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Dear Delegates, Researchers and Readers,

I am delighted to share this message through the Proceedings of the International Conference on
Algebraic Graph Theory, Graph Theory and Topology. This conference exemplifies the power of
mathematics in bridging geographical gaps, fostering collaboration and advancing knowledge.

Algebraic Graph Theory and Topology have profound implications in pure mathematics, data
science, artificial intelligence and network analysis. Our hybrid conference featured esteemed
mathematicians worldwide, showcasing the diversity and depth of contributions from leading
researchers and emerging scholars.

I extend my sincere gratitude to the authors, reviewers and editors, for their tireless efforts in
making this publication possible. I also applaud the organizing committee's vision and hard work
in making this conference a resounding success.

I hope these proceedings inspire the scholarly community to further develop these fascinating
fields of mathematics.

Warm regards and best wishes,

Prof. Dr. A. J. S. Pravin
Correspondent/Secretary
Nesamony Memorial Christian College
Marthandam



Dear Delegates and Participants,

I am extremely excited that the Research Department of Mathematics is hosting an International
Conference on Algebraic Graph Theory, Graph Theory and Topology on January 9 and 10, 2025.

I extend my warmest greetings to the contributors and readers of the International Conference
Proceedings. This collection showcases outstanding research, creative thinking and teamwork
from global scholars, researchers and students. The conference's topics - Algebraic Graph Theory,
Graph Theory and Topology - illustrate the connections between pure mathematics and various
fields including science and technology.

The proceedings serve as a valuable resource for further research and a testament to the concepts
explored during the conference. I express my sincere gratitude to the organizers for compiling
this collection and commend the authors to advance in mathematical knowledge.

May the proceedings inspire readers and scholars to push the boundaries of knowledge, foster
meaningful collaborations and promote mathematics' continued growth as a science that shapes
our understanding of the world.

Congratulations to all contributors. I wish you great success in your future endeavours.

Warm regards,

Dr. R. Sheela Christy
Principal i/c
Nesamony Memorial Christian College
Marthandam



Dear colleagues and participants,

It is with immense pleasure and pride that I welcome you to the proceedings of the
“International Conference on Algebraic Graph Theory, Graph Theory and Topology”. This event
marks a significant step in advancing research and fostering collaboration in the realms of
mathematics and its interdisciplinary applications.

Algebraic Graph theory, Graph theory and Topology are pivotal areas of study, offering
powerful tools and insights that span various scientific domains. By bringing together scholars,
researchers, and practitioners from around the globe, this conference aims to spark innovative
ideas and promote meaningful discussions.

I extend my heartfelt gratitude to the organizing committee, contributors, and participants for
their dedication and commitment to making this event a success. Your collective efforts serve as
a testament to the vibrant intellectual community that we are privileged to be part of.

As you engage with the content of this publication, we invite you to reflect on the broader
implications of these works and their potential to create meaningful impact in our fields and
beyond. May this document serve as a valuable resource for advancing your endeavours and
fostering further collaborations.

Best wishes for a fruitful and engaging experience!

Sincerely,
Dr. A. Pramila Inpa Rose
Head, Department of Mathematics
Nesamony Memorial Christian College
Marthandam
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SOME NEW GRAPH PARAMETERS 
 

                                       R. Kala 
Department of Mathematics 

Manonmaniam Sundaranar University, Tirunelveli 
 

Abstract 
 

In this talk we shall have an insight into the following four new graph parameters. 
(i) Strongly Regular graphs 
(ii) Triameter of a graph 
(iii) Proper diameter of a graph 
(iv) Neighbourhood Polynomial of a graph 

          A graph 𝐺 is said to be strongly regular with parameters (𝑛; 𝑘; 𝜆; µ) if it is a 𝑘- 
regular 𝑛-vertex graph in which any two adjacent vertices have 𝜆 common neighbours 
and any two non-adjacent vertices have µ common neighbours. 
          The triameter of 𝐺 is defined as 𝑚𝑎𝑥{𝑑(𝑢, 𝑣) +  𝑑(𝑣, 𝑤) +  𝑑(𝑢, 𝑤) ∶  𝑢, 𝑣, 𝑤 ∈

