ is acongruence relation on R) and thus makes the set Rz = {[r]z|r € R} into
acommutative monoid. Moreover, R isacommutative Boolean monoid if R isareduced ring.
The monoid Ry has been studiedin[ [1],[9],[2], [3], [4] ].

[5]The relation on R given by r ~s if and only if anngz(r) = anngz(s) is an
equivalence relation. The compressed zero-divisor graph Iz (R) of R isthe (undirected) graph
with vertices the equival ence classes induced by ~ other than [0] and [1], and distinct vertices
r and s are adjacent if and only if rs = 0. Let Rg be the set of equivalence classes for ~ on
R. Then Ry isacommutative monoid with multiplication [r][s] = [rs].

The concept of a zero-divisor graph of acommutative ring R was introduced by |. Beck in
[7]. The compressed zero-divisor graph Iz (R) (using different notation) was first defined by
S.B. Mulay in [13], where it was noted in passing that severa graph-theoretic properties of
I'(R) remain valid for I';(R). The compressed zero-divisor graph Iz (R) has been explicitly
studiedin[ [2], [8], [14] ].
[12]Let R be afinite commutativeringwith 1 # 0. Then, the extended zero-divisor graph
ET (R) is defined as the graph with vertex set R where two (not necessarily distinct) vertices
x,y € R are adjacent if and only if xy = 0. In this paper, we find some properties of
compressed gamma graph of zero-divisor graph and extended gamma graph of zero-diviosr
graph. Let Z,, be a finite commutative ring. The compressed gamma graph of zero-divisor
graph is a graph with vertex set as the collection of all gamma sets of the compressed zero-
divisor graph Iz (Z,) and two distinct vertices r and s are adjacent if and only if [r ns| =
v(Ix(Z,)) — 1. Thisgraphisdenoted by y. I (Z,,). The extended gammagraph of zero-divisor
graph is a graph with vertex set as the collection of all gamma sets of extended zero-divisor
graph ET'(Z,) and two (not necessarily distinct) vertices r and s are adjacent if and only if

Ir ns| =y(ET(Z,)) — 1. Thisgraph is denoted by y. ET'(Z,,) .
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2. Compressed gamma graph of a Zero-divisor graph

Definition 2.1. The Compressed gamma graph of a zero-divisor graph is a graph with vertex
et as the collection of all gamma sets of the compressed zero-divisor graph Iz (Z,,) and two
distinct vertices r and s are adjacent if and only if |r ns| = y(I3(Z,)) — 1. This graph is
denoted by y. Iz (Z,,).

Example: For n=12

V() ={234,6,8,9, 10}

VE(Z12)) ={[2.[3].[4], [6]}

Figure 2: I'pg{Fps)

V(y.Tx(Z12)). = {{16], [4]}, {[6], [3]}, {[3]. [2]}, {[2]., [4]}}
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6], 4]} » o {[6]. (30}

Fipure 3: 7. 2{ZE14)
4 R FAT.

Theorem 2.2. If n = pflpfz, ki, k, > 1wherep; < p,, p;,p, aedistinct primes, then the

compressed gamma are graph of a zero-divisor graph y. I;(Z,,) isK;.

Proof. If n= pflp;‘Z, ki, k, > 1where p; <p,, p,p, ae dstinct primes then,
{[pF*.pk27*), [p¥*~". p*] } be the only dominating set of Iy (Z,).
Hencey.lz(Z,) = K;

Theorem 2.3. If n = pq, p*q, pq"* wherek > 2, p < q, p and q are distinct primes, then the
compressed gamma graph of azero-divisor graph y.I;(Z,) isK,.
Proof.
Case(i):
If n=pqg wherep <gq, p and g are distinct primes, then the only dominating set of
Ix(Zy) is{[pl, [q]}.
Hence y.I;(Z,) = K,.
Case(ii):
If n = p*q wherek > 2, p < q, p and q are distinct primes, then the only dominating
set of I (Zy) is{{[p*~*.ql, [q1}, {[P*"".q], [P*1}}
Hence y. Iy (Z,) = K,.
Case(iii):
If n =pqg* wherek > 2, p < q, p and g are distinct primes, then the only dominating

set of I3 (Z,,) is{{lpg" 1, [p1}, {[pq*~*1 [a*1}}.
Hence y.I:(Z,) = K,.

Theorem 2.4. If n=pXpX2, pq, p*q, pg* where ki, k, > 1, k> 2, p, <p, p<gq,
p, q,p; and p, aredistinct primes, then y. I (Z,,) is planar.
Proof.
Case(i):
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Ifn= pflpé"‘z, ki, k, > 1 wherep, < p, aredistinct primes, theny. I[z(Z,,) isK;.
Hencey. I (Z,) isplanar.
Case(ii):

If n=pq, p*q, pq* wherek > 2, p < q, p and q are distinct primes, then y. I';(Z,,)
iISK,.

Hencey. I (Z,) isplanar.

Corollary 2.5. If n = pq, p*q, pq* wherek > 2, p < q, p and q are distinct primes, then
diam(y.Ix(Zy)) is 1.
3. Extended gamma graph of a Zero-divisor graph

Definition 3.1. Let Z,, be afinite commutative ring with 1 # 0. The extended gamma graph
of azero-divisor graphisagraph with vertex set asthe collection of all gamma sets of extended
zero-divisor graph ET'(Z,,) and two(not necessarily distinct) vertices r, s are adjacent if and
onlyif [r ns| = y(EI'(Z,)) — 1. Thisgraph is denoted by y. ET'(Z,,).

Example: Forn=38

V(I'(Zs)) ={2,4, 6}

(] |
1.
—
a

Figure 4: T'(Zs)

V(El(Zg))={0,1,2,3,4,5,6,7}

146

ISBN: 978-93-48505-23-1



Proceedings of the Inter national Conference on Algebraic Graph Theory,
Graph Theory and Topology — 9" & 10" January 2025

i -

Figur: 5 ET{Z

V(y.ET'(Zs)) ={{C}}

(0)

Figure 6: v.ET(Zg)

Theorem 3.2. If n = pflpfz ...pfr wherep; < p, < - <p,, ky,k,, ..., k, areintegers,
D1, D2, -, Py a@edistinct primes, then y. EI'(Z,,) iSK;.

Proof. In extended zero-divisor graph {0} act as a universal vertex. Then {{0}} isthe only
dominating set of EI'(Zj,).

Hence y.ET' (Z,) = K.

Corollary 3.3. If n = pflpé‘z ...pfr wherep; <p, < -+ <py, ky, ks, ..., k, areintegers,
D1, D2, -, Py a@redistinct primes, then y. EI'(Z,,) is planar.
4. Conclusion
In this paper, we have discussed about some properties of compressed gamma graph

and extended gamma graph of a Zero-divisor graph. It is planned to explore different graph

properties in future work regarding to this concept.
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Abstract

Zika virus is a mosquito-borne flavivirus that has emerged as a global health threat due
to its potential for rapid spread and severe health complications. Understanding the dynamics
of disease-free equilibrium (DFE) in the context of Zika virus transmission is crucial for
devising effective control strategies. Graph theory, a mathematical framework for modeling
relationships and networks, provides an innovative approach to study the transmission
pathways of the virus. By representing the host-vector interactions and environmental factors
as a directed graph, we examine the stability of the disease-free state through key graph
parameters such as the basic reproduction number (R,). Analytical results show that the DFE

is stable when Ry< 1, implying that the infection will die out in the long term. Conversely, if
Ry = 1, the disease may persist or become endemic.

Keywords: Zika virus, Mosquito biting rate, Basic reproduction number, Distance- weighted

matrix, Vector transmission.

2020 Mathematics Subject Classification (AMS): 05C20, 05C22, 05C8S5, 05C90, 47A10,
00A71

1. Introduction

The Zika virus has emerged as a significant global health threat, primarily transmitted
through the bites of infected Aedes aegypti mosquitoes. Additional modes of transmission,
including sexual, perinatal and vertical transmission, have exacerbated its public health impact.

Outbreaks have been reported worldwide, particularly in tropical and subtropical
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regions[7],[10]. The Zika virus was first identified from rhesus monkey in the Zika forest of
Uganda in 1947 and from humans in Nigeria in 1954, but it was not spread in epidermic form
among the human population until 2007. The first Zika outbreak among human occurred in
Yap Island, Micronesia in 2007. Afterward, this disease highly spread among human in a
different countries. Brazil is one of the most affected countries. The number of suspected cases
in Brazil was estimated at 4,40,000 to 13,00,000 in 2015 [3],[13]. Anxiously, the increase of
microcephaly incidence was unexpectedly observed in the outbreaks. Hence, the World Health
Organization (WHO) decided to elevate the ZIKV epidemic status to the level of “a Public
Health Emergency of International Concern (PHEIC)” on February 1, 2016.

Two species of mosquitoes, namely, Aedes aegypti and Aedes albopictus, were
identified as the main vectors for ZIKV transmission [8],[6]. Aedes aegypti and Aedes
albopictus seem to have different biological lifestyles, feeding preferences, and susceptibilities
to ZIKV. Aedes aegypti extensively feeds on human blood whereas Aedes albopictus feeds on
a more variety of host species. Both species are diurnal feeders providing high chance to expose
and bite humans. Aedes aegypti basically breeds in manmade containers such as jars and old
tires while Aedes albopictus may also extend the breeding sites to some other natural water
holders, for examples, tree holes and coconut shells. The symptoms of Zika infection includes
fever, headaches, rash, conjunctivitis and joint pain. Also the infection increases the chances of
microcephaly, Guillain - Barre syndrome and other neurological disorder in new born babies
from infected mothers. Zika remains a potential future epidemic threat, emphasizing the need

for proactive surveillance, advanced research, and global collaboration to mitigate its impact.

Many mathematical models are constructed in Zika virus dissemination by various
researchers in different countries. Banuelos. S. et. al presented a mathematical model to
determine the effect of sexual transmission of the Zika Virus by using Wolbachia for vector
control [2]. Agusto F. B. et. al analyzed a Zikv model that includes human vertical transmission,
birth of babies with microcephaly and asymptomatic infected individuals [1]. Suparit et. al
formulated a mathematical model for fitting the virus transmission in Bahia, Brazil during the
2015-2016 outbreaks and investigating the impact of vector control strategies [9]. In this study
the graphs are generated from the models and then the basic reproduction number (R;) in
disease free equilibrium are calculated using graph theory [4] which helps to investigate

epidemiology in Zika Virus transmission.
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In the field of epidemiology, understanding the transmission dynamics of infectious
diseases is paramount for effective disease control and public health interventions. Central to
this understanding is the concept of the basic reproduction number, denoted as R, [5]. The basic
reproduction number serves as a key metric in assessing the transmissibility of infectious
diseases within population. The Basic Reproduction Number R, is defined as the number of
new infections produced by one infected individual in a completely susceptible population. It
is a function of the baseline parameters. If Ry < 1, each infected individual, on average, infects
less than one other person. This indicates that the disease will likely die out in the population
over time as the number of infected individual’s decreases. If Ry, = 1, each infected individual,
on average, infects exactly one other person. In this situation, the disease may persist in the
population, but it will neither grow nor decline. This condition is often referred to as the disease
being endemic. If Ry > 1, each infected individual, on average, infects more than one other
person. This indicates that the disease is likely to spread within the population, leading to an

epidemic or pandemic if not controlled.
2. Graph Formulation

The human popul ation follows an SEIR model with compartments for Susceptible (S),
Exposed (En), Infectious (In ), and Recovered (Rn) while the vector population follows an SEI
model with compartments for Susceptible (S,), Exposed (Ev) and Infectious (Iv). These seven
compartments collectively form the vertices of a graph G=(V,E), where V represents the
compartments and E represents edges denoting transitions between states. This graph-based
representation captures the interactions and disease dynamics between human and vector
populations. The graph, G = (V, E) where

V(G):{Sh:Eh:Ithh:Sv:Ev:Iv}

E(G)={ShEn, Enlp, InRp, IySh, InSv, SvEv, Evly}
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Figure 1: Schematic of the Zika transmission graphica model. The arrow represents

transitions between the compartments and aso the interactions between humans and

mosquitoes [11].
Parameter Description
An The force from infection for humans
Ay The force from infection for mosquitoes
vy Human progression rate from exposed rate state

to infectious state

vy Mosquito progression rate from exposed rate

state to infectious state

Bon Probability of pathogen transmission from an

infectious human to a susceptible mosquito

Bhv Probability of pathogen transmission from an

infectious mosquito to a susceptible human

Yn Human recovery rate

o, Maximum number of bites a human can sustain
oy Mosquito biting rate

Ny, Human population size in Bahia, Brazil

N, Mosquito population size

Table 1: Description of all parameters used in this model

The force from infection for humans (A1) and force from infection for mosquitoes (4,,)

are the rates at which infectious individuals infect others are calculated using the formula

Uvath Iv
A e e tee ees sen 1
"~ 6,N, +o,N," "N, D
0,0, N, I
v g (2)

Ay = ——————
v o,N, + apN,""" Ny,
3. Disease-Free Equilibrium
A disease-free equilibrium (DFE) is the state of an epidemic model when there is no

infection, and the infected population is zero [12].
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Theorem 3.1.The basic reproduction number at disease-free equilibrium (DFE) is
Ro= (Ap + vp + Bun) Ay + vy + Bry).

Proof. In the DFE, E;, = 0,1, =0,R, =0,I,=0,E, =0

The matrix M(G)prg =
0 0 0 O Ah + v, + ﬁvh 0 0
0 0 0O 0 0 0
0 0 0 O 0 0 0
0 000 0 0 0 |
Ay +v,+Bny, 0 0 O 0 0 0
\ 0 0 0O 0 0 0 /
0 0 0 O 0 0 0
The characteristic equation of the above matrix is
A - (A +vp + Bop) Ay + vy + By) =0 —-mmemee (3)

Spectral radius of the above characteristic equation is the basic reproduction number

and is given by
Ry = (An + vp + Bon) A4y + vy + Bry)

Hence Proved

Theorem 3.2. Ifﬁ < v, < % ,1—12 <y < % and 0.1 < By, ,Bun < 0.77, then the basic
reproduction number Ry < 1.

. 1 1 1 1
Proof. Given: —— < v, < 7,— < v, < _,and 0.1 < By, Byn < 0.77

To prove: Ry < 1
The Basic Reproduction Number, Ry= (A, + vy, + Bur) Ay, + vy + Bry)

The values of force from infections for humans (4;) and mosquitoes (4,,) are 0.00000458 and

0.000007 respectively. [Using (1) and (2)]
Case (i): Let v, = —, v, = —and By = Bon = 0.1
1 1
Therefore Ry = (0.00000458 +=+0.1) (0000007 + =+ 0.1)
14 12

= (0.00000458 + 0.0714 + 0.1)(0.000007 + 0.0833 +0.1)
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=(0.1714058)(0.183340)

=0.0314 <1

Case (ii): Let vy, = %, v, = %and By = Pon = 0.1
1 1
Therefore Ry = (0.00000458 + 1 + 0.1) (0.000007 + 3 + 0.1)

= (0.00000458 + 0.3333 + 0.1)(0.000007 + 0.125 + 0.1)
= (0.43330458)(0.225007)

= 0.0975 < 1
Case (iii): Let v, = —, v, = —and fy = fon = 0.77
1 1
Therefore Ry = (0.00000458 + — + 0.77) (0.000007 + =+ 0.77)
14 12

=(0.00000458 + 0.0714 + 0.77)(0.000007 + 0.0833 + 0.77)
= (0.8414058)(0.853307)

=0.718< 1

Case (iv): Let v, = £, v, = —and By = Bon = 0.77
1 1
Therefore Ry = (0.00000458 + 3 + 0.77) (0.000007 + = +0.77 )

= (0.00000458 + 0.3333 + 0.77)(0.000007 + 0.125 + 0.77)
= (1.10330458)(0.895007)

=0.9875<1

2 Bny=0.1and B,, = 0.77

1
Case (v): Let vy, = 3 W= g

Therefore Ry = (0.00000458 + 3 + 0.1) (0.000007 + > +0.77)

= (0.00000458 + 0.3333 + 0.1)(0.000007 + 0.125 + 0.77)
= (0.43330458)(0.895007)

=0.3878<1
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Similarly, Ry < 1 for all the given range of values in all possible ways.

Remark 3.3. The basic reproduction number R, = 1 for all 1—14 < v, < g, 1—12 <, < %and

Brv » Bon > 0.77.
4. Conclusion

This study used graph theory to analyze the basic reproduction number (R,) of the Zika
virus and understand its spread through vector transmission. The basic reproduction number
R, in disease-free equilibrium is calculated as Ry= (A + vy + Buor) (A, + v, + Bry) and
analyzed with the range of parameters. This shows that the DFE is stable when R,< 1, implying
that the infection will die out in the long term. Conversely, if Ry, = 1, the disease may persist
or become endemic. The results showed how interactions between humans and vectors impact

the disease's ability to spread.
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Abstract

In this paper we discuss the condition that is antonym to the faithful of an N-group
in near-rings. This condition is named as unfaithful set of I'. We construct and proved the
properties for the unfaithful set of T'. Then we define unfaithful of I'. We then discuss the

properties of unfaithful of I with annihilator, faithful, nilpotent of near-rings and its N-group.

Keywords: N-group, faithful, annihilator, nilpotent.
2020 Mathematics Subject Classification (AMYS): 16Y 30
1. Introduction

The concept of near-rings was introduced by Dickson [2] in 1905. Near-fields were the
first near-ring founded. N-group is the analogue of the concept of a module in ring theory [3].
In this paper near-rings are the right near-rings and it is denoted by N and N-groups are the | eft
near-modules and the set is denoted by I'. In this paper the near-rings and N-groups that we use
are from Gunter Pilz’s “Near-Ring: The theory and its application” [3]. In this paper first we
define the unfaithful set of I'. The unfaithful set of I" isthe subset of N which satisfies equality
condition. In this paper we learn properties of the unfaithful set of I'. Based on the unfaithful
set of ' we define k-unfaithful of T'. The condition n*y = y;,k > 2and y,y, ETandn € N
in k-unfaithful isinspired from definition of (A,:A,) [3]. Here we prove results of k-unfaithful

with annihilator, nilpotent, faithful of near-rings and its N-group.
2. Preliminaries

Definition 2.1.[3] A near-ring is a non-empty set N together with two binary operations " + "
and " - " such that

a) (N, +)isagroup (not necessarily abelian)

b) (N, -)isasemigroup
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C) V nl, nz, n3 EN &JCh that (Tll + nz) * Tl3 == Tll * Tl3 + le * Tl3 (“I‘ight dlstrlbutlve laW”).
Class of al near-rings will be denoted by 7.

Definition 2.2. [3] Let (T, +) beagroup withzeroOand let N €z Let u: N xI' = I'. (I, +)

iscaled an N-group (near-module over N) if vy €T vn,n’ € N:

1L (n+n)y=ny+n'y.
2. (mn")y =n(n'y).

We write NT for the N-group.
Definition 2.3. [3]

a) A subgroup M of anear-ring N with M.MCcM is called a subnear-ring of N (M<N).
b) A subgroup A of NT with NA € A issaid to be an N-subgroup of T' (A <y I).

Definition 2.4. [3] Let N € 7. A normal subgroup I of (N,+) iscalledideal of N (I 2 N) if

a INCI.
b) foralln,n' € N and for alli € I such thatn(n' +i) —nn' €1.

Normal subgroups R of (N, +) with a) are caled right idealsof N (R <, N), while norma
subgroups L of (N,+) withb) aresaidto beleftidealsN (L <2; N).

Definition 2.5. [3] Let A;, A, besubsetsof NT'. (A;:A,) = {n € N| nA,< A;}. (0:A) iscalled
the annihilator of A and it is denoted by ann(A).

Definition 2.6. [3] N iscalled faithful if (0:T) = {0}.

Definition 2.7. [4] An dement y(# 0) € T is a nilpotent element with index k > 1 if there
exist aproper ideal I of N such that I¥y = 0 and I*~1y # 0.

Definition 2.8.[1] An N-group T isrigidif forall y € I',n € N and apositiveinteger k, n®y =
0 impliesthat ny = 0.

Definition 2.9. [3] n € N iscalled nilpotent if there exist k € N such that n* = 0.
3. Main Results

Definition 3.1. Let ' bean N-groupof N.Foral € Tand 0 #n € N ,theset{n e N/ ny =
v1, for anyy; € I'} = N/{0} iscaled the unfaithful set of T.
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Remarks 3.2.

% Theunfaithful set of I"iscontained in N.
% If I' = N then the unfaithful set of I' contained in T'.
% If I' = N then the unfaithful set of I" is not an N-subgroup of T.
For, additive identity element does not in the set.
% If I' = N and I isfaithful, then unfaithful set of I' contained in T.
% Theunfaithful set of I' does not form an additive group.
For, additive identity element does not in the set.
% Theunfaithful set of I is not a near-ring.
% Theunfaithful set of I" isasubset of N but neither a subgroup nor a sub near-ring of

N.

Theorem 3.3. If " isan N-group of N then the non-zero annihilator of T is contained in the

unfaithful set of T.
Proof. Let ' bean N-group of N.
To prove, non-zero annihilator of T' contained in unfaithful set of T.
Let take an element n(say) in the non-zero annihilator of T’
sinceann(l') = (0:T) ={n € N/ ny = 0}
>ny=0
= eithern=00ry =0
Sincen # 0,

y must be zero

>0=ye€erl
Wehaveny =0
>ny =Yy

>ne{neN/ny =y}
therefore, n belongsto the unfaithful set of T

Hence non-zero annihilator of I' contained in unfaithful set of T.
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Theorem 3.4. Every element of the unfaithful set of I' need not be an element of annihilator
of T.

Proof. Let n be an arbitrary element in the unfaithful set of T.
forally eTandn # 0,ny =y, foranyy, €T
Supposey; = 0
Now,ny =0
= n € ann(l)
Supposey; # 0
Now,ny =y,  foranynonzeroy, €T
= n & ann(l')
Hence every element of the unfaithful set of ' need not be an element of annihilator of T
Definition 3.5. An N-group I' of near-ring N is called k-unfaithful if for ally € T
there exist n* = 0 wherek > 2 suchthat {n € N/ n*y =y,, for any y, € '} = N/{0}.
Remark 3.6.

% If k < 2, then the definition issimilar to (A;: A,).

0,

< If y = n;, where n, istheidentity element of N under multiplication, then y; = n*.
Remark 3.7. If ' = N isk-unfaithful then the unfaithful set of I' contained in k-unfaithful.
Theorem 3.8. If the N-group I of N is k-unfaithful then N does not have a nilpotent element.
Proof. Let I' be an k-unfaithful N-group of near-ring N
Suppose N has a nilpotent element

Let n; € N bethe nilpotent element
=>nk=0 forkez*
which is a contradiction.

Hence N does not have nilpotent el ements.
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Theorem 3.9. If N has anilpotent element then every N-group I of N is not k-unfaithful.
Proof. Let I be an N-group of N
Given N has anilpotent element
Let n € N be anilpotent element
thereforen® =0 fork e Z*
By the definition of k-unfaithful, {n € N/ n*y = y,, for any y, € T'} # N/{0}
Hence I is not k-faithful.
Theorem 3.10. If an element 0 # y € I" isnilpotent. Then T is not k-unfaithful.
Proof. Let 0 # y be anilpotent element of T
Then there exists a proper ideal I of N suchthat I*y = 0 and I*'y # 0. [4]
If N has nilpotent element n(say)
then n® =
By definition of k-unfaithful, {(n € N/ n*y =y, for any y, € T} # N/{0}
I" need not be k-unfaithful.
Remark 3.11. If I does not have nilpotent element then I' need not k-unfaithful.
For, suppose near-ring N of T' has a nilpotent element.

Theorem 3.12. If T" isafaithful module of N where N has no nilpotent element then I is k-

unfaithful.
Proof. Let T be afaithful N-group of N where N has no nilpotent element
= (0:T) = {0}
= {n /ny = 0} = {0}
>5n=0
=>0=#n¢(0:I)
thereforeny # 0
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=S ny =y, forany 0 #y, €T
Since N has no nilpotent element, n* # 0
thereforen®y =y,, forany0 #y, €T
I isk-unfaithful.
Theorem 3.13. If I" isk-unfaithful then it need not be faithful.
Proof. Let I' be k-faithful

for ally € T there exist n*® # 0 where k > 2 such that

{n€N/ n*y =y, for anyy, € I} = N/{0}

= nky =y,, foranyy, €T
Supposey, =0
=>nfy =0

>n*=00ry=0
n* %0 since T isk-unfaithful
therefore y =0andn®* #0 =2>n # 0
= ny = 0,wherey =0andn # 0
Supposey; = 0andy # 0
Now, n*y =0
nk =0
Which is contradiction
Hence I need not be faithful.

Theorem 3.14. If I"isan N-group of N then every element of ann(T") does not belongs to k-
unfaithful of T.

Proof. Suppose every element of annihilator of T' belongs to k-unfaithful of T'.
Letn € ann(T)
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ny=0 forally€erT
n=0ory=0
Since every element of annihilator of I' belongs to k-unfaithful of T,
nk+0=>n+0,k>2
thereforey =0
Henceny =0, Inparticulary =0
Which is acontradiction
Every element of annihilator of I' does not belongs to k-unfaithful of T.
Theorem 3.15. If T"isrigid then it need not be k-unfaithful.
Proof. Let T bearigid
for ally € T,n € N and positive integer k,n*y = 0= ny =0 [1]
therefore eithern=0o0ry =0
ifn=0andy #0 =>n*=0
ify=0andn#0
Case (i) n* #0
nkf0 =y
Case (ii)n* =0
{n €N/ n*y =y, foranyy, € T} # N/{0}
Hence I" need not be k-unfaithful.
4. Conclusion

The unfaithful set of I and k-unfaithful of I are defined and their properties are

constructed and results are proved.
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Abstract

Let R be acommutative ring with non-zero identity. The gamma graph of y-setsin the
zero-divisor graph, I'(R) is the graph, y.(I'(R)) with vertex set D as the collection of all
y —sets of the zero-divisor graph, I'(R) and two distinct vertices D; and D, are adjacent if and
only if |D; N D,| = y(I'(R)) — 1, where y(I'(R)) denotes the cardinaity of y —set. In this
paper, we investigate gamma graph of zero-divisor graph of Z, X Z,, where p and q are

distinct primes and classify the graphs which are planar and toroidal.

Keywords. graph embedding, gamma graph, zero-divisor graph, planar graph
2020 AM S Classification: 05C10, 05C60, 05C69, 13A70

1. Introduction

In order to study the interplay between the algebraic structure of the given object and
the graph theoretic properties of the graph to which it corresponds, many different graphs have
been assigned to rings. Beck (1998) introduced a graph whose vertices are the elements of the
ring R and two distinct verticesx and y are adjacent if and only if xy=0. During 1999,
Anderson and Livingston slightly modified this idea, considering only the non-zero zero-
divisors of ring as vertices of the graph with the same adjacency condition and they named the
graph as zero-divisor graph, which is denoted by I'(R). A set S € V of verticesin agraph G
iscalled adominating set, if every vertex v € V is either an element of S or is adjacent to an
element of S. A dominating set S is minimal, if no proper subset of S is a dominating set.
The domination number y(G) of agraph G isthe minimum cardinality of adominating set in
G. Inagraph G, adominating set of cardinality y(G) iscalled ay —set. Let D bethe collection

of al y —setsin G. Thegammagraph of G, denoted by y. G, isthe graph with vertex set D and
165

ISBN: 978-93-48505-23-1


mailto:jenifercs30102000@gmail.com
mailto:nidhamaths@gmail.com

Proceedings of the Inter national Conference on Algebraic Graph Theory,
Graph Theory and Topology — 9" & 10" January 2025

any two vertices D, and D, are adjacent if |[D, N D,| = y(G) — 1. Let S, denote the sphere
with k handles, where k is a non-negative integer, that is, S, is an oriented surface of genus k.
The genus of a graph denoted by g(G), is the smallest integer n such that the graph can be
embedded in S,,. Intuitively, G is embedded in a surface if it can be drawn in the surface so
that its edges intersect only at their common vertices. A genus 0 graph is called a planar graph
and agenus 1 graph is called atoroidal graph. If H isasubgraph of agraph G, then g(H) <
g(G). Throughout this paper, G denotes the zero-divisor graph of R and y. G denotes the
corresponding gamma graph.

2. Preliminaries

Lemma2.1.[4] g(K,) = [W]

ifn > 3. Inparticular, g(K,) = 1ifn= 5,6,7.

Lemma2.2. [4] g(Kmn) = [W] ifm,n = 2. Inparticular, g(K;, ) = g(K3,) =1
|f n= 3, 4‘, 5, 6 Al% g(KSA-) = g(K6,4) = g(Km.3) = 2 |f m = 7, 8, 9, 10
Lemma 2.3. [7] If G isafinite connected graph with n vertices and m edges; then,

n-m+ f = 2 — 2g, where the graph is embedded upon a surface S, with genus k and f is
the number of faces created when G is embedded on Sj,.

Lemma 2.4. [7] If G isatriangle-free graph with n vertices and m edges, then

9@ = [Z-2+1].

Lemma 2.5. [6] Let G be a connected graph with n > 3 vertices, g edgesand genus g. Then
) 2 [2-2+1]

3.Genusof y.(I'(Z, X Zg))

Theorem 3.1. If R = Z,, X Z, , where p and q are distinct prime numbersand p,q > 3, then
y.G isaregular graph with (p — 1)(q — 1) verticesof degreep + q - 4.

Proof. Consider V(G) = {(1,0), (2,0), ..., (p — 1,0), (0,1), (0,2), ..., (0,g — 1)}.  Let X =
{(1,0),(2,0), ..., (p — 1,0)} € V(G) and Y = {(0,1), (0,2), ..., (0,q — 1)} € V(G). Clearly, X

andY forms abipartition of V(¢) and hence ¢ = K,,_; ;4
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Now, N((i,0)) = {(0,)H]j=1,2,..,q—1}, for every i =1,2,...,p—1. Thus
V(y.G) = {yilvi; ={({0),(0,))}, where i = 1,2,...,p—1 and j=1,2,..,q— 1} and
N(vij) = Vim» Vnjlm=1,2,...j—1,j+1,..,q—-1, n=12,...,i—-1,i+1,..,p— 1}

Hence |[V(y.G)| = (p—1)(g — 1D andd(y;;) =q-2+p-2 =p +q-4,forevery
iandj.
Theorem 3.2. Let = Z,, X Z,, wherep and g aredistinct prime numbers. Then g(G) = 0 if
and only if R is isomorphic to Z, X Z,, Z3 X Z,. Also g(y.G) = 0if and only if R is

isomorphicto Z, X Z,.

Proof. Assume g(G) = 0. Let R; = Zp; X Zq;, where p; and g; are distinct prime numbers

and G; be the corresponding zero-divisor graphs, wherei = 1, 2
Claim: If p; <p, and q; < g, then Gz is a subgraph of G2

Now, V(G,) = {(1,0),(2,0),...,(p; — 1,0),(0,1),(0,2), ...,(0,q; — D}and V(G,) =
{(1,0),(2,0), ..., (p1,0), (p1 + 1,0), ..., (p> — 1,0),(0,1), (0,2), ..., (0,41, (0,q1 +
1),..,(0,q, —1)}. Clearly, V(G,) € V(G,). Let X; ={(0,1),(0,2),...,(0,q; —1)} and
Y; = {(1,0),(2,0),...,(p; — 1,0)}. Notethat, Inthe graph G; every vertex in X; is adjacent to
every vertex in Y; and no two verticesin X; are adjacent and hence for Y;. Thus G; =
Kp;—1,q;, —1. Sincep, <p,,p1—1<p,—1 andhenceq; —1<q,—1. ThusG, isa
subgraph of G,.

Claim:p < 3orq < 3

Suppose hot, thenp > 3 and g > 3. Then zero-divisor graph G’ of Zs X Z, must be a

subgraph of G. Hence by lemma 2.4, g(G) = g(G") = [3—5—2+ 1] > 0, which is a

4 2

contradiction. Henceeither p <3 orq < 3.
Thus R isisomorphicto Z, X Zg or Zs X Zg .

Conversely, Suppose R isisomorphicto Z, X Z, or Z3 X Z4 then G isisomorphicto K, ,_4 or

K, q-1anditisclear that both graphs are planar. Thus g(G) =0

Now, Assume g(y.G) = 0. Let G;and G,be the zero-divisor graphs of Z; X Zs and
Zz X 1, respectively.
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Claim: y. G, isasubgraph of y. G,

V(y.Gy) = {{(1,0),(2,0)}, vijlvij = {(i,0),(0,/)}, wherei = 1,2and j = 1,2,3,4}and
(v-Gz) = {{(1,0),(2,0)},vilyij = {(i,0),(0,/)}, where i = 1,2and j =1,2,3,...,q — 1}.
Clearly, V(y.G;) € V(y.G,) and the graph induced by V (y. G,) is a subgraph of the graph
induced by V(y.G,). Thusy. G; isasubgraph of y. G,.

Let G," and G,' bethe zero-divisor graphs of Zs X Z; and Z, X Z;,p = 5and q = 7
Claim: y. G," isasubgraph of y.G,’

V(.G = {vilvij = {(i,0),(0,/)}, wherei = 1,2,3,4andj = 1,2,3,4,5,6} and
(v-G2") = {vijlvij = {(i,0),(0,/)}, wherei = 1,2,..,p—1andj= 1,2,..,g —1}. Since
V(y.Gy") €V(y.G,"),y.G," isasubgraph of y.G;.

Claim: Eitherp=2o0orq=2

Suppose not, thenp > 2and q > 2. Supposep = 3 andq = 5, R = Z3 X Zg by lemma
25, gly.G,) =2 gy.Gy = [%_3"' 1] >0, which is a contradiction to g(y.G) = 0.
Supposep = 5and = 7, R = Zs X Z,, by lemma 2.5, gly.G,) =

96 2

g(y.GH) = [;— 74 + 1] > 0, whichisacontradictionto g(y.G) = 0. Henceeither p=2or

q=2
ThusR = Z, X Z,
Conversely, SupposeR = Z, X Z,

y.G

[
v

Figure1

Theorem 3.3. If =7, X Z4, p < q, wherep and q are distinct prime numbers then thereis

noy.G withg(y.G) =1

Proof. By theorem 3.2, R cannot be Z, X Z, (q > 2). If R = Z3 X Z;,then by lemma 2.5,

48 1

g(y.G) = [Z - 73 + 1] > 1. From the proof of theorem 3.2, R cannot be Zz; X Z, (q = 7)
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andZs X Z, (9 > 5). Henceit is enough to check whether g(y.G) of R = Z3 X Zsis1or

not.
SupposeR = Zs X Zsg

y.G:

/iR

Figure 2

Consider thefacesof y.G in S;

o

(o]
o

)]

—
«
o

Figure 3
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Planar embedding of G'[V(y.G)-{u}]

Figure 4

Clearly, vertex u cannot be inserted in any faces so that N(a) = {b,c,d, e, f, g, h, i} without

crossing while embedding itin S;. Therefore, g(y.G) # 1.

Hence the proof.

Theorem 3.4. If R = Z, X Zy X ... X L, (k times), k > 4,theny.Gis K; ,andso g(y.G) =
0

Proof. Consider the following vertices of G,
v; = (1,1,1,...,0[i th],1, ...,1), b; = (0,0, ...,0,1[i th],0,..,0),
w; = (1,1,..,1,0[i th], 1,..,0[j th], 1, ...,1}
w;; = {(0,0,...,0,1[i th],0,..,0,1[j th], ...,0), where i,j = 1,2, ..., k
Clearly, N(v;) = {b;}, wherei = 1,2,..,k
N(b;) = {(0,a43,a43, ..., a1x)|a1j € Zp,j = 2,3, ..., k and a, ; cannot be Zero
smultaneously}, N(b,) = {(az1,0,az3, ..., azx)laz; € Zp,j = 1,3,...,kand a,;cannot be

zero simultaneously}, ..., N(by) = {(ak1,axz, ) Qxk-1), 0)laxj € Zp,j = 1,2, ...,k — 1 and

ax; cannot be zero simultaneously}, N(w;;) = {w;j, b;, b;}. Thus{by, b, ..., b }isay —set.
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Claim: Both v;, v;(i # j) cannot bein any y —set

Suppose not, then there exists a y —set (say) y’ such that v;, v; € Y, where i # j.
Without Loss of Generality, Let y' = {v4, vy, b3 ..., bi}. Now, N(uy,) = {wy,, by, by} anditis

clear that ¥’ is not even adominating set, which is a contradiction. Hence our claim.

ThUSthe)/ _%tsareyO = {bli bz, T bk}, )/1 = {Ul, bz, ey bk}, yz = {bl' vz, ey bk},

VK = {blin' LR bk—li vk}- Clear|y7 N(YO) = {yli Y2, ---1)/k} and N()/l) = {VO}’ Wherel =
1,2,..,k

Hencey. G is nothing but K; ,, whichisplanar. Thusg(y.G) =0

4. Conclusion

Through this paper, we have analysed gamma graph of zero-divisor graph of the ring
Z, X T,. Also, we have dealt with its embedding nature and found for those rings the gamma

graph of zero-divisor graph is planar and toroidal.
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Abstract

Let G = (V,E) be a simple graph. A set D € V(G) is a total outer-connected
dominating set of G if D is tota dominating, and the induced subgraph G[V(G) — D] is a
connected graph. Let P, bethe path and D, (P,, i) denote the family of all total outer- connected
dominating sets of B, with cardinality i. Let d;. (P, i) = |Dc(By, ©)|. In this paper, we obtain
recursive formula for d,.(P,, i). Using this recursive formula, we construct the polynomial,
Dic(Py,x) = ¥, dec (P, i)x* which we call total outer- connected domination polynomial of

P, and obtain some properties of this polynomial.

Keywords: Domination, Total outer- connected domination, Total outer- connected
domination number, Total outer- connected dominating set, Total outer- connected

domination polynomial.

2020 Mathematics Subject Classification (AMS): 05C69
1. Introduction

By a graph ¢ = (V,E), we mean a finite, undirected graph with neither loops nor
multiple edges. The order |V | and the size |E| of G are denoted by n and m respectively. For
any vertex v € V(G), the open neighbourhood of v isthe set N;(v) = {u € V(G)/uv € E(G)
and the closed neighbourhood of v isthe set N;[v] = N(v) U {v}. For aset S < V, the open
neighbourhood of SisN(S) =U,es N(v) and the closed neighbourhood of SisSN[S] = N(S) U
S.
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A dominating set of G isaset D € V(G) suchthat N;[V]n D +# @, for al v € V(G).
The domination number of G is the minimum cardinality of a dominating set of G and it is
denoted by y(G). Similarly, atotal dominating set of G isaset D < V() such that for each
v €eV(G), N;(v)ND # @. The tota domination number y,(G) of G is the minimum
cardinality of atotal dominating set of G.

The concept total outer connected dominating set isintroduced by J. Cyman. A pathis
aconnected graph in which end vertices have degree 1 and the remaining vertices have degree
2 and is denoted by B, [1].

Definition 1.1. Let G be asimple connected graph. A set D € V(G) isatotal outer connected
dominating set of G if D istotal dominating, and the induced subgraph G[V(G) — D] isa
connected graph. The total outer connected domination number of G, denoted by ¥,.(G), is

the minimum cardinality of atotal outer connected dominating set of G.