𝑉(𝐺)} and is denoted by 𝑡𝑟(𝐺). It is obvious that3 ≤  𝑡𝑟(𝐺)  ≤  2𝑛 − 2 . We 
determine several upper bounds for this parameter and prove that they are best 
possible. We also determine the relationship between this parameter and several other 
parameters. 
          A proper edge-coloring of a graph is a coloring in which adjacent edges receive 
distinct colors. A path is properly colored if consecutive edges have distinct colors, 
and an edge-colored graph is properly connected if there exists a properly colored path 
between every pair of vertices. In such a graph, we introduce the notion of the graphs 
proper diameter which is a function of both the graph and the coloring and define it to 
be the maximum length of a shortest properly colored path between any two vertices in 
the graph. 

         For 0 ≤ 𝑖 ≤ 𝑛 − 2, the 𝑖 − common neighbor set of 𝐺 is defined as 
𝑁(𝐺, 𝑖) = {(𝑢, 𝑣) ∶ 𝑢, 𝑣 ∈ 𝑉(𝐺), 𝑢 ≠ 𝑣 and |𝑁(𝑢)  ∩  𝑁(𝑣)| = 𝑖}. The  common 
neighbor polynomial of 𝐺 denoted by 𝑁[𝐺; 𝑥] is defined as 𝑁[𝐺; 𝑥] =

∑ |𝑁(𝐺, 𝑖)|𝑛−2
𝑖=0 𝑥𝑖. Note that 𝑁[𝐺, 𝑥] is a polynomial of degree at most n-2. 

Also isomorphic graphs have same common neighbor polynomials. 

References 
[1] Angsuman Das, Triameter of graphs, Discussiones   Mathematicae 
    Graph Theory 41(2021), pp 601-616. 

[2] Vincent Coll, The proper diameter of a graph, Discussiones Mathematicae  
Graph Theory 40(2020), pp 107-125. 

 
 
 

 



ON (𝒂, 𝒅) −HYPEREDGE ANTIMAGIC LABELING 

OF CERTAIN CLASSES OF HYPERGRAPHS: 

A NEW NOTION 
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1Department of Mathematics, University of Jember, Indonesia 
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Abstract 

 
     By a hypergraph 𝐺, we mean a generalization of a graph 𝐺 in which  an edge 

can join any number of vertices. In an ordinary graph, an edge connects exactly two 
vertices, but in hypergraph, an edge or hyperedge may connect more than two 
vertices. Let 𝐺 =  (𝑉, 𝐸) be a   hypergraph, thus 𝑉 contains a finite set of vertices, 
and 𝐸 contains a hyperedge of subset of 𝑉. Some vertices are said to be adjacent if 
they are elements of a hyperedge. A vertex v is said to be incident to an hyperedge e 
If 𝑣 ∈ 𝑒. Similarly, a hyperedge 𝑒 is said  to be incident to vertex v if 𝑣 ∈ 𝑒. 
Furthermore, a bijection 𝑓 from 𝑉(𝐺) into {1,2,3, . . . , |𝑉|} is called and 
(𝑎, 𝑑) −hyperedge antimagic labeling of hypergraph 𝐺 if the hyperedge weights  
𝑊(𝑒) = ∑ 𝑓(𝑣)𝑣∈𝑒 Form an arithmetic progression starting from 𝑎 and having common 
difference 𝑑. In this paper, we initiate to study hyperedge antimagic labeling of certain 
classes of hypergraphs, including analyze the properties of the antimagicness of any 
hypergraph. 

 
Keywords   : Hypergraphs, Hyperedge Antimagic Labeling, Hyperedge weights. 
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THE K-UNIFORM HYPER GRAPH OF 
COMMUTATIVE RINGS 

 
K. Selvakumar 

Department of Mathematics 
ManonmaniamSundaranarUniversity 

Tirunelveli, Tamil Nadu, India 
email: selva_158@yahoo.co.in 

 