Definition 1.2. Let G be asimple connected graph. Let D, (G, i) denote the family of all total
outer connected dominating set of G with cardindlity i and let d,.(G, ) = |D;(G, ). Then

the total outer connected domination polynomial D,.(G, x) of G is defined as D,.(G, i) =

V(G
ZI()l

i=710(G) d..(G,i) xt, where 7,.(G) isthetotal outer connected domination number of G.

In the next section we study total outer connected dominating sets and total outer
connected domination polynomial of B,, which is needed for the study of total outer connected

domination polynomial of complete bipartite graph B,.

2. Total outer connected dominating setsand total outer connected
domination polynomial of P,
n, if n=1.2

Lemma?2l. Foreveryn € N, ¥,.(B) =<n—1, if n=345
n—2, if n=6

n/i 1 2 3| 4 5 6 7189|1011 |12|13|14|15
1 1

2 0 1

3 0 2 1

4 0 0 2 1
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5 0 0| 0] 3 1

6 0 0| O 1 4 1

7 0 0| 0| O 2 5 1

8 0 O 0] O 0 3 |16|1

9 0 0| 0| O 0 O |47 |1

10 0 0| 0| O 0 O |0]5(8]1

11 0 O 0] O 0 O 0|06 ]|9 |1

12 0 0| 0| O 0 O |0]0|0|7 |10 1

13 0 0| 0| O 0 O |0]0(0O|O0O] 8111
14 0 0| 0] O 0 O |0|0]0]O 12| 1
15 0 0| 0| O 0 O |0]0]0|O 0 |10|13|1

Table 1: d(P,, 15)
3. Total outer connected dominaton polynomial of P,,.

Definition 3.1. Let D,.(P,, i) bethe family of dominating sets of Path P, with cardinality i
and let d(P,, i) = |Dy.(P,, )|- Then the domination polynomial D,.(P,, x) of P, isdefined as
Dic(Pu) = Ty, AR D!

Lemma 3.2.

(i) Foreveryn > 4, D;.(P,,x) = x™ + (n — 2)x™ ! + (n — 5)x" 2

(ii) For every n > 6, Do (Py, x) = X[Dee(Pp—1,%)] + x™3[D¢c (P2, x) + Dy (P3, x)],

where D, (P,, x) = x?, Do (P3,x) = x° + 2x?

Theorem 3.2. The following properties hold for coefficients of Dy (P,, x):
(i) Foreveryn>4,d, (P,n—1)=(Pyy,n—2)+ (Pr_y,n—1)
(i) Foreveryn>6,d,.(P,n—2)=n->5
(iii) Foreveryn € N,d,.(P,n) =1

(iv) Foreveryn>4,d,.(P,n—1)=n-—2
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(V) For everyn = 6, dtc(Pn»n - 2) + dtc(Pn'n - 1) + dtc(Pn'n) =
[dtc(Pn—ljn - 3) + dtc(Pn—l'n - 2) + dtc(Pn—l'n - 1)] + 2

(vi) Foreveryn = 6,d,(Pps,n—1) +dpe(Pun—1)+d(Ppogn—1) =
[dtc(Pn'n - 2) + d~tc(Pn—1'n - 2) + d~tc(Pn—2'n - 2)] + 2

Proof. The proof follows from the table 2.1
4. Conclusion

This paper discusses and anal yses the total outer connected dominating sets of path and
total outer connected domination polynomial of path. Using recursive formula, we constructed

the polynomial D,.(P,,x) = d(P,, )xt, which we call total outer connected

n_
L=Ytc(Pn)

domination polynomial of B, and obtain some properties of the polynomial.
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Abstract

A bijective function f: V(G) = {1,2, ..., V(G) |} is considered a restricted Zumkeller
labeling of the graph G if the induced function f*: E(G) — N, defined as f*(xy) = f(x)f(y)
for al xye€E(G), yidds Zumkeler numbers. Similarly, a bijective function
frE(G) = {1,2,..,1 E(G) I} istermed arestricted edge Zumkeller labeling of the graph G if
the induced function f*:V(G) » N, defined as f*(v) = [luenw) f (uv)for al v € V(G)
(where N (v) represents the neighborhood of v), assigns Zumkeller numbers to all verticesin
V(G).

Keywords. Graph labeling; Zumkeller Numbers, Zumkeller labeling; Edge Zumkeller
labelling

2020 Mathematics Subject Classification (AMS): 05C78
1. Introduction

Graph labeling represents an engaging and evolving domain within graph theory, involving
the assignment of values, typically integers, to edges or vertices, adhering to specific
mathematical criteria. Originating in the mid-sixties, Alex Rosa [1] formally introduced this
concept. Gallian's comprehensive work [4] continuously gathers and revises previous labeling
schemes across various established graph families.

A positive integer n istermed perfect if it equalsthe sum of all its proper positive divisors,
denoted by o(n) = 2n, where o(n) represents the sum of positive divisors. This property has
fascinated mathematiciansfor centuries dueto its elusive nature and unique properties. In 2003,
the Encyclopaedia of Integer Sequences [8] delved into the concept of Zumkeller numbers,
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offering a broader perspective on perfect numbers. Initiated by R. H. Zumkeller, Zumkeller
numbers represent a fascinating extension of perfect numbers. These are positive integers
wherein the sum of their positive factors can be elegantly partitioned into two distinct sets of
equal sums, adding alayer of complexity and intrigue to the study of number theory. Theformal
introduction of Zumkeller numbers was attributed to Clark et a. [3], sparking further
exploration and analysis in subsequent studies, as documented in [7,9]. In 2013, Balamurugan
et a. introduced the notion of Zumkeller labeling [2], a concept deeply rooted in graph theory.
Zumkeller labeling isdefined asan injectivefunction f: V(G) = N, whereV (G) representsthe
vertices of a graph G, such that the induced function f*: E(G) = N, defined by f*(xy) =
f()f(y), yields a Zumkeller number for all xy € E(G), x,y € V(G). Furthermore, the
concept of edge-Zumkeller labeling was introduced by Linta K Wilson and Bebincy V M[6],
defining it as an injective function f: E(G) — N, where E(G) represents the edges of a graph
G. In this labeling scheme, the induced function f*:V(G) = N, defined by
f*@) = [luen@) f (uv)assigns a Zumkeller number for al v € V(G) (where N(v) represent
neighborhood of v). This elegant connection between number theory and graph theory adds a
new dimension to the study of both fields.

In 2019, Joshua and Wong [5] pioneered the concept of restricted super totient labeling of
graphs. Here, a super totient labeling of G is deemed "restricted" if the range of f is confined
totheset{1,2,...,IV(G)I}. Drawing inspiration from restricted super totient labeling, we further
devel oped the concept of restricted Zumkeller labeling of graphs, building upon the foundation
of Zumkeller labeling. Additionally, we introduced the notion of restricted edge Zumkeller
labeling of graphs, leveraging the framework of edge Zumkeller labeling.

2. Preliminaries

Definition 2.1. A positive integer n is said to be a Zumkeller number if the positive divisors
of n can be partitioned into two digjoint subset of equal sum.
Properties of Zumkeller Numbers
e If the primefactorization of even Zumkeller number n is kaflpé‘z pr'ﬁ{". Then atleast
one of k; must be an odd number.
e If nisaZumkeller number and p isaprimewith (n,p) = 1, then np' is Zumkeller for

any positive integer [.

178

ISBN: 978-93-48505-23-1



Proceedings of the Inter national Conference on Algebraic Graph Theory,
Graph Theory and Topology — 9" & 10" January 2025

e For any prime p # 2 and positive integer k with p < 2**1 — 1, the number 2%p isa
Zumkeller number.
e Letn = 2%pP beapositive integer. Then n isaZumkeller number if and only if

p < 2¥*1 — 1 and B is an odd number.

3. Restricted zumkeller labélling of graphs

Definition 3.1. Let G = (V(G),E(G)) be a smple connected graph. An bijective function
f:V(G) = {1,2,...,|V(G)|} issad to be restricted Zumkeller labeling of the graph G, if the
induced function f*: E(G) = N defined as f*(xy) = f(x)f(y) Zumkeller number for al xy €
E(G), x,y € V(G). A graph that admits restricted Zumkeller labeling is called a restricted
Zumkeller graph, denoted as RZG.

Example 3.2.

Figure 1. P, isarestricted Zumkeller Graph
Theorem 3.3. For n > 3, every spanning subgraph of a restricted Zumkeller graph is a
restricted Zumkeller graph.
Proof. Let G be a restricted Zumkeller graph. As we remove edges from G to get H, the
restriction of f to H isarestricted Zumkeller labeling for H. That is, H isarestricted Zumkeller
graph.
Theorem 3.4. Let H be a spanning subgraph of a simple connected graph G. If H is not RZG
then Gisnot RZG.
Proof. Suppose G be a simple connected graph and H is a spanning sub graph of G. H is not
RZG, then there exist at least one edge labled with non Zumkeller number. That edge aso in
G. Thus, G isaso not RZG.
Remark 3.5. Let H be induced sub graph of simple connected graph G. If H is nhot RZG then
G isneed not be RZG.
Example 3.6. For illustration consider the graph ¢ = C,®K; isRZG by given labeling. But
H = C, isnot RZG.
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: ] ¥
.

.

Figure 2. C,OK; isarestricted Zumkeller Graph
Theorem 3.7. Let n beapositiveinteger. Then, the complete graph K,, isarestricted Zumkeller
graph if and only if n=1.
Proof. Inthe case n=1istrivial. Further, the casen > 2 follows from the fact that the vertices
labeled as 1 and 2 must be adjacent, but the induced edge label 2 is not a Zumkeller number.
Theorem 3.8. Let G be a connected graph. Then G is restricted Zumkeller graph if
lV(G)| = 6.
Proof. Since G is connected, the degree of each vertex of Gis> 1. Let v, bethe vertex |abeled
asl. Then 2, 3, 4 and 5 are can not be labeled for adjacent vertices of v, because 2, 3,4 and 5
are not Zumkeller numbers. That is the first possibility of adjacent vertex of v, be 6. By the
definition of restricted Zumkeller labeling it easily follows that |V(G)| = 6, when G is
connected.
Theorem3.9. The complete bipartite graph K,,,, is not restricted Zumkeller Graph for any
positive integers mand n.
Proof. Consider Complete bipartite graph K,,,, with m +n > 6. We divide the numbers
1,23..,m+ninto 2distinct sets A and B withsizemand n. If 1 € A, then the set B contains
only Zumkeller numbers. Suppose 2p' € B where 1 is an odd number. The number p belongs
to Aor B. If p € A, then we get edge label as 2p'** which is not a Zumkeller number. Also if
p € B then we get an edge label as p, which is not a Zumkeller number. Both case we get
contradition. Thus, the complete bipartite graph K,,,,, isnot restricted Zumkeller Graph.
Corollary 3.10. For any n > 1, star graph K;,, can not admits restricted Zumkeller labeling.
Theorem 3.11. For any positive integer n, the wheel graph W, isnot RZG.
Proof. The star graph K, ,,_; isthe spanning sub graph of wheel graph I¥,. Using Theorem 3.4.
and corollary 3.10. we get the result.
Theorem 3.12. For any positive integer n, the fan graph F, is not RZG.
Proof. The star graph K; ,,— is the spanning sub graph of fan graph F,. Using Theorem 3.4.
and corollary 3.10. we get the result.
Theorem 3.13. For any positive integer n, the friendship graph Fr, is not RZG.
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Proof. The wheel graph W, is the spanning sub graph of friendship graph E,. Using Theorem
3.4. and Theorem 3.12 we get the result.

Theorem 3.14. For any n > 2, bistar graph B,, ,, admits restricted Zumkeller labeling.

Proof. The vertex set of B,,,, isV(B,,) = {v;,u;: 0 <i < n} and the edge set of B, ,, is
E(Bnn) = {voug, VoV, uou;: 1 < i < nj.

Definethebijectivefunction f:V(G) = { 1,2,...,|V(G)|}asfollows. Fix f(vy) = 6, f(u,) be
the largest number of the form 2% where k is a positive integer, f(v;)=1 or the number of the
form 2% (where k is positive integer) or p?/ (where j is positive integer and p is prime
number n > 3) and its multiples and f(u;) = 3%/~ (where j is positive integer) and its
multiples. Leftover vertices take remaining numbers randomly. Now we cal cul ate the induced
edge labels.
fr*(Wouy) = f(vy)- f(u,) = 6.2k = 27{k + 1}.3 isaZumkeller number.

[ Wovy) = f(v,). f(v) ={6.1=6 6.2k = 2k+1.3 m.p?.6 =
m.2.3.p%  (wheremis positiveinteger.)
Fruouy) = f(v,). f(u;) = 2%.n.32+1 (wherenis positive integer.)

Now we consider remaining vertices. For the case of v;, Clearly 3 is not a divisor of these
labels, f*(v,v;) = f(v,). f(v;) = 2.3. f(v;), which are Zumkeller numbers. In the case of u;,
thereisan odd prime (n > 3) have odd power isafactor then f*(u,u;) = 2%. f(u;), which are
Zumkeller numbers. Clearly all edges labeled as Zumkeller numbers. Thus, bistar graph B, ,,
admits restricted Zumkeller labeling.

Example 3.15.
.‘-\. -]
Lo 2
= - L m
=
vy gt o
N ] :.t-b.- o, _'_.I.' ]
IR = ! = ~TE
i A0 — }: ﬁ:— ] -l
- E _‘::__:__-' = '_:-.';' s ® it
T s . = |
A, o
| = e
L Cwop
Hlow M‘“I P |

Figure 3. By, 11 isarestricted Zumkeller Graph
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Theorem 3.16. For any n > 5, jellyfish graph J,, ,, admits restricted Zumkeller [abeling.
Proof. The vertex set of J,, , isV(Jpn) = {w,v,,w,x} U{v;,u;: 1 <i < n} and the edge set
Of Jun iISE(Jun) = {vv,uu;: 1 < i < n} U {vw, wu, ux, xv, wx}

Define the bijective function f: V(G) - { 1,2,...,|V(G)|} asfollows. Fix f(v) =6, f(w) =
10, f(x) = 14 and f(u) be the largest number of the form 2% where k is a positive integer.
Theremaining vertices are labeled same asin B4 1.

Now we calculate the induced edge |abels.

f*(vw) = f(v). f(w) = 6.10 = 22.3.5, which is Zumkeller number.

fr(wu) = f(w). f(u) = 10.27{k} = 2¥*1.5, which is Zumkeller number.

fr(ux) = f(u). f(x) = 2°{k}.14 = 2¥*1. 7, which is Zumkeller number.

f*(vx) = f(v). f(x) = 6.14 = 22.3.7, which is Zumkeller number.

f*(wx) = f(w). f(x) = 10.14 = 22.5.7, which is Zumkeller number.

Using same argument in Theorem 3.14., we can show that all edge labels are Zumkeller

numbers. Thus, the graph J, ,, admits restricted Zumkeller |abeling.

Example 3.17.
- i -
-
o o~ - - -
o . . -
._.-'__ [T ""F".\:-:_ :.
s s F b i "
15 i Y ' e ol e “TL T
= %] ol = Lot : -
- , z
B R oy T N
|5 - w | T
-
15 = LR -

Figure4. J, ; isarestricted Zumkeller Graph

Theorem 3.18. For any n > 1, the corona P; © Kn admits restricted Zumkeller 1abeling.

Proof: The vertex set of Py O Ky, isV (P3 o) &) = {v;,u;,w;: 0 < i < n} and the edge set of
P; O Ky ISE(P; O Kn) = { ugvg, VoWo, UgU;, VoV;, WoW;i 1 < @ < n}.

Define the bijective function f:V(G) — { 1,2,...,|V(G)|} asfollows. Fix f(uy)=3, f(v,)=the
largest number of the form 2% (where k is a positive integer), f(w,) = 6, f(u;) =the number
of the form 2/ (wherej is positive integer), f(v;) = 3%/~ (wherej is positive integer) and its
multiples and f(w;) = 1 or p?/ (wherej is positive integer and p is prime number n > 3)

and its multiples . Next we label u; with leftover even numbers.
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Also, left over odd numbers of theform m.3% — 2 or n. 3%/ — 1 labeled asv; and m.3%/ — 2
orn.3% —1 labeled asw;.
Now we calculate the induced edge |abels.

fr(uovo) = f(ug). f(vo) = 3.2F =2%.3

F*(Wowo) = f (o). f(wp) = 2k.6 = 2k+1.3
fr(uow) = f(uo). f(w) =3.2/ =2/.3
f*(wovy) = f(vo). f(vy) = 2. m. 3271
frwowy) = f(wy. f(w;) ={6.1 =6 6.1n.3%) = 2.n.3%/+1

Next we go through remaning even numbers that is f(u;) =2.m, then
f (uwoui) = f(up). f(u;) = 3.2.m, which are Zumkeller numbers. Finaly we go through
remaining odd numbers. First we consider f(v;) = m.3% — 1 or n.3%/ — 2, the edge labels
ae fr*(vovy) = f(ve). f(v) =2 m.3% —1 or 2¥.n.3% — 2, is Zumkeller numbers
because m and n contain at least one odd prime other than 3. Next we consider
f(w)=m.32 -2 or n.32 —1 the edge entries are f*(wow;) = 6.m.3%"1 —1or
6.m.3%~1 — 2, is Zumkeller numbers because 3 is not a factor of m.

Here we show that all edge labels are Zumkeller number. Thus, the graph the corona P; © Kn
admits restricted Zumkeller labeling.

Example 3.19.
1 l.' S TR T
- .. 4 _“‘ . ! ‘. 14
2 % » 22 SR / p 23
. 2 a » o B, »
.- (e8] T P
PR \| /S NE
1t ) e [ J
L 3 ! . )
Ok H
FIVSON LR
y \ N 4
Ot N
S o B o
p SRR 5
' . ‘. . ‘I"O
. a 21

Figure 5. P; O K7 isarestricted Zumkeller Graph

4. Restricted edge Zumkeller labeling of the graphs

Definition 4.1. Let G = (V(G),E(G)) be a graph. A Dbijective function
frE(G) = {1,2,...,|E(G)|} issaidto berestricted edge Zumkeller labeling of the graph G if
the induced function f*:V(G) - N defined as f*(v) = [[yenq) f (uv)assigns a Zumkeller
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number for al v € V(G) (where N(v) represent neighborhood of v). A graph that admits
restricted edge Zumkeller labeling is called arestricted edge Zumkeller graph.

Example 4.2.
1350
o —R
J L) /

1008 t;;{, 23000 7,
N 2] '
TN~ 1]

o W e ()
AN 418}
o g NI
\"f Hf o
o 60 9
{ ).\ 2V _,..\-
S x3 | /
'_i

)4

Figure 6. Peterson graph is arestricted edge Zumkeller Graph

Theorem 4.3. Any graph G with isolated vertex is not arestricted edge Zumkeller graph.
Proof. It easly follows from the definition of restricted edge Zumkeller graph.

Remark 4.4. Let G be restricted edge Zumkeller graph. Then sub graph of G need not be
restricted edge Zumkeller graph.

Example 4.5. For this graph removing the chord edge we get cycle C is not restricted edge
Zumkeller graph

.-'.-"\-II
28 ' ¢
" L |
1] L
S
|1
24
Figure 7

Remark 4.6. Let H be sub graph of simple connected graph G. If H is REZG then G is need
not be REZG.

Theorem 4.7. Let G be asimple graph with p pendent vertices. Then G is REZG if cardinality
of Zumkeller number < |E(G)| isatleast p.
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Proof. By the definition of restricted edge Zumkeller labeling of graph al pendent vertices
labeled by Zumkeller numbers and the function is bijective this is only possible when
cardinality of Zumkeller number < |E(G)| isatleast p.