                                            Abstract 

     The idea of 𝑘 −zero-divisor hypergraph of a commutative ring 𝑅 was introduced 
by Ch. Eslanchi and A. M. Rahimi [1] in 2007. Actually they extended the 
concept of zero-divisor of a commutative ring 𝑅 to that of 𝑘-zero-divisor and 
investigating the interplay between the ring-theoretic properties of 𝑅 and the 
hypergraph-theoretic properties of its associated 𝑘-uniform hypergraph. They 
defined, for 𝑘 ≥ 2, a non zero non unit element 𝑎1 as a 𝑘-zero-divisor in 𝑅 if 
there exist 𝑘 − 1 distinct elements 𝑎2, . . . , 𝑎𝑘  different from 𝑎1 such that 𝑎1, . . . , 𝑎𝑘 = 0, 
and no product of elements of any proper subset of {𝑎_1, . . . , 𝑎_𝑘} is zero and 
denote 𝑍(𝑅, 𝑘) as the set of all 𝑘-zero-divisors in 𝑅. The 𝑘-zero-divisor 
hypergraph of 𝑅, denoted by 𝐻𝑘(𝑅), is a hypergraph with vertex set 𝑍(𝑅, 𝑘), and 
for distinct elements 𝑥1, 𝑥2, . . . , 𝑥𝑘  in 𝑍(𝑅, 𝑘), the set {𝑥1, 𝑥2, . . . , 𝑥𝑘} is an edge of 

𝐻𝑘(𝑅) if and only if ∏ 𝑥𝑖 = 0 𝑘
𝑖=1  and the product of any (𝑘 − 1) elements of 

{𝑥1, 𝑥2, . . . , 𝑥𝑘} is non zero. In this talk, we discuss some properties of 𝑘 −zero-
divisor hypergraph of 𝑅 and we will  generalize this notion by replacing elements 
whose product is zero with elements whose product lies in some ideal 𝐼 of 𝑅. 

                                                

                                                  References 
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252. 
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OMEGA INVARIANT AND ALGEBRAIC GRAPHS 

Ismail Naci Cangul, Ali Berkan Bektas, Yeliz Kara 

1Bursa Uludag University, Mathematics, Bursa, Turkey, 
cangul@uludag.edu.tr 

 

Abstract 

The omega invariant was introduced in 2018 to determine several algebraic, combinatoric and 
topological properties of all realizations of a given degree sequence or of any given graph. It is 
directly related to the Euler characteristic and the cyclomatic number of the graph. It helps one 
to find many algebraic, geometric, graph theoretical, number theoretical, topological and 
combinatorial properties of all the realizations of the given degree sequence including cyclicity, 
connectivity, numbers of components, multiple edges, loops, cycles, chords, pendant and 
support vertices, etc. Since 2019, several applications of this invariant have been found. In this 
work, we shall recall the omega invariant together with some fundamental combinatoric 
properties and also apply it to study the constructive properties of idempotent total graphs as 
algebraic graphs.  

Keywords: graph characteristic, degree sequence, omega invariant, idempotent total graph. 

 

References 
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Abstract 

Let  𝑆 be a subset of  𝑉(𝐺) and let 𝐺: (𝑉, 𝜎, 𝜇) be a fuzzy graph. A connected geodetic 

dominating set of a fuzzy graph 𝐺: (𝑉, 𝜎, 𝜇) is a geodetic dominating set 𝑆 such that the sub 

graph induced by 𝑆, 〈𝑆〉, is connected. The minimum cardinality among all the connected 

geodetic dominating set of 𝐺 is called the connected geodetic domination number of 𝐺 and is 

denoted by 𝛾𝑓𝑐𝑔(𝐺). In this paper the concept of connected geodetic domination number of 

fuzzy graph is introduced and also proves some important results related to connected geodetic 

domination number of fuzzy graph. 

Keywords: geodesic set, dominating set, geodetic dominating set, connected geodetic 

dominating set, connected geodetic domination number. 

2020 Mathematics Subject Classification (AMS): 05C72, 05C69, 05C12. 

1. Introduction 

Zadeh in 1965[12] developed a mathematical phenomenon for describing the 

uncertainties prevailing in day-to-day life situations by introducing the concept of fuzzy sets. 