Corollary 4.8. For any n > 1, star graph K;, can not admits restricted edge Zumkeller
labeling.

Proof. For star graph K; ,, has n pendent vertices and n edges. Using theorem 4.7 we get the
result.

Corollary4.9. For any n > 3, helm graph H, can not admits restricted edge Zumkeller
labeling.

Proof. It is easily from theorem 4.7.

Theorem 4.10. Let G be a simple graph. Then G is restricted edge Zumkeller graph if
|E(G)| = 6.

Proof. Suppose |E(G)| = 5. If G contain pendent vertices, then G isnot restricted Zumkeller
graph. That is every vertices have degree > 2. The only possible labels of incident edgesin
vertices are1.2.3,1.3.4,1.4.5, 2.3, 4.3 and 4.5. If we draw with these as verticeswe get parallel
edgein graph. Thus, G isrestricted edge Zumkeller graph if |E(G)| = 6.

Theorem 4.11. The path P, cannot be REZG if n > 35.

Proof. Thegraph P, beapath hasvertexsetV(P,) = {v;:1 <i <n}andedgeset E(B,) =
{viviy1: 1 < i < n— 1}. Weknow that path graph has two pendent vertices namely v; and v,,.
Thus, B, isnot REZG if n < 12. For any nthereis [g] odd numbersand [gj even numbers. Both
end vertices are Zumkeller numbers. Also 945=3"3.5.7 is the least odd Zumkeller number.
Then the possibility of 2 odd numbers put adjacent in restricted edge Zumkeller labeling is
27.35. Thus, the path B, iSREZG if n > 35.

Theorem 4.12. For n > 3, thewheel graph W, iSREZG.

Proof. Thegraph W, hasvertex set V(W,,) = {v;: 0 < i < n}and edge set E(W,) =
{vovi, vivi;1:1 < i < nk

Define an bijective function f: E(G) = {1,2,...,|E(G)|} asfollows

f(wovy) = 2i 0<i<n
f(vvy) =3
f(wavs) =1

fwviy1) =2i+1 3<i<n

Then by the definition of f we obtain the induced function f* asfollows:
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F*(vo) = 1_[ 2i = 2n.n!
f*(v) =231=6
f*(vy) = 1.4.5 = 20$
(v = (2i — 1).2i.(2i + 1) = 2i(4i®> — 1)
Using properties of Zumkeller numbers we get all vertex labels are Zumkeller numbers.

Thus, the wheel graph I, admits restricted edge Zumkeller labeling.
Example 4.13.

Figure 8. W, isarestricted edge Zumkeller Graph
5. Conclusion
This study introduces and exploresthe concept of restricted Zumkeller labeling for both
vertices and edges of a graph. The restricted vertex Zumkeller labeling assigns a bijective
function to the vertices, ensuring that the induced edge labeling satisfies the Zumkeller number
conditions. Similarly, the restricted edge Zumkeller labeling defines a bijective function for
edges that leads to Zumkeller numbers for all vertices in the graph when considering their
neighborhoods. These new labeling approaches contribute to the broader understanding of
graph labeling theory and may offer potential applicationsin network design and optimization.
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Abstract

Let G beagraph with p vertices and q edges. Define abijection f:V (G) - {1,8, ... ... ,
p(3p—2)}tby f (v;) =i(3i—2) for every i from 1 to p and define a 1 — 1 mapping
f opgi: E(G) — set of naturad number N such that f *(uv) = |f (u) — f (v)| for al edges
(uv) € E(G). The induced function f is said to be octagonal prime graceful labeling if the

gcin of each vertex of degree atleast 2 isone.

Keywords. Graceful labeling, Prime graceful labeling, Octagonal graceful labeling,
Octagonal prime graceful labeling,

2020 Mathematics Subject Classification (AMS): 05C78

1. Introduction

Numbers of the form 0,, = n(3n — 2) for al n > 1 are called octagonal numbers.
Octagonal graceful labeling on some graphs is studied by S. Mahendran and it is defined as
follows: Let f:V (G) = {0,1,2,...,M,} where M, is the ¢q‘* octagonal number be an
injective function. Define the function f*:E(G) — {1,8,...,M,} such that f*(uv) =
|f (w) — f (v)| for dl edges uv € E(G). If f*(E(G)) is a sequence of distinct consecutive
octagonal numbers {My, M,,..., M}, then the function f is said to be octagonal graceful

labeling [7] and the graph which admits such alabeling is called a octagonal graceful graph. In
this paper we discussed the octagonal prime graceful labeling of some graphswith illustrations.

2. Preliminaries

Definition 2.1. [2] The Jelly fish graph J(m, n) is obtained from a4 — cycle vy, v,, v3, v, by
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joining v; and v5 with an edge and appending m pendent edges to v, and n pendent edge to

Vy.

Definition 2.2. [8] A double fan graph F, ,, is defined as the graph join K, + B, where K is
the empty graph on two vertices and B, be a path of length n.

Definition 2.3. Thejoint sum of two graphs G; and G, isthe graph obtained by joining avertex
of G, with avertex of G, by an edge.

Definition 2.4. Let the graph G, and G, have digoint vertex setsV; and V,, and edge sets E; and

E, respectively. Then their union G = G, U G, is a graph with vertex set V =V, uV, and
edgeset E = E; U E,. Clearly, G, U G, has p; + p, verticesand q; + q, edges.

3. Main results
3.1. Octagonal Prime Graceful Labeling of Some Special Graphs
Theorem 3.1.1. The Jelly fish graph J(m, n) [2] isan octagonal prime graceful for m,n > 1.

Proof. Let J(mm,n) be the Jelly fish graph with m + n + 4 vertices andm + n + 5 edges.

Without loss of generadlity let usassumen > m.
Let V(G) and E(G) be the vertex and edge set respectively.
ThenV(G) =V, UV, UV,
={xyuviu{y:1<i<mjufy:1<j<n}ad
E(G) = E, UE, UE;
= {xu,wy,yv,vx,xy} U{uy; : 1 < i < mjU{y;:1 <j < nj}
Definef : V (G) - {1,8,...,p(3p — 2)} by
f@) =0yf@)=0f(x)= 03f () =0,
fu—m)=1i3i — 2),for5 < i <2m
fw-=2m)=i(3i — 2),for2Zm + 1 < i < 3n
The edge labels are given by

f opgr(xv) = f () = f (V)
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f opgrxw) = f (x) = f (W)

f opgtw) = f ) = f (W)

f opgrv) =f () = f (v)

f opgr(ui —3u) =3i* + 4i,for4 < i < 2m — 1

fopgiwiv) = f W) = f (W), for1 < i <n

Clearly f 5pg: isaninjection and f induces the function f ¢, ;, on E(G) such that
f opgt wv) = |f (W) = f (W)I.

Also the gcin of each vertex of degree greater than oneis 1. Therefore f admits
octagonal prime graceful labeling.

Hence the Jelly fish J(m, n) is an octagonal prime graceful graph.

Example 3.1.2. Octagonal prime graceful labeling of graph Jelly fish (4, 4) is shown below.

a5 z

1

P

Al

I
ot
B
Eh

Figure 1: Octagonal prime graceful labeling of Jelly fish j (4, 4)
Theorem 3.1.3. The double fan graph F, ,, [8] is an octagonal prime graceful graph.
Proof. Let F, ,, be adouble fan graph.
ThenF, , hasp = n + 2 and ¢ = 3n — 1 number of vertices and edges respectively.

(€@ p=IV(Fp)l=n+2andq = [E(Fy,)| =3n—1
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LetV (F,,) ={v,u,v;: 1 < i < n}and
E(F,n) ={uvi,vv;: 1 < i < njfU{yv:1 <0 <n— 1}
Defineafunction f : V (F,,) — {1,8,...,p(3p — 2)} by
f)=3i*=2i,forl1 <i<n
f W) = Opyq and f (V) = Opy
The edges of F, ,, arelabeled in such away that
f opgi(Vivisg) =6i+ 1, forl < i <n—1
f opgruvy) = f (W) =0, forl < i < n
fopar(Wv) =f (W) = Opfor1 < i < n
Clearly f ;41 ISaninjection and f induces the function f 5., ;, on E(F; ,) such that
fopar ) = If W = f )|,
Also the gcin of u = gcd of edges incident on u
= gcd{uv;/1 < i < n}=1
gcin of v = ged of edgesincident on v
= gcd{vy;/1 < i < n}=1
gcin of v; = gcd of edgesincident on v;
=1
Hence the gcin of each vertex of degree atleast 2 isone.
Therefore f admits octagonal prime graceful labeling.

Hence the double fan F, ,, is an octagonal prime graceful graph.
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Example 3.1.4. Octagonal prime graceful labeling of graph F, ; is shown below.

1331/ 10
iy

Figure 2: Octagonal prime graceful labeling of F, ,

Theorem 3.1.5. The graph (P, U mK;) + N, [2] isan octagonal prime graceful graph for

m < 4.
Proof. Let G = (P, UmK;) + N,
Then G hasm + 4 verticesand 2m + 5 edges respectively.
Letx,y,u,vand vy, v,,..., v, bethevertices of G.
LetV (G) =V, UV, U Vs
={x,y} U{y,v} U{v;: 1 < i < m}and
E(G)=E, UE, UE;
={x,y} U{xu,xv,yu,yv} U{uv; : 1 < i < m}Ufvy;: 1 <i < m}
Defineafunction f : V (G) - {1,8,...,p(3p — 2)} by
f@)=0yf@)=0,f(x)=03f () =0,
fW)=0izmforl <i<m
The edge labels are given by
f opgrxw) = f (x) = f (W)
f opgr(xv) = f (%) = f ()
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f opgryw) =f ) — f (W)

f opgtOYV) =f () = f (v)

f opgr(vin) = f (v;) — f (w)

f opgi(viv) = f (vi) = f (v)

Clearly f 5pgi isaninjection and f induces the function f ;,,,; on E(G) such that

f opgruv) = If (w) = f (W)I.

Also the gcin of each vertex of degree atleast 2 is one.

Therefore f admits octagonal prime graceful labeling.

Hence the graph (P, U mK;) + N, isan octagonal prime graceful graphform < 4.

Example 3.1.6. The octagonal prime graceful labeling of (P, U 4K;) + N, isshown below.

y
176G

Figure 3: Octagona prime graceful labeling of (P, U 4K;) + N,

Remark 3.1.7. The graph (P, UmK;) + N, [2] is octagona graceful but does not admits an
octagonal prime graceful labelingfor m > 5.

Proof. The graph (P, UmK,) + N, is octagona graceful but not octagonal prime graceful
graphform > 5.

Thisis shown below by afigure (P, U 5K;) + N,
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Figure4: (P, U5K;) + N,

Here gcin of vertex vs = ged {224,217} # 1
4. Application

Graph theory finds its application in various fields such as coding theory, radar,
astronomy, security designs, missile guidance, communication networks, X-ray
crystallography, and database management [3]. Nowadays, it is widely used in the medical
field also. The application of graph theory has not yet found its way into dental application
which could help the dentist to plan the treatment easily. Suitablelabeling is applied on agraph
to represent the given sample in asimple way. When graph theory is used to depict the dental
arch, it, inturn, givesavisual ideawhich would be easier to anal yze than the standard formul as.
The geometrical representation of graph structure provides a powerful aid for visualizing and
understanding dental arch form. The octagona prime graceful labeling of graph serves as
models whether the patient has spacing or crowding. The variations can be used to predict if
arch expansion is needed as a part of the treatment for correcting the malocclusion [5].
Determination of the need for arch expansion in orthodontics using graph labeling and graceful
labeling of dental arch and the application of different types of graph labeling in dental arch
structure have been studied by P. Lalitha, M. Gayathri, L. Tamilselvi, A. V. Arun[4].

5. Conclusion

In this paper we discussed the octagonal prime graceful labeling of some special graphs
and the octagonal prime graceful labeling of join of two graphs. Also we have discussed the
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application of octagonal prime graceful labeling in the field of dentistry. A possible direction
of future research isto investigate the octagonal prime graceful labeling of other graphs.
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Abstract

Let G = (V,E) beasimple graph. A connected dominating set S of V(G) is a secure
connected dominating set of G if for eachu € V(G)\S, thereexistsv € S suchthat uv € E(G)
and the set (S\{v}) U {u} is a connected dominating set of G. The minimum cardinality of a
secure connected dominating set of G, denoted by y,.(G), is caled the secure connected
domination number of G. Let K, ,, be the complete bipartite graph and let Dy, (K, ,, i) denote
the family of all secure connected dominating sets of K ,, with cardinality i. Let dg (K, i) =
|Dgc (Ko, 1)|. In this paper, we obtain recursive formulafor dg (K, , i). Using this recursive
formula, we construct the polynomial, Dy, (K, 5, x) = Y52 (ko) Fsc (K, D)x* which we call
secure connected domination polynomial of K,, and obtain some properties of this
polynomial.

Keywords: Domination, Connected Domination, Secure Connected Domination Number,
Secure Connected Dominating Set, Secure Connected Domination Polynomial.
2020 Mathematical Subject Classification (AMS): 05C69

1. Introduction

Let G = (V,E) beagraph with no self loops and no parallel edges. The order and size
of the graph is denoted by |V (G)| and |E(G)| respectively. For any vertex v € V, the open
neighborhood of v istheset N(v) = {u € V:uv € E} and the closed neighborhood of v is
the set N[v] = N(v) U {v}. For aset S < V, the open neighbourhood of S is N(S) =
Uy es N(v) and the closed neighborhood of S is N[S] = N(S) US.A st S € Visa
dominating set of G, if N[S] = V, or equivaently, every vertex inV — S isadjacent to atleast

onevertex in S. The dominating set S is said to be a connected dominating set if the subgraph
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(S) induced by S isconnected in G. A connected dominating set S of IV (G) isasecure connected
dominating set of G if foreachu € V(G)\ S, thereexistsv € S such that uv € E(G) and
theset (S\{v}) U {u}isaconnected dominating set of G. The minimum cardinality of asecure
connected dominating set of G, denoted by y,.(G), is called the secure connected domination
number of G. The study of secure connected domination in graphs was initiated by Amerkhan
G. Cabaro, Sergio S. Canoy, Jr. and ImeldaS. Aniversario[1]. Let K, ,, bethe complete bipartite
graph with n + 2 vertices. Let D, (K, i) denote the family of all secure connected
dominating sets of K, ,, with cardinality i and let dgc(K; , i)= | Dsc(Kz,p, i) |- The polynomial,
Dsc (Ko X) = X157 (i, ) dsc(Kzn, D)x' which we call secure connected domination
polynomial of K ,,.

2. Secur e connected dominating sets of K,

Theorem 2.1. y,.(K,,) = 3,n € N.
Proof. Let K, ,,, n = 1 be the complete bipartite graph with n + 2 vertices and 2n edges.
By the definition of secure connected dominating sets, every secure connected dominating
of K, must contain atleast three vertices, that is., the minimum cardinality is 3.
Therefore, ys.(Kyn) =3,n €N,
Theorem 2.2. For al n € Z*, Dy (Kyp,i) = @ if andonlyif i >n+2ori < 3.
Proof. Since the minimum cardinality of the secure connected dominating set of K, ,, is 3, there
cannot exists a set with cardinality less than this minimum cardinality.
Hence, Dy, (Ky, i) = @ if i < 3.
Also, since K, ,, contains n + 2 vertices, there cannot exist a secure connected dominating
set with cardinality greater than the number of vertices of the graph.
Hence, Dy (Ko i) = @ ,if i >n + 2.
Theorem 2.3. Let K, ,, be the complete bipartite graph with n + 2 vertices, then
n, ifi=3,n=3
dye(Kpmi) =4 (1p)r if3<isn,
(™), ifi>n
Proof. Let K, ,,n = 1 be the complete bipartite graph with n + 2 vertices. Let v;, v, € V be
the vertices with degree n and vs, v,, ..., v, 4, be the remaining vertices.
For the construction of secure connected dominating sets, the set must contain v; and v, if

3<i<n.
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If vy & Dgo(Kyn, i) O vy & Dge(Kpp, i) OF {vy, v, & Dyc(Kyp, i), then the resultant set will
never be a secure connected dominating set.

Now, for i = 3, K, ,, contains ‘n’ number of subsets which includes v; and v,.
Therefore, dg. (Ko p, i) = nifi = 3.
For 3 < i <n,K,, contains (,",) number of subsets which includes v; and v,.
Therefore, dy. (K, n, i) = ([",) if3 <i<n.
For i > n, K, ,, contains (“;’2) number of sets, that are all secure connected dominating sets.
Therefore, dsc(Kyn i) = ("7%) ,if i > n.
Hence, the proof.

Remark 2.4.
() dsc(Kzn i) = dse(Kyn_q,i) + 1foradln>2andi = 3.
(i) dsc(Kom i) = dse(Kon-1,i) + dsc(Kzpp1,i — 1), for3<i<nandi =n.
(i) dsc(Kon i) = [dsc(Kon-1,i) + dsc(Kop_1,i — 1)] = 2, for i = n.

Proof.
(i) Fromthetable, itisobviousy

dsc(Kon, i) = dse(Kopoq,i) + 1 foraln > 2 and i = 3.
(i) Fromthetable, for3 <i<nandi >n
D+ =00
= dge(Kpno1,i — 1) + dsc(Kzn-1,i) = dsc (Ko, 1).
(iii)Also from thetable, fori = n
() + (N -2=(0)

= [dsc(KZ,n—lii - 1) + dsc(KZ,n—lf l)] —2= dsc(KZ,nr i)-

[ 112 |3 4 5 6 7 8 9 10 |11 |12 |13
2,n

21 |0 |0 |1

22 |0 |0 (4 1

23 |0 |0 (3 5 1

24 |0 (0 (4 6 6 1

25 |0 |0 (5 10 |10 |7 1
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26 ([0 |0 |6 15 |20 |15 8 1

27 |0 |0 |7 21 |35 |35 21 9 1

28 |0 [0 |8 28 |56 |70 56 28 10 1

29 |0 [0 |9 36 |84 |126 |126 |84 |36 11 |1

2100 |0 |10 |45 |120|210 | 252 |210 |120 (45 |12 |1
21110 [0 |11 |5 |165|330 |462 [462 (330 (165 |55 |13 |1

Table 1 ds (K3, i), the number of secure connected dominating sets with cardinality i
3. Secur e connected domination polynomial of K,
Definition 3.1. Let Dy, (K35, i) denote the family of all secure connected dominating sets of
K, with cardinaity i and let dg.(Kyn, i)= | Dsc(Kzn i) |. Then the secure connected
domination  polynomial  Ds.(Kyn,x) Of K,, is defined as, Ds(Kyn x) =
o o Asc (K2 £), Where ygc (K ) is the secure connected domination number of K .

Theorem 3.2. D.(Kyn, x) = [(1+X)Dge(Kyn_q,x)] — 2x™ + x3, with the initia value
Dy (Koz,x) = x* + 4x5.
Proof. We have, Dy (K, x) = X122 dyo (Ko, 1)

= dye (Ko, 3)x% + X2 dge (Ko, i)

=nx® + N2 Ao (Ko, 168 4 Yicn dse (Ko, 1)

=nx® + N1, dg (Koo 1, 0) + dge(Koog, i — 1)]xE +
2i=n{ dsc(KZ n—1, i) + dsc(KZ n-1l— 1)] — 23!
=nx® + Y [dsc(Kzn-1,1) + dsc(Kzn-1,i — 1)]x" +
dsc(Kzn-1,n)x™ + dgc (Ko 1, n — 1)x™ — 2x™

= nx® + X2 dse (Kono1,1) + dsc(Kpno1, i — 1)]xt — 2x™

=nx® + X2 ds (Ko, )xt + X2 doo (Ko g, i — 1)xt — 24T
Consider,
Y dsc(Kon1,1)x" = X5 dse (Ko o1, 1)x" — dse (Ko -1, 3)%°

= X5 dse(Kpn-1,1)x" — (n — 1x®
= Dsc(Kop-1,%) — (n = 1x®

Again consider,

Zn+2 dsc(KZ n-— 1, 1)x =X 2n+2 dsc(Kz,n—lf [ — 1)xi_1
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= x Y doo(Kppoq,i)xt
= xDg, (szn_l,x)
Now,
Dgc(Kop—1,%) = nx3 + Dy (Ko 1, %) — (n — 1)x® + xDsc(Kppo1,x) — 2x™
= Dy (Kyp,x) = [(1 + x)Dsc(Kg 1, x)] — 2x™ + x5,
Remark 3.3. Dy (Ko, x) = [E152(,7,)x" + (725)x'] + 2x™+!