The theory of fuzzy graphs was later on developed by Rosenfeld in the year 1975[7]. A fuzzy 

graph is a triplet 𝐺: (𝑉, 𝜎, 𝜇) where 𝑉 is a vertex set, 𝜎 is a fuzzy subset on 𝑉 and 𝜇 is a fuzzy 

relation on 𝜎 such that 𝜇(𝑥, 𝑦) ≤ 𝜎(𝑥)⋀𝜎(𝑦)∀𝑥, 𝑦 ∈ 𝑉. We assume that 𝑉 is finite and 

nonempty, 𝜇 is reflexive and symmetric. In all the examples 𝜎 is chosen suitably. Also we 

denote the underlying crisp graph by 𝐺∗: (𝜎∗, 𝜇∗)  where 𝜎∗ = {𝑥 ∈ 𝑉: 𝜎(𝑥) > 0} and 𝜇∗ =

{(𝑥, 𝑦) ∈ 𝑉 × 𝑉: 𝜇(𝑥, 𝑦) > 0}. Here we take 𝜎∗ = 𝑉. For basic fuzzy graph theoretic 

terminology we refer to Nagoorgani and Chandrasekaran VT [4]. A fuzzy graph 𝐺: (𝑉, 𝜎, 𝜇) is 

a complete fuzzy graph if 𝜇(𝑥, 𝑦) ≤ 𝜎(𝑥)⋀𝜎(𝑦) for every 𝑥, 𝑦 ∈ 𝜎∗.  
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Domination in fuzzy graph is one of the widest fields which have witness a tremendous 

growth recently. The term domination in crisp graph was first introduced by Ore[6]. The 

concept of domination in fuzzy graph was introduced by A. Somasundaram and S. 

Somasundaram [9]. Let 𝐺: (𝑉, 𝜎, 𝜇) be a fuzzy graph. Let 𝑥 and 𝑦 be any two vertices of 𝐺. We 

say that 𝑥 dominates 𝑦 if ( 𝑥, 𝑦) is a strong arc. A subset  𝐷 of  𝑉 is called a dominating set of 

𝐺 if for every 𝑦 ∉ 𝐷, there exists 𝑥 ∈ 𝐷 such that 𝑥 dominates 𝑦. A dominating set 𝑆 is a 

connected dominating set if it induces a connected sub graph in 𝐺. 

If there is no shorter strong path from 𝑥 to 𝑦, then a strong path 𝑃 from 𝑥 to 𝑦  is said 

to be geodesic, and the length of a 𝑥 − 𝑦 geodesic is the geodesic distance from 𝑥 to 𝑦, indicated 

by (𝑥, 𝑦). Let 𝑆 represent the collection of vertices in a fuzzy connected graph 𝐺. The set of all 

vertices in 𝑆 as well as the vertices that lie on the geodesic between S's vertices is known as the 

geodesic closure (𝑆) of 𝑆. Any set of 𝐺 with a minimum number of vertices is referred to as a 

geodesic basis for 𝐺, and 𝑆 is said to be a geodesic set of 𝐺 if (𝑆) = 𝑉(𝐺). The number of 

vertices on a geodesic basis determines its order. A fuzzy graph's geodesic number, indicated 

by the symbol 𝑔𝑛(𝐺), is the order of a geodesic basis of 𝐺. In this paper, the connected geodetic 

domination number of fuzzy graph is introduced and its limiting bounds are identified.  

2. Connected geodetic domination number of a fuzzy graph 

In this section, we introduce the concept of connected geodetic domination in fuzzy 

graphs and its bounds are discussed.  

Definition 2.1. A connected geodetic domination set of a fuzzy graph 𝐺: (𝑉, 𝜎, 𝜇) is a geodetic 

dominating set 𝑆 such that the sub graph induced by 𝑆, 〈𝑆〉, is connected. The minimum 

cardinality among all the connected geodetic dominating set of 𝐺 is called the connected 

geodetic domination number of 𝐺 and is denoted by 𝛾𝑓𝑐𝑔(𝐺).  

Example 2.2. For the fuzzy graph  given in Fig.1. the arcs (𝑣1, 𝑣2) and (𝑣5, 𝑣6) are 𝛿- arcs and 

all the other arcs are strong arcs. Here 𝑆1 = {𝑣1, 𝑣2, 𝑣5, 𝑣6}  is a minimum geodetic dominating 

set and the geodetic domination number is 𝛾𝑓𝑔(𝐺) = 2.1 . Also, 𝑆2 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6} is 

a minimum connected geodetic dominating set and the connected geodetic domination number 

is 𝛾𝑓𝑐𝑔(𝐺) = 3 . Thus the geodetic domination number and connected geodetic domination 

number are different. 
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Theorem 2.3. For the complete fuzzy graph 𝐺 = 𝐾𝑛: (𝑉, 𝜎, 𝜇), (𝑛 ≥ 2), 𝛾𝑓𝑐𝑔(𝐺) = 𝑝, where 

𝑝 = ∑ 𝜎(𝑢)𝑢∈𝑉 . 