Theorem 3.4. The coefficients of Dy, (szn, x) possess the following characteristics:
(i) dsc(KZ,n' 1) = dsc(KZ,n' 2) = 0.

(i) dsc(Kznn + 2) = 1, for every n.
(iii)dsc(Kznn+1) =n+ 2, forevery n > 2.

(lV) dsc(KZ nn ) -

n(n

for everyn > 3.
2_
(V) dse(Kzmmn—1) = w for every n > 4.
3_ 2 —
(i) dye(Kppm — 2) = 2 6"2:11" © for everyn > 5.

(vii) dsc(Kon i) = dsc(Kopn_i—1,1), forevery 4 < i < n.

Proof.
(i) Since every secure connected dominating set must contain atleast 3 vertices, we have
dsc(KZ,n' 1) = dsc(Kz,n'z) =0
(i) Since dg.(Kyn,m + 2) = [n + 2], we have the result.
(ii)We have, dsc(KZ,n'n + 1) ={[ln+2]—{x}/x € [n+ 2]}
Therefore, d. (Ko + 1) = n + 2, for every n > 2.

(iv) To prove dge(Kp o m) = n(n-1)

, for every n > 3, we apply induction on n.
Whenn = 3, LHS = dy.(K,3,3) = 3(from the table)

RHS =-x3x2=3
Therefore, LHS = RHS

Now, suppose that the result istrue for all numbers lessthan n and we proveit for n.

We have, dSC(KZ,nl n) = dSC(KZ n_l,n) + dSC(KZ n-onN— 1) -2

n(n 1)

=n+1+4+-=- x(n—l)x(n—Z) >

n(n

Hence, dy.(Kyn n) = ) for every n > 3.
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2_
_nn 23n+2), for every n > 4, we apply induction on n.

(v) Toprove dg (Kypn—1)
Whenn = 4, LHS = dc(Ky4,3) = 4(from the table)
RHS ==X 4 X 6 = 4
Therefore, LHS = RHS
Now, suppose that the result istrue for al numbers less than n and we prove it for n.
We have, dg.(Kopn — 1) = dge(Kop1,n — 1) + dge(Kop1,n — 2)
=%x(n—1)x(n—Z)x%x(n—l)X(n2—5n+6)

__ n(n?-3n+2)
- 2

2_
Hence,ds.(Kypn—1) = w for every n > 4.

(Vi) To prove dgc (Koo — 2) = ”(n3_6”224+11"_6), for every n > 5, we apply induction on
n.
Whenn = 5, LHS = dy.(K,5,3) = 5(from the table)
RHS ==X 24=5
Therefore, LHS = RHS
Now, suppose that the result istrue for al numbers less than n and we prove it for n.
We have, dg. (Ko n — 2) = dge(Kop1,mn — 2) + dse(Kop1,m — 3)
=%><(n—1)><(n2—5n+6)

x%x(n—1)><((n—1)3—6(n—1)2+11(n—1)—6)

__ n(n?-3n+2)
- 2

3_ 2 _
Hence,dy, (Kpnn — 2) = 2& 6"2:11" © for every n > 5.

(vii) Theresult is obvious from tablel.

4. Conclusion
In this paper, we have studied and discussed some properties of secure connected
dominating sets and secure connected domination polynomials of complete bipartite graphk ,.

We can further study this property for various types of graphs.
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Abstract
The atom-bond connectivity (ABC) index (ABC-index) of a nontrivial connected

graph G, denoted by ABC(G), i defined as ABC(G) = Sy, ex (o) /% where d, is the
[2ad}

degree of vertex v; in G. In this paper we find the ABC- Index of Wheel graph (W,), Helm
graph (H,,), Centepede graph (P;), Gear graph (G,,). Also we discuss some results on ABC -
index of graphs.

Keywords: ABC- index, centipede, wheel, helm, gear graphs
2020 Mathematical Subject Classification: 05C20, 05C05
1. Introduction

Let G be a graph with vertex set V(G) = {vy,v,,..,v,} and edge set E(G).
The degree of each vertex v;, denoted by d.(v;) (or simply d;), is the number of neighbors
of v; in G. The maximum and minimum vertex degree in G are denoted by A and 9,
respectively. The number of vertices of the largest clique in a graph is caled its clique
number and is denoted by w. The vertex connectivity of agraph G, denoted by v, isthe smallest
number of vertices whose removal disconnects G or reduces it to a single vertex.
The index or spectral radius A, of G is the largest eigenvalue of its adjacency matrix.
The algebraic connectivity of G, denoted by a, is the second smallest eigenvalue of the
Laplacian matrix of G. A k-partite graph is said to be complete if any two vertices are adjacent
if and only if they belong to different partition classes. Our terminology and notation not

defined here will conform to those in [1].

In 1998, Estrada et a. proposed a new index, which is latter known as the atom-bond
connectivity (ABC) index [8]. The atom-bond connectivity index of a nontrivial graph G,

203

ISBN: 978-93-48505-23-1


https://www.sciencedirect.com/science/article/pii/S0022247X19305438#br0010
https://www.sciencedirect.com/science/article/pii/S0022247X19305438#br0180

Proceedings of the Inter national Conference on Algebraic Graph Theory,
Graph Theory and Topology — 9" & 10" January 2025

di+dj—2

denoted by ABC(G), is defined as ABC(G) = Zvi,,jEE(G) /?, where d; is the degree of
i4j

vertex v; in G. In [8], Estrada et al. used ABC-index for the purpose of modeling
thermodynamic properties of organic chemical compounds. In 2008, Estrada published another
paper, in which ABC-index is used as atool to explain the stability of branched alkanes. This
work has attracted the attention by several Mathematicians, resulting in a remarkable number
of research papers on the mathematica properties of the ABC-index,
see[2], [3], [4]. [6]. [7]. [8]. [9], [11], [12].

In this paper, we explore some results of atom-bond connectivity index of graphs.
2. ABC index of some known graphs

Definition 2.1. A whed graph W,, = K, + C,, is a graph formed by connecting a single

universal vertex to al vertices of acycle C,,.

Example2.2.

Figurel: Whee graph W,

Theorem 2.3. For awhed graph W,,, ABC(W,,) = n Ig + /%l n>>5

Proof. Let W, be the wheel graph with n + 1 vertices and 2n edges.

Let W, n edges having the sum of degrees of their vertices 6 and n edges having the

sum of degrees of their verticesn + 3

Let E; bethe set of edges of I, having the multiplication of degrees of their vertices9

and sum of degrees of their vertices 6.

dl'+d]'—2
dl'dj

ABC(W,) = Zowiee)
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- 2 5)

‘UinEE(G)

_2n

Let E2 be the set of edges of W, having the multiplication of degrees of their vertices

3n and having the sum of degrees of their verticesn + 3 .

di+d;—2
ABC(W,) = ZvvjeE(G)/

n+3-—-2
3n

v;v;€E(G)

n+1
3n

v;v;€E(G)

n+1
3n

=n

di+dj—2
didj

Therefore, ABC(G) = Xywex (o)

dl+d1 di+dj—2

+ ZvlvjeEz @) did;

Zv iVj€E1(G)

Defnition2.4. A Helm graph (H,,) is the graph obtained from awheel graph W, by adjoining

a pendent edge at each node of the cycle.

Example 2.5.
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Figure 2: Helm graph H,

Theorem 2.6. For the Helm graph H,,, ABC(H,) = n\E + \E + /Z—f n>5

Definition 2.7. A Centipede graph P, is agraph on 2n vertices obtained by appending asingle

pendant edge to each vertex of a path B,.

Example 2.8.
G Vi Vg
f h j
V4 Vv, Vy

k

Figure 3: Centipede graph P:

Theorem 2.9. For the Centipede graph B,;, ABC(P,;)) = 4\E + \E [(n—2)(n—3)],n=>3.

Definition 2.10. A graph G,, is obtained by inserting an extra vertex between each pair of

adjacent vertices on the perimeter of awheel graph W,,. G,, has 2 + n vertices and 3n edges.

Theorem 2.11. For the gear graph G,,, ABC(G,) = n (2\E + f%)n >3
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3. Conclusion

In this paper, we determined ABC- index of some graphs. Further we can find ABC-

index for new graph structures.
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Abstract
Let G be agraph with p vertices and q edges. An edge labeling f: E(G) - {(?) 0 <i < q}
is sad to be an edge combination cordial labelingof G if it induces a vertex labeling

fr:V > {01} gvenby f*(v) = {

such that |vf*(0) — vf*(1)| < 1, where v¢-(0) is the number of edges labeled with 0 and

1 if the labels of the edges incident to v are equal
0 otherwise

vs+(1) is the number of edges labeled with 1. A graph G is said to be an edge combination
cordial graph if it admits edge combination cordia labeling. In this paper we prove the
existence of this labeling of path, cycle, flower, P,0K;, C,0OK;, ladder and jewel graph.
Keywords. cordia labeling, combination labeling, combination cordial labeling, edge
combination cordia labeling.

2020 Mathematics Subject Classification (AMS): 05C78

1. Introduction
The graphs referred to here are assumed to be simple, finite, connected and undirected.

We adopt Harary’s [3] definitions for additional terminology. One of the prominent areas of
research in graph theory is graph labeling. Graph labeling is an assignment of integers to the
elements of a graph under certain conditions. Rosa [5] initially proposed graph labeling in
1967. Numerous types of graph labeling have been developed over the past fifty-five years.
Gadlian [2] elegantly categorized these labelings in his survey. Cordial labeling, one of the
popular labelings was introduced by Cahit [1]. Suresh Manjanath Hegde et. a [6] proposed
combinatoria labeling in 2005. Drawing from the idea of these two, B.J.Murali et. a [4]
introduced the concept of combination cordial labeling. Building upon the previous concepts,
we introduced anew notation namely edge combination cordial labeling as an edge counterpart
of combination cordial labeling.

This paper focuses on exploring the existence of edge combination cordial labeling of path,

cycle, flower, B,0OK;, C,0OK;, ladder and jewel graph.
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Definition 1.1. [6] A (p,q) graph G = (V, E) is said to be combination graph if there exists a
bijection f:V(G) — {1,2,3, .......p} such that the induced edge function g;:E(G) > N

fWCry if  fw) > f(v)
fWCry if f(v)> f(w)

isinjective, where f(w)C;(,) 1S the number of combinations of f(u) things taken f(v) at a
time. Such alabeling f is called combination labeling of G.

Definition 1.2. [1] Let f be afunction from the vertices of G to {0,1} and for each edge xy
assignthelabe | f(x) — f(y)|. Cal f acordia labeling of G if the number of verticeslabeled
0 and the number of vertices labeled 1 differ by at most 1, and the number of edges labeled 0
and the number of edgeslabeled 1 differ by at most 1

Definition 1.3. [4] Let G = (V, E) be a graph with n vertices. A function f : V(G) —

defined as g (uv) = {

{(1);0 <i <n} of agraph G issaid to be acombination cordial labeling if the induced edge

T if fw =f®

0 if £ = f ) satisfies the

function f* : E - {0, 1} defined by f *(uv) ={
condition| e« (0) — &+ (1)] < 1.

2. MAIN RESULTS

In this paper we introduce the concept of edge combination cordial labeling behavior of
path, cycle, flower, B,OK; , C,,OK, , ladder and jewel graph.
Theorem 2.1. The path graph P, is edge combination cordial if n > 3.
Proof. Let P, be a path graph with n vertices and n-1 edges.
VIB)={v;/1<i<n} EP)={vv/1<i<n-—1}
An edge labeling f: E(B,) - {(";!),0 <i <n—1} for n > 3 isdefined asfollows:

f(wyv,) = (nal)

(";1) if nis even
fn-avn) = { (7}%11) if nis odd.
If niseven, then
fir) = [fWi1Vign) = (nzl) where i = 2,4,6..n— 2.
2
If nisodd, then
fir) = [fWi1Vign) = (nzl) where i = 2,4,6..n— 3.
2

Then the induced vertex labeling f*: V — {0,1} isdefined asfollows:

Case (i) niseven.
209

ISBN: 978-93-48505-23-1



Proceedings of the Inter national Conference on Algebraic Graph Theory,
Graph Theory and Topology — 9" & 10" January 2025

. (1 ifi=135..n-3n-1
frw) ‘{ 0 ifi=246..n—2n

Thus we get v+ (1) = g, v+ (0) = g .
Case (ii) nisodd.
_ {1 if i isodd

0 if i is even.

f ()

Thuswe get vs+(1) = "T“ vp+(0) = "T_l .

In both the cases |v;+(0) — v,+(1)| < 1.
Hence P, is edge combination cordia if n > 3.

An example of edge combination cordial labeling of Pg is given below:

1 0 1 0 1 0 0 1
. ® ] . . ® . .
1 7 7 21 21 35 1
Figure 1

Theorem 2.2. Thecyclegraph C,, isedge combination cordial if n > 3.
Proof. Let C,, be acycle graph with n vertices and n edges.

V(C,) ={v;/1<i<n} E,)={viv./1<i<n-1}u{v,v}
An edge labeling f: E(C,) »{(}),0<i<n} for n>3 is defined as follows :

fow) = (7).
(5) if nis even

f W) N (é) if nis odd.
If niseven, then

fivig) = [fWizvip) = (7_:) where i =2,4,6..n— 2,

2
If nisodd, then
fivig) = fWig1Vig2) = (2) where i =2,46..n—1
2

Then the induced vertex labeling f*: V — {0,1} isdefined as follows:
Case(i): niseven.

. _ (1ifiisodd
frld = {0 if i iseven.

Thuswe get vy+(1) = g vs+(0) = g
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Case(ii): nisodd .
. _ (lifiisodd, i#1
frw) = {0 ifiiseven,i=1

Thuswe get vy+(1) = nT_l

n+1

» v (0) = —
In both the cases | v+ (0) — v,+(1)| < 1.
Hence C,, is edge combination cordia if n > 3.

An example of edge combination cordial labeling of Cs isgiven below:

0
10 1
1 0
10 5
] 5 1
Figure 2

Theorem 2.3. The flower graph FL,, is edge combination cordia if n> 3.

Proof. Let Fl,, be aflower graph with 2n + 1 vertices and 4n edges.

VFL) ={v;/0<i<n}u {w;/1<i<n},

E(Fl,) ={vyv;/1 <i<n}U{vygw;/1<i<n}u{vw;/1<i<n}u

fvivig /1 <i<n—-1} U {y,v}.

An edge labeling f: E(FL,) - {(*"),0 < i < 4n} for n> 3 definedas follows:
fwi) =fw) = () 1<is<n-1
fov) = flowy) = fwewy) = (22) 1<sisn

Then the induced vertex labeling f*: V — {0,1} isdefined by,

f*(w) =0, 0<i<n f*W)=1,1<i<n.

Thuswe get, v;+(1) =n, vp+(0) = n+ 1, Therefore |vy-(0) — v+ (1)| < 1.

Hence Fl,, is edge combination cordial if n> 3.
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An example of edge combination cordial labelling of Fls is given beow:

1 1

Figure 3

Theorem 3.4. The comb graph B,OK; is edge combination cordial if n> 2.
Proof. Let B,OK; be acomb graph with 2n verticesand 2n — 1 edges
V(BOK,) ={u; /1 <i<n}uU {v;/1<i<n}
E(BP,OK;) = {ujuj;1/1<i<n—-1}U{wv;/1 <i<n}
An edge labeling f: E(P,0K;) - {(*"7"),0 < i < 2n — 1}for n> 2 defined as follows:
fuw) = () 1<i<n
fuue) = (%), 1<isn-1
Then the induced vertex labeling f*: V — {0,1} isdefined by,
fflu))=0,1<i<n f"(vp)=11<i<n
Thusweget ve<(1) =n, v+(0) = n, Therefore |vf*(0) — vf*(1)| <1.
Hence the comb graph B,©OK, isedge combination cordia if n> 2.
An example of edge combination cordial labeling of PsOK; isgiven below:
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0 0
1 1

0 170 1o 11 0
1I 1 1 11

Figure 4

11 11

Theorem 3.5. The crown graph C,,OK; is edge combination cordial if n > 3.
Proof. Let C,,OK, bea graph with 2n vertices and 2n edges
V(C,OK) ={uy; /1<i<n}u{y;/1<i<n},

E(C,OK) ={ujuj11<i<n—-1}u{yvl <i<n}u{u,v1<i<n}

Ann edge labeling f: E(C,OK;) - {(*"7") 0 < i < 2n} for n > 3 isdefined asfollows:

fwwv) = (#).1<i<n
fuuy) = (31 1<i<n-1,
flupuy) = (Zln) .

Theinduced vertex labeling f*:V — {0,1} defined by,
ff(u))=0,1<i<n, f"v)=11<i<n

Thusweget ve-(1) =n, ve+(0) =n,

Therefore |vp+(0) — vp-(1)| <1

Hence C,OK,; isedge combination cordia graphif n > 3.

An example of edge combination cordial labeling of C;OK; is given below:

Figure &

Theorem 3.6. The ladder graph B,XP, isedge combination cordial if n > 2.
Proof. Let P,XP, be aladder graph with 2n vertices 3n — 2 edges.
V(B XP,)) ={u; /1 <i<n}u{v;/1<i<n},
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E(BXP) ={v;vi./1<i<n—-1}U {yv;/1<i<n}u{uu,,/1<i<n-1}
An edge labeling f: E(P,XP,) - {(°"7%), 0 <i < 3n—2}forn = 2 isdefined as follows:
fown)=C%?%) 1<isn-1,
fuui)=(C"%?)  1<i<n-1,
fv) =(C%?) . 1<i<sn
Then the induced vertex labeling f*: V — {0,1} isdefined by,
ffv)=1,1<i<n f"(u;)=0,1<i<n.
Thusweget vy-(1) =n, v(0) = n. Therefore |vp-(0) — vy (1)| < 1.
Hence P,XP, isedge combination cordial graphif n > 2.
An example of edge combination cordial labeling of P;XP, is given below:

Figure 6

Theorem 3.7. The Jewdl graph (P, U mK;) + N, isedge combination cordia for m> 1.
Proof. Let (P, UmK,) + N, beagraph with m + 4 verticesand 2m + 5 edges
V[(P,UumK) + Ny ={u,v,u;/1<i<m}uU {x,y},
E[ (P, UmK;) + N,] = {ux,uv, vx,uy,vy} U {y;x Uu;y/1 <i < mj},
An edge labding f: E[ (P, UmKy) + No] - {(*"*°),0 <i < 2m+5} is defined as
follows:
Case(i): 1<m<3
fuv) = f(wx) = fwy) = (*7"°)
flux) = fluy) = (*°), flwx) = fuy) =(*"7"°) 1<i<3
Then the induced vertex labeling f*: V — {0,1} isdefined asfollows:
ffw) = f(x) =f"(y) =0,
ffw)=1, f*(w)=1, 1<i<3
Thusweget ve(1) =3, v(0)=m+1

Case(ii): m=>4
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fln) = (75"
fux) = f(uy) = f(vx) = fvy) = (*"}")
fay)= (7°) L 1<is<m
If misodd, then

(2m+5) fOT‘ 1<l<m+5’

(2m+5) f —<l<m

flux) =

If miseven, then

(2m+5) fOT' 1<L<m+4

(2";+5) for T <i<m

fluix) =

Then the induced vertex labeling f*: V — {0,1} isdefined as follows:
ffA =) = ff)=f (=0
Subcase (i): misodd

m+5 m+7

f*(u;) =1 for 1<z<—, fr(w)= 0for—<z<m
Thusweget vp-(1) =72, vy-(0) = 2=

Subcase (ii): miseven

f(u) = 1for1<z<— f ()= Oform—+6<1<m

Thusweget (1) = T’ vp(0) = 2,

In both the cases |v;+(0) — vp-(1)| < 1.
Hence (P, U mK,) + N, is edge combination cordia graph.
An example of edge combination cordial labeling of (P, UmK;) + N, isgiven below:

Figura 7
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4. Conclusion

We explore the concept of edge combination cordia labeling, a novel graph labeling
technique. Through a comprehensive analysis, we demonstrated the existence of edge
combination cordia labeling of path, cycle, flower, B,OK; , C,0OK; , ladder and jewel graph.
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Abstract

This paper investigate the concept of Intuitionistic fuzzy ideal and primeideal in Near-
ring. Also some definitions of Intuitionistic fuzzy ideal and prime ideal in a Near-ring. The
purpose of this paper is to improve the concept of Intuitionistic fuzzy ideals of a Near-ring
given anew characterization using the Intuitionistic fuzzy points. Moreover, some results and
properties of Intuitionistic fuzzy primeideal are discussed.