Proof. Since 𝐺 is a complete fuzzy graph, all arcs are strong arcs and each vertex is adjacent 

to all other vertices. No vertex will lie on the geodesic path of any pair of vertices (𝑥, 𝑦) ∈ 𝜇∗. 

Therefore the complete vertex set is the only connected geodetic dominating set and hence 

𝛾𝑓𝑐𝑔(𝐺) = 𝑝. 

Proposition 2.4. Any connected geodetic dominating set of a fuzzy graph 𝐺: (𝑉, 𝜎, 𝜇) is a 

geodetic dominating set of 𝐺. 

Remark 2.5. The converse of Proposition 2.4 need not be true. 

Example 2.6. Consider the fuzzy graph in Fig. 2. In this graph 𝑆 = {𝑎, 𝑐} is a geodetic 

dominating set, but not a connected geodetic dominating set, since the induced sub graph 〈𝑆〉 

is not connected. 

 

Proposition 2.7. For any connected fuzzy graph 𝐺: (𝑉, 𝜎, 𝜇), 𝛾𝑓𝑔(𝐺) ≤ 𝛾𝑓𝑐𝑔(𝐺). 

Proposition 2.8. If 𝐺: (𝑉, 𝜎, 𝜇) is a non-trivial fuzzy path 𝑃𝑛 then 𝛾𝑓𝑐𝑔(𝐺) = 𝑝, where 𝑝 =

∑ 𝜎(𝑢)𝑢∈𝑉 . 
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Definition 2.9. A minimal connected geodetic dominating set 𝑆 in a fuzzy graph 𝐺: (𝑉, 𝜎, 𝜇) is 

a connected geodetic dominating set which contains no connected geodetic dominating set as 

a proper set. 

Remark 2.10. For any minimal connected dominating set 𝑆 of a fuzzy graph 𝐺: (𝑉, 𝜎, 𝜇), if 𝑆 

is also a geodetic set of 𝐺, then 𝑆 is minimal connected geodetic dominating set in a fuzzy 

graph 𝐺. 

Example 2.11. Consider the fuzzy graph in Fig.3. In this graph, the minimal connected 

dominating set is 𝑆 = {𝑎, 𝑏}, which is also a geodetic set of 𝐺. Hence 𝑆 = {𝑎, 𝑏} is a minimal 

connected geodetic dominating set of 𝐺.  

 

Remark 2.12. [1] For a connected fuzzy graph 𝐺: (𝑉, 𝜎, 𝜇) on 𝑛 vertices , 0 ≤ 𝛾𝑓𝑔(𝐺) ≤ 𝑝, 

where 𝑝 = ∑ 𝜎(𝑢)𝑢∈𝑉 . 

Remark 2.13. For a connected fuzzy graph 𝐺: (𝑉, 𝜎, 𝜇) on 𝑛 vertices, 0 ≤ 𝛾𝑓𝑐𝑔(𝐺) ≤ 𝑝, where 

𝑝 = ∑ 𝜎(𝑢)𝑢∈𝑉 . 

Theorem 2.14. For connected fuzzy graph 𝐺: (𝑉, 𝜎, 𝜇) having maximum degree ∆=∨

{𝑑(𝑣)/𝑣 ∈ 𝑉}, 𝛿 =∧ {𝑑(𝑣)/𝑣 ∈ 𝑉} order 𝑝 = ∑ 𝜎(𝑢)𝑢∈𝑉 , and size 𝑞 = ∑ 𝜇(𝑢, 𝑣)𝑢≠𝑣 ,then  

𝑝

1+∆
≤ 𝛾𝑓𝑐𝑔(𝐺) ≤ 2 (𝑞 −

𝑝

2
) + 2. 