Keywords. Fuzzy ideal near-ring, Intuitionistic fuzzy ideal near-ring, Intuitionistic fuzzy

points, Intuitionistic fuzzy primeideal.
2020 M athematical Subject Classification (AMS): 03E72
1. Introduction

Intuitionistic Fuzzy Ideal in Near-Ring is defined by Zhan Jianming & Ma Xueling[§]
and fuzzy ideals of rings were introduced by Liu.W[6].The notion of fuzzy ideals and its
properties were applied to various areas:semigroups [4,5]. In this paper we consider
Intuitionistic Fuzzy Ideal in Near-Ring and investigate the rel ated theorems and Properties.

2. Intuitionistic Fuzzy Ideal of Near-Ring

Definition 2.1. Let R be the subset of all intuitionistic fuzzy points of near-ring R and Let

Adenote the set of all intuitionistic fuzzy points contained in A=< LA, >.

That is A= {X,; € R/, >aand &, <pj
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Theorem 2.2. A=<p,,A, > isanintuitionistic fuzzy ideal of near-ring R if and only if:
I) V)((aﬁ),y(a-ﬁ-)€<,uA,ﬂA > Xap) _y(a',[}')€< MA,KA >
i) Vx(mﬁ)eB,Vy(a.’B.)e< Pahp >= i)Yo ) €< s hp >

Proof. Assume A=<p,,\, >isanintuitionistic fuzzy ideal of near-ring R.

Since Near-ring R satisfies the following conditions

) paly+x—y)zp,(x)

i) A (y+x—y)<h,(x) } ...... (1)

i) 4 (xy) 2 p2,(y)

iv) A, (xy)<A,(y) } ...... )

V) ua(x+2)y—xy)2p,(2)

VI) }"A((X"' Z)y_Xy)SXA(Z) } """ (3)VX1 Y,Z€ R

Now, Let X, ), y(a,,ﬁ‘)e<uA,XA >

From (1), we get ta(Y+X—Y)2p,(X)and pa(X) 20
Jaly+x=y)<ha(x) and 1,(x)<PB

= HA(Y+X=Y) 21, (%) 2 cand 2 p(y+x-y) <1, (x) <
= VXY ) E<Haka >
= X p) E< Har An >
Similarly we can prove X+Yy—Xe<,, A, >

= Yy g)E<Haka>
By assumption (1),

X—Ye<Uph,>

From (2),
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HA(Xy) ZHA(Y) and HA(y) >0'and kA(XY) S7“A(y) and }\‘A<y) <p'

a

v

= HA(XY) 2HA(Y)

IA

and 1,(xy)<h(y)<p
= XY(op) E<HaAp>
Converdgly, Assume
1 Yo%) Yiwrp) E<Harhp >
= X=Yye<upA> e “4)

2. VXeRYe<uy,Aa> = xy e<pin> (5)

To provethat A=<p,,A, >isan Intuitionistic fuzzy ideal of near-ring R.
i.e. It isenough to provethat (1), (2), and (3)
Let X,y € R, we havey+x, yeR

Wehave y-+ X, ;0.0 €<arka > Y, 05,00 €<HaRA>

Then By (4), wehave X+ Y, x)5.,00) ™ Yiur(aa() E<Harka>

Hence, p1,(X+Y—Y)>1,(X)
and 4,(X+y-Y)< 4,(X)
Hence (1) Proved
Now we show that ,(XY) 2p,(X) and 2,() <2, (x)

Let X((X,B) e R and y(a'vﬁ') e< MA’KA >
By (5), Xy(uA(x),M(x)) E<Hahp>

Hence 1,(xy)>1,(x) and A,(xy)<2,(x)

Hence (2) proved.
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Now, we show that
ta(x+ 2)y=xy) 2p1,(2) and 1,,((x+2)y—xy)<2,(2)
wehave, x+ze Rand Y €< iy, A, >
(x+2)ye<p,y [By ()]
Now, we have (X+ 2)y <A, >and Xy e<pi,h, >
From (4), (X+2)y =%}y, (1,() E<Harka >
Hence p,((x+2)y =) 21,(2) and 1,(x+2)y—xy) <A, (2)

Theorem 2.3. An Intuitionistic fuzzy ideal <L,,A, >of near-ring R is an intuitionistic fuzzy
prime ideal iff for any two intuitionistic fuzzy points X, Y €R,

X(oc,[?)) L y(oc',[S') e< MA’}\‘A >. |mp|lese|thel’ X(%B) e< HA’X’A >or y(OU'BV) e< MA’}\’A >

Theorem 2.4. A subset <[,,A, >of near-ring R is said to be an intuitionistic fuzzy prime

ideal iff

) pa(y+x—y)=pa(x)

1)) M(er X y)ng(X) } ...... (6)
i) 14 (y) 2 (1Y)

iv) /IA(XV)SEA(y) } ...... (7)
V) pal(x+2)y—xy)2p,(2)

Vi) Au((x+2)y—xy)<,(2) } ------ (®)

Proof. Let <p,,A, > beanintuitionistic fuzzy primeideal.
Suppose 41,(y+X=Y)<p,(X) and ,(y+x-y)>2,(x)

= Y+HX=Ye<tUy,A, >

= XE<Up,hp >

Similarly we can prove Y €<pi,, A, >
220
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= &=

- Our assumption iswrong.
s Ay +X=Y)210(X) and Ay +X=Y) <hp(y+x-Y)
Now, suppose 1, (%) < t,(X)and 2,(x)>1.5(x)

= XY <y, h, >

Which is contradiction.

Hence 1, ()= 1a(X) and 1,,(xy)=2.(x)

Now, suppose i, ((x+2)y—xy) <ua(2) and %,((x+2)y-xy)>1,(2)
= (X+2)y-xye<p,h,>

Y E<piphp>

Which is absurd
Then ,((x+2)y—xy)> p,(2) and 2,((x+2)y—xy)<2,(2)
Conversely, Assume (6), (7) and (8)
Towe provethat VX, ), Yo € R
X 5) ® Yo ) E< Uy, Ap >
Implies either X, ;) €<Mahp> OF Vi) €<Haka>
SUPPOSE X, 5) &< Has An >N Yy 5 E< tps An>
= pa(¥)<aand 1,(x)>p  and p,(y)<o'and i(y)>PB
Let o= 0=, (¥y)and B=p=2,(x)

= 1a(%Y)> 1a(Y) and 1, (xy) <24(Y)
Which is contradiction to (7),
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Hence <L,,A, > isanintuitionistic fuzzy primeideal.

Definition 25. Let A and B be two IFSs of X. Then the digunctive sum is
A+B=< uMB(X),kMB(X)> and the digunctive Differenceis A—B=< pkB(X),kH(Xb

Where p,q(X)= max [u, (X, ()] and Apg(X)=min|2, . (x) 2, (%) and pag(X)
= min fua(btge ()}, 2pa(x)= max (. (3

Theorem 2.6. If A=<p,,A,> isanIFl of Rthen A°=<p .,A . >isasoanIFl of R.
Proof. Letx,y,ze R.

Given A=<p,,A, >isan IFl of R.

=~ A satisfies the following axioms.

) Ay x=y)2zp(X) and A(y+x-y)<h,(x) L (1)
i) wa0y)2pa(y) and A 09)<hly) L ©)
i) ma((X+2)y )2 (2) and 2\ (x+2)y—xy)<hn(2) 3)

Now, ¢ (y+X— ) =1-p(y+x-y) 21-p,(x) [By 1] =p,(x)

Similarly we can prove) . (y+x—y) < .(x)

Now, 1,0 (09)=1-p,() 21-p,(Y) [By 2 = i, (y)

Similarly we can prove . . (xy) < . (y)

Now, 1, [(x+2)y=xy]=1-p,[(x+ 2y -] >1-p,(2) [By 3] = 1,(2)

Similarly, we can prove A . [(x+ 2)y—xy]< 2 .(2)

Hence A° = < ua® Aa°>isan IFI of Near-ring R.

Theorem 2.7. If A and B aretwo IFIs of R then AnB° =< B, ger, g >isalsoIFl of R.

Proof. Let A=<p,,A, >and B=<pg,Ag >
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By previous theorem, If B=<1;,A; > isanIFl of Rthen B® =< Mo, Ay > isasolFl of R,

WHT ANB =<p, (XA, .(x)>

Where, p, . =minju,(X)p . (x)f and &, =maxih,(x)2 . (X)}

i) 1, e (VHX=Y)=mindu, (y+Xx=y)pg (y+x=y)f >minju,(x)u (X)]
=1, ..(x) [Since A and B® are IFI]

Similarly, we canprove &, _.(y+x-y)<i, .(x)

i) 1, e () =i, (9 e O9)f Zminfu, (Vg (V)] = 11, e (¥)

Similarly we can prove &, _.(xy)<i, _.(y)

i) 1, g [0+ 2)y—xy]=mindu [(x+ 2)y -3y} g [(x+ 2)y -]

>minfu,(2)n,. (2)f =p, . (2)
Similarly we can prove &,__[(x+2)y—xy]<i, _.(2)
Hence AnB‘isanIFl of R.

Theorem2.8. IF  A=<p,,A,>and B=<pg,A;>be two IFl of nearing R then

A+B=<p,.5,App > isanIFl of R.
Proof. WK.T p,a()=maxlu, o (b o (9] and 2ua(x)=minfp, o (hp e ()
) Bps(y+x=y)=madn, o (y+x=y)u, o (y+x-y)
>maxiu, (X (X)) [By theorem2] = pi,,5(X)
Similarly, we can prove,
Maa(Y+X=y)Shpg(x)

) Hap (XY) = rnaX{MAmBC (Xy)’ MAC“B(Xy)}
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>maxi, (Y, (V) = Bas(Y)

Similarly, we get KNB(XY) < M+B(Y)

i) [0+ 2)y—xy]=maxiu, o [(x+ 2y =), o [(x+ 2y =]}
>maxiu, (2 (2= Has(2)

Similarly, we get 7\‘A+B[(X+ Z)y_XY]S 7“A+B(Z)
Hence A+B isan IFI of Nearring R.

Theorem 2.9. If A and B are IFl of nearring R, Then A-B isalso an IFI of nearing R.

Proof. W.K.T i, g(X)=min{u,(x), . (x)} and

}“AfB (X) =max V’A(X)’ ﬂ'Bc (X)}
The proof is similar to the theorem 2.

Properties2.10. If A, B, CarelFl of Near-ring R and 0,1 are respectively fuzzy null and fuzzy

universal subsets then we have.

ANnB=BnA

1 — Commutativity
AuUB=BUA

2. An A= A=BuUB=B— Indempotent

Au0=A; An0=0
" Aul=1; ANnl=A

— associativity

5. (A")c = A— Involution

(AnB) = A°UB®

6.
(AUB) = A°NB°

} — De’Morgan’s law

We give the proofs of 4, 5 and 6. The rest can be proved in the same manners.

224

ISBN: 978-93-48505-23-1



Proceedings of the Inter national Conference on Algebraic Graph Theory,
Graph Theory and Topology — 9" & 10" January 2025

Result 2.11. Intuitionistic Fuzzy ideal of a Nearring R does satisfy distributive law.

Preposition 2.12. If A and {Ai},_, are IFI of nearring R then

1.3) AU{ON}:Q[AUN] & b) Aﬂ{QN}zU[AﬂAi]

2. @) {LiJAiT:OAiC& b){ﬂAiT:LiJAiC.

i
3. Conclusion

In this paper, we consider a new kind of Intuitionistic Fuzzy Ideal of Near-Ring, which is
ageneralization of Fuzzy Ring and Fuzzy Near-Ring. Some related properties of Intuitionistic
Fuzzy ldeal of Near-Ring are described.
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Abstract

Topological indices are numerical values derived from the structure of a chemical
graph.The Nanorod graph Gy, is a simple connected graph which is constructed with NaOH
concentration as vertices and other reaction parameters such as pH, temperature, time and volume
of solvent in agiven ratio as edges. In this article, we discuss the degree based topological index
namely atom-bond connectivity index of a Nanorod graph. Also we find the numerical value in
step values,k = 0.1,0.09,0.08,0.07,0.06,0.05,0.04,0.03,0.02 and 0.01.

Keywords : Nanorod graph, atom-bond connectivity index
AMS Subject Classification : 05C90,05C92.
1 Introduction

For notation and graph theory terminology not given here we follow [1].Chemical
graph theory is widely studied by researchers due to its extensive applications in daily life. A
topologica index is a numerical invariant used as a molecular descriptor. This topological
descriptor, aso referred to as a graph theoretic index is a numerical quantity that represents the
molecular graph structure and its unique chemical and physical properties. There are different
classes of topological indices such as distance based, counting based and degree based topological
indices [2]. Degree based topological indices are extensively studied and have important
applications in chemical graph theory. The authors Sonia et.al [3].S.Sobiya, S.Sujitha and M.K
Angel Jebitha defined and generated the Nanorod graph [4] by using [3] and various graphical
parameters are studied in the previous work [4].
The Nanorod graph Gy, is a simple connected graph with vertex V(G) =
{vi,v5,v3, - v, } and edge set E(G). The verties of Gy, correspond to NaOH concentration and
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an edge between two vertices corresponding to the UV spectrum (pH, temperature, time, volume
of solvent in a given ratio) of these NaOH concentration.To construct the family of Nanorod
graphs, various step values can be employed. In this paper, we utilize ten step values denoted by
k(k = 0.1,0.09,0.08,0.07,0.06,0.05,0.04,0.03,0.02,0.01). The order of the Nanorod graph,

. . 15 . . .
represented as ‘p’is determined by p = lT + 1J,Whlle the size is ‘q’ and the reaction time is

‘t’[5]. The degree of vertex u, indicated by d,,, isthe number of edges that are incident to v.
Extradaand Torres introduced the atom-bond connectivity index in 1998 [6].The atom-

bond Connectivity index is defined as

ABC(G) _z d,+d,—2
uveE(G) dudv

2 Thedegree based topological indices of a Nanorod graph
Theorem 2.1 Let Gy, beaNanorod Graph. Then the ABC index is ABC(Gyy) IS

( 1

1
(—168n + 14pn + 104p — 714)2(—154n + 14pn + 104p — 610) 2
if k=01n=t—1and k=0.09,n=t

1 1
(—4n? — 477n + 42pn + 117p — 491)2(—4n? — 435n + 42pn + 117p — 358) 2
if k=0.08,n=t—1 and k=0.07,n=t
(—7.8056n° + 50.9999n° — 309.1111n* — 1324.8333n3 + 12960.3333n2 — 25570.6666n +

1
1 49.1667pn® — 389pn? + 628.8333pn — 166p + 11920)2
(—7.8056n° + 65.6667n° — 313.2778n* — 1661.6667n3 + 11922.1667n%? — 17873n + 75pn3

1
—392pn? + 623pn — 253p + 13560) 72 if k=0.06,n=t—1,k=0.05n=tk=0.04,n=t+1
and k=0.03,n=t+ 2

1
(—16445n% — 438851n + 7768pn — 6139p + 457298)2(—16445n% — 429961n + 7768pn — 6139p +

1
L 446995)72 if k=0.02,n=t—1 and k= 0.0L,n=t

Proof. Let Gy, beaNanorod Graph
we know that the ABC index is

ABC(G )_Z d,+d,—2
Nr/ uveE(Gyny) dudv
Case()When k=0.1,n=t—1and k=0.09,n=t
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Z (du+dv_2)
uveE(Gyr)

=[-D+@-D-2]+2[p-D+@-2)-2]+2[p-D+(®@-5)
=2]+2[((p-D+(p@—-7)-2]+(—4n+12)[(p—1) + (p — 10) — 2] + (61
—D[P-D+@-13)=-2]+6[p-D+@-11)-2]+6[(p-1 +(
—12) = 2]+ [(p-2)+ (-7 —2]+(-2n+ 6)[(p — 2) + (p — 10) — 2]
+Bn=-2)[(p-2)+(@-13)-2]+3[(p—-2)+ (p—12) - 2] + 3[(p - 2)
t(—-11)=-2]+3[(p-5)+(@—-12) - 2]+ 3[(p —5) + (p — 11) — 2]
+(—2n+5)[P-5+(@P-10)-2]+3[(p—7)+(p—11) — 2] + (—2n
+5[p-7)+(@P-10)-2]+(—2n+5)[(p—-10)+ (p —10) — 2] + (3n
=) -5+{@P-13)-2]+@Bn=-3)[(p-7)+(—12) - 2]+ (3n
=3)[(p-10)+(—11) = 2]+ (n = D[(p — 13) + (p — 10) — 2]
On Simplification, we get
YuveEGy,) (dy +dy —2) = —168n + 14pn + 104p — 714 (a)
YuveEGy,) (dy +dy) = —154n + 14pn + 104p — 610 (b) [7]

—-168n+14pn+104p—-714
—154n+14pn+104p—-610

From (a) and (b) ABC(Gy,) = \/
Therfore,

ABC(Gyy) = (—168n + 14pn + 104p — 714)%(—15411 + 14pn + 104p — 610)%
Case(ll) When k=0.08,n=t—1 and k = 0.07,n = t Yyper(Gy,) (du +dp —2) =3[(p —
D+@-D-2]+3[(p-D+(@-3)-2[+3[-D+@-6)-2]+3[(@-1 +
P—9)-2]+(3n+9)[(p-D+(@-—-11)=-2]+12[((p—1) + (p—14) — 2] + (6n —
DE-D+@-15)-2]+(n+15)[P-D+@—-13) - 2] +9[-D + (-n+
8) 2]+ (n+)[@-D+@-1D-2]+4[(p-3)+(p—14) - 2]+ 2n-D[(p -
ND+@—-15-2]+(2n+5)[p-3)+(p—-13)-2]+3[(p—-3)+(—n+8) = 2] +
3[(p—6)+(p—14) =2]+(—2n+5)[(p—-6)+ (p—13) = 2]+ 3[(p—6) + 7 — 2] +
Cn=-D[p-6)+(2n+10)—-2]+(-2n+5)[(p—9D+ (p—-13)=2]+3[(p—9) +
7=-21+0Cn-D[(Pp—-9+8-2]+3[p—-11)+7-2]+(2n—-D[(p—11)+8-2] +
Cn=-D[p-14)+8-2]+(12n—-12)[p—- D+ (p—-17) =2]+ (4n—4)[(p—3) +
(P—=17)=2]+Bn=3)[(p—-6)+(p—-17) = 2]+ Bn=3)[(p —9) + (p — 16) — 2] +
M=-D[E-1D+@-13) -2+ (n-D[p-14 +(-13) = 2]+ (n - D[(p - 17) +
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(r —13) — 2]
Simplifying the above expression, we get
YuveEGy,) (du +dy —2) = —4n? — 477n + 42pn + 117p — 491 (©)
Yuvee(Gy,) (dy +dy) = —4n? — 435n + 42pn + 117p — 358 (d) [7]