Proof. The vertex set 𝑉 of the fuzzy graph 𝐺: (𝑉, 𝜎, 𝜇) is a connected geodetic dominating set 

of 𝐺 with order 𝑝. But it may not be the minimum one. Therefore, 𝛾𝑓𝑐𝑔(𝐺) ≤ 𝑝 and for all 

connected fuzzy graph 𝐺 we have 𝑞 ≥ 𝑝 − 1. Thus, 𝛾𝑓𝑐𝑔(𝐺) ≤ 𝑝 = 2(𝑝 − 1) − 𝑝 + 2 ≤

2(𝑞 −
𝑝

2
) + 2. For the time being, we assume that 𝛾𝑓𝑐𝑔(𝐺) = 𝛿, where 𝛿 ≤ 𝑝. Consider a 

connected geodetic dominating set 𝑆 = {𝑢1, 𝑢2, … , 𝑢𝛿} with 𝛾𝑓𝑐𝑔(𝐺) = 𝛿. For 
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 𝑎 ∈ {1, 2, … , 𝛿}, we can write ∑ 1 + deg (𝑢𝑎
𝛿
𝑎=1 ) ≥ 𝑝 and deg (𝑢𝑎) ≤ ∆ for each 𝑎,  

          𝑝 ≤ ∑ (1 + deg (𝑢𝑎
𝛿
𝑎=1 )) ≤ ∑ (1 + ∆) ≤ 𝛿(1 + ∆)𝛿

𝑎=1 . 

It follows that 
𝑝

1+∆
≤  𝛾𝑓𝑐𝑔(𝐺) ≤ 2 (𝑞 −

𝑝

2
) + 2. 

Remark 2.15. For any connected fuzzy graph 𝐺: (𝑉, 𝜎, 𝜇) on 𝑛 vertices, 0 ≤ 𝛾𝑓𝑔(𝐺) ≤

𝛾𝑓𝑐𝑔(𝐺) ≤ 𝑝, where 𝑝 = ∑ 𝜎(𝑢)𝑢∈𝑉 . 

Proof. By Remark 2.12, it is clear that  𝛾𝑓𝑔(𝐺) ≥ 0. Now by Definition 2.1, every connected 

geodetic dominating set is also a geodetic dominating set of 𝐺 and so 𝛾𝑓𝑔(𝐺) ≤ 𝛾𝑓𝑐𝑔(𝐺). Also 

note that 𝑉(𝐺)induces a connected geodetic dominating set of 𝐺 and it is obvious that 

𝛾𝑓𝑐𝑔(𝐺) ≤ 𝑝. Thus 0 ≤ 𝛾𝑓𝑔(𝐺) ≤ 𝛾𝑓𝑐𝑔(𝐺) ≤ 𝑝. 

Corollary 2.16. Let 𝐺: (𝑉, 𝜎, 𝜇) be any connected fuzzy graph on 𝑛 vertices. If 𝛾𝑓𝑔(𝐺) = 𝑝, 

then 𝛾𝑓𝑐𝑔(𝐺) = 𝑝, where 𝑝 = ∑ 𝜎(𝑢)𝑢∈𝑉 . 

Definition 2.17. [8] A vertex 𝑣 in a fuzzy graph 𝐺: (𝑉, 𝜎, 𝜇) is called extreme vertex, if the 

fuzzy sub graph induces by its neighbors is a complete fuzzy graph. 

 Proposition 2.18. Each extreme vertex of a fuzzy graph 𝐺: (𝑉, 𝜎, 𝜇) belongs to every geodetic 

dominating set of 𝐺. 

Proof. Let 𝑆 be a geodetic dominating set of 𝐺 and 𝑥 be an extreme vertex of 𝐺. Let 

{𝑥1, 𝑥2, … , 𝑥𝑛} be the neighbors of 𝑥 and (𝑥, 𝑥𝑖) (1 ≤ 𝑖, 𝑗 ≤ 𝑛) be the edges incident on 𝑥. Since 

𝑥 is an extreme vertex, 𝑥𝑖 and 𝑥𝑗are adjacent for 𝑖 ≠ 𝑗  (1 ≤ 𝑖, 𝑗 ≤ 𝑛). Then any geodetic 

dominating set which contains 𝑥, is either (𝑥𝑖, 𝑥)   (1 ≤ 𝑖 ≤ 𝑛) or 𝑦1, 𝑦2, … , 𝑦𝑚, 𝑥𝑖, 𝑥 where 

each 𝑦𝑖    (1 ≤ 𝑖 ≤ 𝑛) is different from 𝑥𝑖. Thus each extreme vertex of a fuzzy graph 

𝐺: (𝑉, 𝜎, 𝜇) belongs to every geodetic dominating set of 𝐺. 

Proposition 2.19. Each extreme vertex of a fuzzy graph 𝐺: (𝑉, 𝜎, 𝜇) belongs to every connected 

geodetic dominating set of 𝐺. 

Proof. Since every connected geodetic dominating set is also a geodetic dominating set, the 

result follows from Proposition 2.19. 

Proposition 2.20. Let 𝐺: (𝑉, 𝜎, 𝜇) be a connected fuzzy graph such that the underlying crisp 

graph  𝐺∗ contains at least one cut-vertex and let 𝑆 be a connected geodetic dominating set of 

𝐺. If 𝑥 is a cut-vertex of 𝐺∗, then every component of 𝐺∗ − {𝑥} contains an element of 𝑆. 
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Proof. Let 𝑥 be a cut-vertex of  𝐺∗ and let 𝑆 be a connected geodetic dominating set of 𝐺. 

Suppose that there exists a component say 𝐺1
∗, of 𝐺∗ − {𝑥} such that 𝐺1

∗ contains no vertex of 

𝑆. Let 𝑦 ∈ 𝑉(𝐺1
∗). Since 𝑆 is a connected geodetic dominating set of 𝐺, there exists a pair of 

vertices 𝑎 and 𝑏 in 𝑆 such that 𝑦 lies on some 𝑎 − 𝑏 geodesic path 𝑃: 𝑎 =  𝑦0, 𝑦1, … , 𝑦, … , 𝑦𝑛 =

𝑏 in 𝐺. Since 𝑥 is a cut-vertex of  𝐺∗, the 𝑎 − 𝑦 geodesic sub path of 𝑃 and the 𝑦 − 𝑏 geodesic 

sub path of 𝑃 both contain 𝑥. Then it follows that 𝑃 is not a path, contrary to assumption. 

Proposition 2.21. Let 𝐺: (𝑉, 𝜎, 𝜇) be a connected fuzzy graph such that 𝐺∗ contains at least 

one cut-vertex. Then every cut-vertex of 𝐺∗ belongs to every connected geodetic dominating 

set of 𝐺. 

Proof. Let 𝑥 be a cut-vertex of  𝐺∗ and let 𝐺1
∗, 𝐺2

∗, … , 𝐺𝑎
∗  (𝑎 ≥ 2) be the components of 𝐺 −

{𝑥}. Let 𝑆 be any connected geodetic dominating set of 𝐺. Then by Proposition 2.20, 𝑆 contains 

at least one element from each component 𝐺𝑖  
∗ (𝑙 ≤ 𝑖 ≤ 𝑎). Since 〈𝑆〉 is connected, it follows 

that 𝑥 ∈ 𝑆. 

Theorem 2.22. For a complete bipartite fuzzy graph 𝐺 = 𝐾𝑟,𝑠 = (𝑉1 ∪ 𝑉2, 𝜎, 𝜇) with partite 

sets 𝑉1 and 𝑉2  having number of vertices 𝑟 and 𝑠 respectively, 

(i)  𝛾𝑓𝑐𝑔(𝐺) = 𝑝 where 𝑝 = ∑ 𝜎(𝑢)𝑢∈𝑉 , if 𝑟 = 1, 𝑠 ≥ 1. 

(ii)  𝛾𝑓𝑐𝑔(𝐺) = min {∑ 𝜎(𝑎) + 𝑚𝑖𝑛𝑏𝜖𝑉2𝜎(𝑏),𝑎∈𝑉1  ∑ 𝜎(𝑏) + 𝑚𝑖𝑛𝑎𝜖𝑉1𝜎(𝑎)𝑏∈𝑉2 }, if 𝑟 =

𝑠 = 2. 

(iii)  𝛾𝑓𝑐𝑔(𝐺) = ∑ 𝜎(𝑎) + 𝑚𝑖𝑛𝑏𝜖𝑉2𝜎(𝑏) 𝑎∈𝑉1  if 𝑟 = 2, 𝑠 ≥ 3. 