—4n2-477n+42pn+117p—491
—4n2—-435n+42pn+117p—358

From (c) and (d) ABC(Gy,) = \/
Therfore,
1
ABC(Gy,) = (—4n? — 477n + 42pn + 117p — 491)2(—4n? — 435n + 42pn + 117p

1

—358)72

Case(lll) When k = 0.06,n =t —1,k =0.05,n=t,k = 0.04,n=t+1 and k = 0.03,n =
Suverny (du+dy—2) = [-3n3 +n2 = Zn+8][((p— D + (p— 1) — 2] + [-zn® +
Enz—?n+5][(p—1)+(p—2)—2]+[—%n3+%n2—13—0n+5][(p—1)+(p—5)—
20+ [P +in2 =245l - D+ (p—7) =2+ [-cn® +2n? -+ 5][(p - 1) +
(p—10)— 2]+ [—zn®+:n? —Zn+5][(p - D+ (P —13) = 2] + [-zn® +2n? - Tn +
51— 1) + (p — 15) = 2] + [-2n® + 1502 = =-n + 41][(p — 1) + (p — 18) — 2] +
[13—3713 69712+ n—49][(p—1)+(p—21) 2]+ [—§n3+§n2—5%n+59][(p—
D+ Gnd+in? —=n+8) -2+ [-Znd+2n +:n+7][(p— D+ Gn? —2n +15) -
2]+[—§n3+%n2—£n+41][(p—1)+(£n3—5n2+§n+8)—2]+[—§n3+§n2—
10n+15][(p — 1) + (Cn® — 132+ —n—2) = 2]+ [(p -2 + (p—7) — 2] + [(p —
2)+(p—10)—2]+[(p—2>+<p—13)—2]+[(p—2)+(p—15)—2]+[—§n3+
gnz—13n+13][(p—2)+(p—18)—2]+[§n3—12n2+52—7n—17][(p—2)+(p—21)—
21 +3[(p—2) + (-2 + T2 - Zn+22) = 2] +3[(p - 2) + Cn® — Tn? + 2

5) — 2]+ 3[(p — 2) + Gn? ”n2+—n—3)—2]+[§n3—§n2+§n][(p—2)+
(—2n®+8n% —=n +23) = 2]+ [(p — 5) + (p — 15) — 2] + [-3n® +2n? — 13n +

13][(p—=5)+(—18)-2] + [n — 12n? +—n—17][(p 5)+(p—21)—2]+[—n -
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2n? +§n— 1][(p—5) + (%n3 +§n2 —%n+8) - 2]+ [—§n3 +§n2 —%n+ 15][(p —
5)+(§n2 —22—3n+15) -2]+ [—2713 +%n2 —§n+9][(p—5)+(2n3 — 5n? +?n+
8) — 2] +3[(p — 5) + (on® —13n? + n—2) — 2]+ [;n® =202 + =n—1][(p — 7) +

n?—Zn+8) =2+ [-2nd+6n? —Zn+ 11][(p—7) + Gn? —Zn+15) -

1 3
(6n +2

13

20+ [+ on2—Zn+9)[(p -7+ G —Cn?+Zn+4) - 2] +3[(p - 7) +

(§n3 _22_9n2 +%n—6)—2] + [%n3—n2 +%n+2][(p—7)+(£n3—7n2 +%n+3) —
2] +3[(p — 10) + Cn® —2n? + =20 — 2) — 2] + [cn® —n? + = n + 2][(p — 10) + (n® -
“n?+2n+3) =2+ [(n® —n?+on+2][(p - 10) + Gn® —in? + Sn+8) - 2] +
[%n3 —n? +16—1n+ 2][(p—10) + (—%n3 +§n2 —?n+ 12) - 2]+ [%n3 —n? +%n+
2][(p—13) + (%n3 —%nz +§n+ 8) — 2]+ [—%n3 + n? —%n+4][(p —13) - (§n3 +
2n? —Zn+12) = 2]+ 3[(p — 13) + (—3n® +2n — S+ 13) = 2] + 3[(p — 15) +
(—%n3 +%n2 —§n+ 11) — 2] +3[(p — 18) + (—%n3 +%n2 —?n+ 12) = 2] + [%n3 —
14n% + =0 — 26][(p — 1) + (4n% — 2In +37) — 2] + [zn® — 2n? + Zn — 8][(p — 1) +
(2n% = 11n + 26) — 2] + [~ 2n% + 2n — 17][(p — 2) + (8n? — 29n + 32) — 2] + [zn® —
“n? +Zn—4][(p — 2) + (2n? — 11n + 26) — 2] + o0 — =n? + Zn — 10][(p — 5) +
(4n% —21n +37) — 2]+ [cn® —2n2 + Zn—4][(p — 5) + (2n% — 11n + 26) — 2] +
End—2n?+2n—10][(p = 7) + Gn? — Zn+20) = 2] + [zn° —2n? +n — 4][(p —
7+ (—n*+6n+4)—2]+ [%n3 —%nz +%n—8][(p— 10) + (—%n2 +gn) - 2]+
[—%n2 +§n— 31[(p — 10) + (—gn2 +gn+ 1) —-2]+ [—%n3 —gnz +13n—-9][(p —

13) + (n+9) = 2] + [-5n® + 2n = 3][(p — 13) + (n + 10) — 2] + [-3n® — 2n? + 13n —
N(p—15) + (n+9) — 2]+ [—5n +Zn—3][(p — 15) + (n + 10) — 2] + [~ —Zn? +
13n—9][(p — 18) + (n + 10) — 2] + [—%n3 —gnz +13n-9][(p—-21)+ (n+9) - 2]+

[—>n?+2n—3][(p — 21) + (n + 10) — 2] + [-5n? +Zn — 3][(p — 23) + (n + 10) — 2] +
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[—§n3+22n2—1:—2n+28][(p—1)+(16—n)—2] [-=n® +32n2 — —Zn + 38][(p —
1) + (—4n + 26) = 2] + [-n® + T ——n+9][(p—2)+(2n+7)—2]+[—n3+1?5n2—
ﬂn+9][(p—2)+(2n+8)—2]+[—gn3+7n2—%n+8][(p—5)+(16—n)—2]+
[—Zn® +n? —Zn +10][(p — 5) + (26 — 4n) — 2] + [-2n® + —-n? — = n + 10][(p —
7)+ (26 — 4n) = 2] + [-n® + Zn? =20+ 9][(p — 10) + (17 —n) — 2] + [~ ;n® + 4n?
Zn+5][(p —10) + 15 — 2] + [-n® + =n? =S+ 9][(p — 13) + (n + 11) — 2] +
[—§n3+4n2—§n+5][(p—13)+(n+12)—2]+[—n3+7n2—?n+9][(p—15)+
(n+11) = 2]+ [-5n® +4n? = Tn+5][(p — 15) + (n+ 12) = 2] + [-n® + “n? =2 n +
9N[(p —18) + (n+11) = 2] + [—5n® +4n? = Zn +5][(p — 18) + (n + 12) — 2] +

[-n® + 202 = Zn +9][(p — 21) + (n +11) — 2] + [-3n° +4n® = Zn + 5][(p — 21) +
(n+12) = 2]+ [-n® + =n2 = Zn 4+ 9)[(p — 23) + (n+ 11) = 2] + [ ;n® + 4n? — n +
51[(p — 23) + (n+ 12) = 2] + [-n® + Zn? =2 n + 9][(p — 26) + (n + 11) — 2] +
[—1n3+4n2—£n+5][(p—26)+(n+12)—2]+[—§n3+4n2—§n+5][(p—29)+
(n+12) = 2]+ [2n® = 15n% + Zn — 15][(p — 1) + (p — 40) — 2] + [5n® — 15n? + Zn
15][(p — 1) + (p — 38) — 2] + [on® — 1502 + Zn = 15][(p — 1) + (p — 36) — 2] + [on® —
15n% + Zn - 15][(p — 1) + (p — 35) — 2] + n® — 150 + Zn = 15][(p — 1) + (p —
33)— 2]+ Zn® — 1502 + Zn - 15][(p— 1) + (p —32) — 2] + ;n® —n? + = —1][(p -
2)+(p-26) -2+ 0’ —n?+=n—1][(p—2) + (p —29) — 2] + [n® — 4n? + Zn —
N -2 +@-39) -2+ 0 —2n’ + Tn=2)[(p - 2) + (p —41) — 2] + [;n° -
3n2 +—n—3][(p—2) + (p—33) — 2] + [;n* —3n2 + —n—3][(p — 2) + (p — 32) —
2]+ [n® =302+ —n—3][(p - 5) + (p — 40) — 2] + [;n* — 3n? + =n = 3][(p — 5) +
(p—38)— 2]+ [n® —3n2 + =n—3][(p - 5) + (p — 36) — 2] + [;n® — 3n® + —n —

31[(p — 5) + (p — 35) — 2] + [n® = 3n2 + —n —3][(p — 5) + (p — 33) — 2] + [;n° —
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3n2 +—n—3][(p = 5) + (p — 32) — 2] + [;n® = 3n2 + —n —3][(p — 7) + (p — 40) —
2]+ [n® —3n2+—n—3][(p—-7)+ (p—38) — 2] + ;n® - 3n + =n = 3][(p - 7) +
(p—36)—2]+[zn® —3n2 + =n=3][(p—7) + (p — 35) — 2] + [;n° —3n? + —n —
B[ =7+ =33) = 2] + [;n° =3n® + Sn=3][(p = 7) + (p ~ 32) = 2] + [;7° -
3n2 +—n —3][(p — 10) + (p — 35) — 2] + [;n® — 3n? + —n — 3][(p — 10) + (p — 33) —
2]+ [;n® =302 + —n—3][(p — 10) + (p — 32) — 2] + [;n* = 3n2 + —n —3][(p — 13) +
(p—34)—2]+n® —3n + =n—3][(p—13) + (p —33) — 2] + ;n —3n® + —n —
31[(p — 13) + (p — 32) — 2] + [;n° — 2n% + —n — 2][(p — 13) + (p — 31) — 2] + [;n° —
3n2 +—n —3][(p — 15) + (p — 34) — 2] + [;n® = 3n? + —-n — 3][(p — 15) + (p — 33) —
2]+ [n® =302 +—n—3][(p — 15) + (p — 32) — 2] + [;n® — 2n? + —n — 2][(p — 15) +
(p—3D)—2]+n®—3n+n—3][(p—18) + (p— 34) — 2] + ;n —3n? + —n —
31[(p — 18) + (p — 33) — 2] + [;n° — 3n% +—-n — 3][(p — 18) + (p — 32) — 2] + [5n° —
2n? +=n —2][(p—18) + (p — 31) — 2] + ;7 — 3n? + —n —3][(p — 21) + (p — 34) —
2]+ [n® =302+ —n—3][(p — 21) + (p — 33) — 2] + [;n* — 3n? + —n —3][(p — 21) +
(p-32)-2]+(n’ -2+ Sn—-2|[(p—2D) + (p—31) — 2] + ;n° —3n? + =n -
31[(p — 23) + (p — 34) — 2] + [;n° — 3n% +—-n = 3][(p — 23) + (p — 33) — 2] + [;n° —
3n% +=n—3][(p - 23) + (p— 32) — 2] + [;n° — 202 + —n = 2][(p — 23) + (p — 31) —
2]+ [;n® = 3n2 + —n —3][(p — 26) + (p — 34) — 2] + [;n* — 3n? + —n — 3][(p — 26) +
(p—33)— 2]+ [;n® = 3n® + —n—3][(p — 26) + (p — 32) — 2] + [;n® — 2n® + T-n -
2][(p — 26) + (p — 31) — 2] + [;n® — 3n + —n — 3][(p — 29) + (p — 34) — 2] + [;n° —
3n2 +—n—3][(p—29) + (p—33) — 2] + ;0 — 3n2 +—n - 3][(p — 29) + (p — 32) —
2]+ [zn® =202 + —=n—2][(p — 29) + (p —31) — 2] + [;n* = 3n? + —n - 3][(p — 31) +
(p—34) — 2]+ [;n® = 3n? + =n = 3][(p — 31) + (p — 33) — 2] + [;n® — 3n? + —n —
31[(p — 31) + (p — 32) — 2] + [;n° — 2n% + —n = 2][(p — 31) + (p — 31) — 2] + [;n° —
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3n2 +—n—3][(p — 34) + (p — 33) — 2] + [;n® — 3n> + —n — 3][(p — 34) + (p — 32) —
2]+ [zn® —2n2 +—n—2)[(p - 34) + (p —31) — 2] + [;n° = 3n? + —n - 3][(p — 37) +
(p—32)-2]+[n® - 20+ =n—2][(p —37) + (p—31) — 2] + [;n® —2n? + Tn —
2][(p ~ 39) + (p —31) 2]
On Simplication, we get

Suver(Gyy) (du + dy) = —7.8056n° + 65.6667n° — 313.2778n* — 1161.6667n> +
11922.1667n2 — 17873n + 69pn® — 392pn? + 623pn — 144p + 12550 (€) [7]

Yuves(Gyyy (du + dy — 2) = —7.8056n° + 50.9999n5 — 309.1111n* —

1324.8333n3 + 12960.3333n% — 25570.6666n + 49.1667pn3 — 389pn? + 628.8333pn —
166p + 11920 (f)

From (e) and (f)
ABC(Gyy)

—7.8056n° + 50.9999n5 — 309.1111n* — 1324.8333n3 + 12960.3333n% — 25570.6666n + 49.1667¢
—7.8056n° + 65.6667n° — 313.2778n* — 1661.6667n3 + 11922.1667n% — 17873n + 75pn3

Therfore,
ABC(Gy,) = (=7.8056n° + 50.9999n° — 309.1111n* — 1324.8333n3 + 12960.3333n?
— 25570.6666n + 49.1667pn3 - 389pn2 + 628.8333pn — 166p

1
+ 11920)2(—7.8056n° + 65.6667n> — 313.2778n* — 1661.6667n3

1
+11922.1667n2 — 17873n + 75pn® — 392pn? + 623pn — 253p + 13560) 2

Case(IV)When k=0.02,n=t—1and k=0.01,n=t
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Z (du + dv - 2)
uveE(Gyr)

=[37n=36][p-D+@-1D-2]+[6n+1][(p—D + (p —2) — 2]
+en+1][(p—1)+(76n—-6)—2]+[6n+1][(p — 1) + (76n — 8) — 2]
+en+1l[p—-D+(@P-10)-2]+[6en+1][(p—1)+(p —13) — 2] + [6n
+1][p—-D+(p—-15)-2]+[6n+1][(p—1)+ (p—18) = 2]+ [6n
+1][p—-D+(@—-21)-2]+[6n+1][(p—1)+(p—23) = 2]+ [6n
+1][p—-D+(p—26)-2]+[en+1][(p—1)+(p—29) — 2]+ [6n
+1][(p—1D+(76n—-32)=-2]+[6n+1][(p — 1) + (74n —32) — 2] + [6n
+1][p—-D+(@P-—-37)=-2]+[n+1][(p—1)+(p—39) — 2]+ [6n
+1l[p—-1D+(pp—-42)-2]+[6n+1][(p —1) + (p —45) — 2] + [-15n
+43][(p— 1)+ (74n —45) — 2] + [-15n + 43][(p — 1) + (p — 50) — 2]
+[-15n+43][(p—1)+ (p—53) = 2]+ [-15n + 43][(p — 1) + (p — 55)
= 2]+ [-15n+43][(p—1) +(p—58) = 2]+ [-15n+43][(p— 1) + (p
—-61)—-2]+[-8n+29][(p—1)+ (72n—56) — 2] + [-8n + 29][(p — 1)
+ (68n —51) — 2]+ [-8n+29][(p — 1) + (63n — 44) — 2] + [-8n

+ 29][(p — 1) + (60n —40) — 2] + [-8n + 29][(p — 1) + (55n — 33) — 2]
+[-8n+29][(p—1)+ (50n —26) = 2]+ [-8n+29][(p — 1) + (47n
—22)=2]4+[-8n+29][(p—1D)+ (42n—-15) - 2]+ [-8n+29][(p— 1)
+(38n—-10)=-2]+[6n+1][(p—1)+B4n—-4) -2]+[(p—2) + (76n
—8)=2]+[(P-2)+(@-10)=2]+[(p-2)+(p—-13) = 2] +[(p - 2)
T @-15)-2[+[(p-2D+@-18)-2]+[(p-2)+(@-2D-2]+[(
—2)+(@-23)-2[+[(p-D+{@-26)-2]+[(p—-2)+ (p—29) - 2]
+[(p—2)+(76n—-32)=-2]+[(p—2)+(74n—-32) =2]+[(p—2)+ (p
=3 =2]+[(P-2)+ (-39 2]+ [(P—-2)+(p—42) - 2] +[(p - 2)
+(p—45)—-2]+[-3n+7][(p—2)+ (74n —45) = 2] + [-3n+ 7][(p — 2)
+(p—50)—-2]+[-3n+7][p—2)+(p—53)=2]+[-3n+T7][(p—2)
+(p—=55)—-2]+[-3n+7][p—2)+(p—58) =2]+[-3n+T7][(p — 2)
+(p—61)—-2]+[-2n+5][(p—2)+ (72n —56) — 2] + [-2n + 5][(p — 2)
+(68n—51) = 2]+ [-2n+5][(p —2) + (63n —44) — 2] + [-2n + 5][(p
—2)+(60n—40) - 2]+ [-2n+5][(p —2) + (55n —33) — 2] + [-2n