(iv)  𝛾𝑓𝑐𝑔(𝐺) = 𝑚𝑖𝑛𝑎1,𝑎2 ∈𝑉1
[𝜎(𝑎1) + 𝜎(𝑎2)] + 𝑚𝑖𝑛𝑏1,𝑏2 ∈𝑉2

[𝜎(𝑏1) + 𝜎(𝑏2)], if 𝑟, 𝑠 ≥ 3. 

Proof. 

(i) If the set 𝑉1 having single vertex then the underlying crisp graph 𝐾1,𝑠 (𝑠 ≥ 1) then 

any connected geodetic dominating set must contains every vertices in 𝐺. 

Therefore 𝛾𝑓𝑐𝑔(𝐺) = ∑ 𝜎(𝑢) =𝑢∈𝑉1∪𝑉2 𝑝 . 

(ii) If the sets 𝑉1  and 𝑉2 each having two vertices. In 𝐾2,2, all the arcs are strong. Also 

each vertex in  𝑉1 is adjacent with all the vertices in  𝑉2. Therefore, the minimal 

connected geodetic dominating sets consists of three vertices such that two vertices 

from one partite set and the other is from the other partite set. Hence  𝛾𝑓𝑐𝑔(𝐺) =

min {∑ 𝜎(𝑎) + 𝑚𝑖𝑛𝑏𝜖𝑉2𝜎(𝑏),𝑎∈𝑉1  ∑ 𝜎(𝑏) + 𝑚𝑖𝑛𝑎𝜖𝑉1𝜎(𝑎)𝑏∈𝑉2 }. 

(iii) Suppose 𝑉1 consists of two vertices and 𝑉2 consists of more than two vertices. So in 



Proceedings of the International Conference on Algebraic Graph Theory,                                              
Graph Theory and Topology – 9th & 10th January 2025 

7 
 
ISBN: 978-93-48505-23-1 

this complete bipartite fuzzy graph any two vertices of a partite set is geodetic 

dominate with all the vertices of the other partite set. But it is not connected. Hence 

the minimum connected geodetic dominating sets consists of three vertices from 𝑉1 

and  the other one is from 𝑉2. Hence  𝛾𝑓𝑐𝑔(𝐺) = ∑ 𝜎(𝑎) +𝑚𝑖𝑛𝑏𝜖𝑉2𝜎(𝑏) 𝑎∈𝑉1 . 

(iv) Let 𝑉1 = {𝑎1, 𝑎2, … , 𝑎𝑚} and 𝑉1 = {𝑏1, 𝑏2, … , 𝑏𝑛} be the partitions of the complete 

bipartite graph 𝐺. In 𝐺 every vertex in 𝑉1 is linked with every vertex in 𝑉2. Moreover 

all the arcs are strong and also any vertex will never lies on the shortest path between 

any other pair other pair vertices. Also two vertices from each partite set of 𝐺 say 𝑆 =

{𝑎𝑖, 𝑎𝑖+1, 𝑏𝑗 , 𝑏𝑗+1}. Each path 𝑎𝑖, 𝑎𝑖+1 contains all the vertices of 𝑉2 as an internal 

vertices and the path 𝑏𝑗 , 𝑏𝑗+1 contains all the vertices of 𝑉1 as an internal vertices. 

Clearly the set 𝑆 is connected geodetic dominating set. Therefore the minimal 

connected geodetic dominating sets are the sets consists of four vertices such that two 

vertices in 𝑉1 and the remaining two vertices in 𝑉2. Thus  𝛾𝑓𝑐𝑔(𝐺) =

𝑚𝑖𝑛𝑎1,𝑎2 ∈𝑉1
[𝜎(𝑎1) + 𝜎(𝑎2)] + 𝑚𝑖𝑛𝑏1,𝑏2 ∈𝑉2

[𝜎(𝑏1) + 𝜎(𝑏2)]. 

Example 2.23. Consider the complete bipartite fuzzy graph  𝐺 = 𝐾𝑟,𝑠: (𝑉1 ∪ 𝑉2, 𝜎, 𝜇) is 

shown in Fig.4. with partition sets are 𝑉1 = {