[
+ [
+ [
[
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+5][(p — 2) + (50n — 26) — 2] + [-2n + 5][(p — 2) + (47n — 22) — 2]
+[-2n+5][(p —2) + (42n —15) = 2] + [-2n + 5][(p — 2) + (38n — 10)
—2]+[(p—2)+B4n—-4) - 2]+ [(p —10) + (76n —32) — 2] + [(p — 10)
+(74n—-32)-2]+[(p—10)+ (p—37) = 2]+ [(p—10) + (p — 39) — 2]
+[(p—10) +(—42) = 2] +[(p —10) + (p — 45) = 2] + [-3n + 7][(p
—10)+ (74n—4) = 2]+ [-3n+ 7][(p — 10) + (p — 50) — 2] + [-3n
+7][(p—10)+ (p—53) = 2]+ [-3n+7][(p —10) + (p —55) — 2] + [-3n
+7][(p —10) + (p —58) = 2][-3n+ 7][(p — 10) + (p — 61) — 2] + [—2n
+ 5][(p — 10) + (72n — 56) — 2] + [-2n + 5][(p — 10) + (68n — 51) — 2]
+ [-2n+ 5][(p — 10) + (63n — 44) — 2] + [—2n + 5][(p — 10) + (60n
—40) = 2] + [-2n + 5][(p — 10) + (55n — 33) — 2] + [-2n + 5][(p — 10)
+ (50n —26) — 2]+ [-2n + 5][(p — 10) + (47n — 22) — 2] + [-2n + 5][(p
—10) + (42n—15) = 2] + [-2n+ 5][(p — 10) + (38n — 10) — 2] + [(p
—-10)+@B4n—-4)-2]+[(p—13)+(p—39) - 2]+ [(p—13) + (p — 42)
—2]+[(p—13)+(p—45) = 2]+ [-3n+ 7][(p — 13) + (74n — 45) — 2]
+[-3n+7][(p—13)+(p—50) = 2]+ [-3n+7][(p —13) + (p — 53) — 2]
+[-3n+7][(p—13)+(p—55) —2]+[-3n+7][(p —13) + (p — 58) — 2]
+[-3n+7][(p—13)+ (p—61) = 2]+ [-2n + 5][(p — 13) + (72n — 56)
— 2]+ [-2n +5][(p —13) + (68n — 51) — 2] + [-2n + 5][(p — 13) + (63n
—44) = 2]+ [-2n + 5][(p — 13) + (60n — 40) — 2] + [—-2n + 5][(p — 13)
+ (55n —33) = 2]+ [-2n + 5][(p — 13) + (50n — 26) — 2] + [—-2n + 5][(p
—13)+ (47n—22) = 2]+ [-2n+5][(p — 13) + (42n — 15) — 2] + [—2n
+5][(p—13)+(38n—-10) - 2]+ [(p—13) + (34n—4) — 2] + [-3n
+ 7][(p — 15) + (74n — 45) — 2] + [-3n+ 7][(p — 15) + (p — 50) — 2]
+[-3n+7][(p—15)+(p—53) = 2]+ [-3n+7][(p —15) + (p — 55) — 2]
+[-3n+7][(p—15)+(p—58)—2]+[-3n+7][(p —15) + (p — 61) — 2]
+ [—-2n+ 5][(p — 15) + (72n — 56) — 2] + [—2n + 5][(p — 15) + (63n
—44) = 2] + [-2n + 5][(p — 15) + (60n — 40) — 2] + [—-2n + 5][(p — 15)
+ (55n —33) = 2]+ [-2n + 5][(p — 15) + (50n — 26) — 2] + [-2n + 5][(p
—15)+ (47n —22) = 2]+ [-2n+ 5][(p — 15) + (42n — 15) — 2] + [—2n
+ 5][(p —15) + (38n — 10) — 2] + [-2n + 5][(p — 15) + (34n — 4) — 2]
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+[-3n+7][(p—18)+(p—55)—-2]+[-3n+7][(p —18) + (p — 58) — 2]
+[-2n+7][(p —18) + (p —61) — 2] + [-2n + 5][(p — 18) + (72n — 56)
— 2]+ [-2n+5][(p — 18) + (68n — 51) — 2] + [-2n + 5][(p — 18) + (63n
—44) = 2]+ [-2n + 5][(p — 18) + (60n — 40) — 2] + [—-2n + 5][(p — 18)
+ (55n—33) = 2]+ [-2n+ 5][(p — 18) + (51n — 28) — 2] + [-2n + 5][(p
—18) + (48n —24) — 2] + [-2n+ 5][(p — 18) + (44n — 19) — 2] + [—2n
+ 5][(p — 18) + (40n — 14) — 2] + [-2n + 5][(p — 18) + (37n — 10) — 2]
+[-2n+5][(p—18)+(B3n—=5)—-2]+[n+2][(p —18) + 29n — 2] + [3n
—2][(p—18) + (26n+4) — 2] + [-2n + 5][(p — 21) + (73n — 58) — 2]

+ [-2n+ 5][(p — 21) + (69n — 53) — 2] + [—2n + 5][(p — 21) + (65n
—48) — 2] + [-2n + 5][(p — 21) + (62n — 44) — 2] + [-2n + 5][(p — 21)
+ (58n —39) — 2]+ [-2n+5][(p — 21) + (54n — 34) — 2] + [-2n + 5][(p
—21)+ (51n—30) = 2]+ [-2n+5][(p — 21) + (47n — 25) — 2] + [—2n
+ 5][(p — 21) + (43n — 20) — 2] + [-2n + 5][(p — 21) + (40n — 16) — 2]
+[-2n+5][(p —21) + (B36n —11) = 2]+ [n+ 2][(p — 21) + (32n — 6)
=2+ [n+2][(p—21)+ (29— 2) = 2]+ [n+ 2][(p — 21) + (25n + 3)

= 2]+ [n+2][(p—-21)+ (2In+8) = 2]+ [3n— 2][(p — 21) + (18n + 12)
— 2]+ [-2n + 5][(p — 23) + (64n — 48) — 2] + [—-2n + 5][(p — 23) + (63n
—46) — 2] + [-2n + 5][(p — 23) + (56n — 38) — 2] + [—-2n + 5][(p — 23)
+ (53n—34) = 2]+ [-2n+5][(p — 23) + (49n — 29) — 2] + [-2n + 5][(p
—23)+ (45n —24) = 2]+ [-2n+ 5][(p — 23) + (42n — 20) — 2] + [—2n
+5][(p —23)+ (38n—15) = 2]+ [n+2][(p —23) + (34n —10) — 2] + [n
+2][(p—23)+BIn—-6)—-2]+[n+2][(p—23)+ (27n—1) = 2] + [n
+2][(p—23)+ (23n+4)—-2]+[n+2][(p —23)+ (20n+8) — 2] + [n

+ 2][(p — 23) + (16n + 13) — 2] + [3n — 2][(p — 23) + (12n + 18) — 2]

+ [—-2n+ 5][(p — 26) + (55n — 38) — 2] + [—2n + 5][(p — 26) + (51n
—33)=2]+[-2n+5][(p — 26) + (47n — 28) — 2] + [—-2n + 5][(p — 26)
+ (44n — 24) = 2]+ [-2n+ 5][(p — 26) + (40n — 19) — 2] + [n + 2][(p
—26)+ (36n—14) — 2]+ [n+ 2][(p — 26) + (33n —10) — 2] + [n + 2][(p
—26)+ (29n —5) — 2] + [n + 2][(p — 26) + 25n — 2] + [n + 2][(p — 26)
+(22n+4) -2]+[n+2][(p —26) + (18n +9) — 2] + [n + 2][(p — 26)
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+ (14n+14) = 2]+ [n+ 2][(p — 26) + (11n + 18) — 2] + [3n — 2][(p
—26)+ (7n+23) = 2]+ [-2n+5][(p —29) + (49n — 31) — 2] + [—2n
+5][(p—29)+ (42n—-23) = 2]+ [n+ 2][(p —29) + (38n —18) — 2] + [n
+2][(p—29)+(B5n—14) - 2]+ [n+2][((p —29)+ (BIn—-9) = 2] + [n
+2][(p—29)+ (27n—4) = 2]+ [n+2][(p — 29) + 24n — 2] + [n + 2][(p
—29)+ (20n+5)—-2]+[n+2][(p—29)+ (16n+10) — 2]+ [n + 2][(p
—29)+(A3n+14) -2+ [n+2][(p —29) + (In+19) - 2]+ [n+ 2][(p
—29)+(Gn+24)-2]1+[3n—-2][(p—29) + (2n+28) - 2]+ [n+2][(p
—-37)+ (A +2)=-2]+[n+2][(p—37)+ (A5n+7) = 2]+ [n+ 2][(p
-37)+(AIn+12) - 2]+ [n+2][(p —37) + (Bn+16) — 2] + [n + 2][(p
—37)+ (4n+21) - 2]+ [-2n+5][(p —37) + 2n+ 24) — 2] + 3[(p — 37)
+ (3n+24)—-2]+3[(p—37)+(6n+22) — 2] + 3[(p — 37) + (4n + 25)
=2]+[2n—=1][(p —37) + (5n+ 25) = 2] + [n + 2][(p — 39) + (10n + 12)
=2+ [n+2][(p—39)+(6N+17) = 2]+ [-2n+5][(p — 39) + (Tn + 17)
—2]+3[(p—39)+(GBn+20)—-2]+3[(p—39) +(GBn+21)—-2]+3[(p
—39)+ (6n+21) — 2]+ 3[(p —39) + (6n+ 22) — 2] + 3[(p — 39) + (6n
+23)=2]+[2n—1][(p —39) + (6n + 24) — 2] + 3[(p — 42) + (6n + 17)
—2]+3[(p—42)+ (bn+18) — 2] + 3[(p — 42) + (bn + 19) — 2] + 3[(p
—42) + (6n+ 20) — 2] + 3[(p —42) + (6n+ 21) — 2] + 3[(p — 42) + (6n
+22) = 2]+ 3[(p —42) + (bn + 23) — 2] + [2n — 1][(p — 42) + (6n + 24)
—2]+3[(p —45) + (bn+ 18) — 2] + 3[(p — 45) + (bn + 19) — 2] + 3[(p
—45) + (6n + 20) — 2] + 3[(p — 45) + (6n + 21) — 2] + 3[(p — 45) + (6n
+22) — 2]+ 3[(p — 45) + (6bn + 23) — 2] + [2n — 1][(p — 45) + (6n + 24)
— 2]+ 3[(p —50) + (6bn + 20) — 2] + 3[(p — 50) + (6bn + 21) — 2] + 3[(p
—50) + (6n + 22) — 2] + 3[(p — 50) + (6n + 23) — 2] + [2n — 1][(p — 50)
+ (6n+24) — 2]+ 3[(p —53) + (6n + 21) — 2] + 3[(p — 53) + (6n + 22)
—2]+3[(p—53)+ (6bn+ 23) — 2]+ [2n — 1][(p — 53) + (6n + 24) — 2]
+ 3[(p —55) + (6n + 24) — 2] + 3[(p — 55) + (6n + 23) — 2] + [2n — 1][(p
—55) + (6n+24) — 2] + 3[(p — 58) + (6n + 23) — 2] + [2n — 1][(p — 58)
+ (6n+24) = 2]+ [2n—1][(p — 61) + (bn + 24) — 2] + [(76n —6) + (p
—15) =2]+[(76n—6)+ (p —18) = 2] + [(76n —6) + (p — 21) — 2]
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+[(76n—6) + (p —23) = 2] + [(76n — 6) + (p — 26) — 2] + [(76n — 6)
+(p—29)-2]+[(76n—6) + (76n — 32) — 2] + [(76n — 6) + (74n — 32)
= 2]+ [(76n—6)+ (p —37) = 2]+ [(76n—6) + (p —39) — 2] + [(76n
—6)+(p—42)-2]+[(76n—6) + (p — 45) — 2] + [-3n + 7][(76n — 6)
+ (74n — 45) = 2]+ [-3n+ 7][(76n — 6) + (p — 50) — 2] + [—3n

+ 7][(76n — 6) + (p — 53) — 2] + [-3n + 7][(76n — 6) + (p — 55) — 2]
+[-3n+7][(7T6n—6) + (p — 58) = 2] + [-3n + 7][(76n — 6) + (p — 61)
— 2]+ [-2n + 5][(76n — 6) + (72n — 56) — 2] + [—2n + 5][(76n — 6)

+ (68n —51) — 2] + [-2n + 5][(76n — 6) + (63n — 44) — 2] + [—2n

+ 5][(76n — 6) + (60n — 40) — 2] + [-2n + 5][(76n — 6) + (55n — 33) — 2]
+ [-2n + 5][(76n — 6) + (50n — 26) — 2] + [—2n + 5][(76n — 6) + (47n
—22) = 2]+ [-2n + 5][(76n — 6) + (42n15) — 2] + [—2n + 5][(76n — 6)
+ (38n—10) — 2]+ [(76n — 6) + (34n — 4) — 2] + [(76n — 8) + (p — 23)
= 2]+ [(76n—=8) + (p — 26) = 2] + [(76n —8) + (p — 29) — 2] + [(76n
—8)+ (76n—32) = 2]+ [(76n —8) + (74n — 32) — 2] + [(76n — 8) + (p
—37)=2]+[(76n—=8) + (p —39) — 2] + [(76n — 8) + (p — 42) — 2]

+ [(76n —8) + (p —45) — 2] + [-3n + 7][(76n — 8) + (74n — 45) — 2]
+[-3n+7][(76n —8) + (p —50) — 2] + [-3n + 7][(76n — 8) + (p — 53)
— 2]+ [-3n+7][(76n —8) + (p —55) — 2] + [-3n + 7][(76n —8) + (p
—58) = 2]+ [-3n+7][(76n —8) + (p — 61) — 2] + [—2n + 5][(76n — 8)
+ (72n — 56) — 2] + [-2n + 5][(76n — 8) + (68n — 51) — 2] + [—2n

+ 5][(76n — 8) + (63n — 44) — 2] + [-2n + 5][(76n — 8) + (60n — 40) — 2]
+ [-2n + 5][(76n — 8) + (55n — 33) — 2] + [—2n + 5][(76n — 8) + (50n
—26) — 2]+ [-2n + 5][(76n — 8) + (47n — 22) — 2] + [—2n + 5][(76n
—8) + (42n —15) — 2] + [-2n + 5][(76n — 8) + (38n — 10) — 2] + [(76n
—-8)+@B4n—-4)—-2]+[n+2][(79n—35)+ (37n —18) — 2] + [n

+ 2][(79n — 35) + (33n — 13) — 2] + [n + 2][(79n — 35) + (29n — 8) — 2]
+ [n+ 2][(79n — 35) + (26n — 4) — 2] + [n + 2][(79n — 35) + (22n + 1)
— 2]+ [n+2][(79n — 35) + (18n + 6) — 2] + [n + 2][(79n — 35) + (15n
+10) — 2] + [n + 2][(79n — 35) + (11n + 15) — 2] + [n + 2][(79n — 35)
+ (7n+ 20) — 2] + [n+ 2][(79n — 35) + (4n + 24) — 2] + [n + 2][(79n
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—35)+29-2]+[(79n—35) + (—2n + 32) — 2] + [n + 2][(74n — 32)
+ (28n —8) — 2]+ [n+ 2][(74n — 32) + (24n —3) — 2] + [n + 2][(74n
—32)+(20n+2)-2]+[n+2][(74n—32) + (17n+ 6) — 2] + [n
+ 2][(74n — 32) + (13n + 11) — 2] + [n + 2][(74n — 32) + (9n + 16) — 2]
+ [n+ 2][(74n — 32) + (bn + 20) — 2] + [n + 2][(74n — 32) + (2n + 25)
— 2]+ [-2n+ 5][(74n — 32) + 28 — 2] + 3[(74n — 32) + (n + 28) — 2]
+2n—-D[(74n—-32)+ (n+29) - 2]+ [13n—13][(p — 1) + (p — 60)
= 2]+ [52n=52][(p— 1D+ (p—93) = 2]+ [52n —=52][(p — 1) + (p — 95)
=21+ [52n=52][(p—1D+ (p—98) = 2]+ [52n = 52][(p — 1) + (p
—101) = 2]+ [52n =52][(p— 1) + (p — 103) — 2] + [52n = 52][(p — 1)
+(p—106) - 2]+ (52n—52)[(p— 1) + (p —109) — 2] + (52n — 52)[(p
-D+(p-111)-2]+(B2n-52)[(p—1) + (p — 114) — 2] + (52n
-52)[((p—-D+(p—-117) = 2]+ (52n = 52)[(p— 1) + (p — 119) — 2]
+(52n=-52)[p—1D)+(p—122) = 2]+ (13n—=13)[(p— 1) + (p — 123)
=2]+BIM=-39)[(p-1D+(p—-121)-2]+ BN -39)[(p-1) +(p
—120)-2]+ B -39 [(p—-1)+(p—118) = 2]+ (39 —-39)[(p—1)
+(p—-116)-2]1+ BM—-39)[(p— 1)+ (p —115) — 2] + (39n — 39)[(p
-D+(p-113)-2]+@BM-39)[(p—1) + (p—112) = 2]+ (39n
-39 [(-1D+(p—-110) = 2]+ (39— 39)[(p—1) + (p — 108) — 2]
+@BM-39[(p-1+(p-107)=-2]+ BIn—-39)[(p—1) + (p — 105)
—2]+BIM=-39)[(p-1)+(p—-104)—-2]+ B —-39)[(p—-1D +(p
—-102) =2]+ (B —-39)[(p—1)+ (p—100) = 2] + (39— 39)[(p—1)
+(P®—-99)-2]1+@BM-39)[p-1D+{P-97)—-2]+BM—-39)[(p—1)
+(P—-96)—-2]1+@BM-39)[p—-1D+(P—-94) - 2]+ (A3n—-13)[(p— 1)
t@-92)=2]+(n-D[P-2)+(@—-90) - 2]+ (Un—-H[P-2)+(p
—93) = 2]+ (Un-D[P-2)+(@-95) -2+ Un-D[P-2)+(
—98) — 2] + (4n — D)[(p — 2) + (p — 101) — 2] + (4n — D[(P - 2) + (p
~103) — 2] + (4n — H)[(p — 2) + (p — 106) — 2] + (4n — D[(p — 2) + (p
~109) — 2] + (4n - D)[(p— 2) + (p — 111) — 2] + (4n — D[(p — 2) + (p
—-114) -2+ (Un—-D[p-2)+(p—117) = 2]+ (4n— 4

Simplifying the above expression, we get
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SuveE(Gyyy (du + dy — 2) = —16445n2 — 438851n + 7768pn — 6139p + 457298

(9)
Yuver(Gny) (du + dy) = —16445n% — 429961n + 7768pn — 6139p + 446995  (h)

[7]

—16445n2-438851n+7768pn—6139p+457298
—16445n2-429961n+7768pn—6139p+446995

From (g) and (h) ABC(Gy;) =\/
Therfore, ABC(Gy,) = (—16445n% — 438851n + 7768pn — 6139p +

1 1
457298)2(—16445n% — 429961n + 7768pn — 6139p + 446995) 2

3 Numer cal Representation
The below table displays numerical values of the atom-bond connectivity index on

different step Values

Step Vaue k| ABC(Gyy)
0.1 0.9461
0.09 0.9489
0.08 0.9599
0.07 0.9653
0.06 —0.1319
0.05 —0.6458
0.04 —1.2977
0.03 —1.7570
0.02 1.0057
0.01 1.4017

Table:l Numerical values of the atom-bond connectivity index
4 Conclusion

In this article, this study explored the degree-based topological index namely the atom-
bond connectivity (ABC) index, for the Nanorod grapg Gy,-. Numerical values of the ABC index

are computed for step valuesof k ranging from 0.1 to 0.01 inincrementsof 0.01.

240
ISBN: 978-93-48505-23-1



Proceedings of the Inter national Conference on Algebraic Graph Theory,
Graph Theory and Topology — 9" & 10" January 2025

References

[1] Gary Chartrand, ping zhang,Introduction to graph Theory, Tata McGraw-Hill Publishing
Company Limited-Book;2006.

[2] Sowmya S,0n Topological Indices of cycle related graphs, ADV Math SCI Journal,
Vol:9,2020.

[3] Sonia S, Nadiu Dhanpal Jayram.,Effect of NaOH Concentration on structural, Surface
and antibacterial activity of CuO Nanorods, Synthesized by direct sonochemical method,
superlattice and microstructures, superlattices and microstructures 66:1-9.(2014).

[4] Sobiya S, Sujitha S,Angel Jebitha M.K, Graph parameters of a Nanorod graph, Journal of
Indonesia Mathematical Socity,(Communicated).

[5] EStrada E, Torres L,Rodriguez L,Gutman |, An atom-bond connectivity index modeling
the enthalpy of formation of alkanes, Indian J. Chem, 37A, 849-855, 1998.

[6] Sobiya S, Sujitha S, Angel Jebitha M.K, Distance based Topological Indices of a
Nanorod Graph, Indian Journal of Natural Sciences,vol:14,Issue 81,2023.

[7] Sobiya S, Sujitha S,Angel Jebitha M.K,Degree based topological indices of a Nanorod
graph,(Communicated).

241
ISBN: 978-93-48505-23-1



Editors

Dr. S. ASHA
Dr. D. NIDHA

%




	Page 2
	Page 1

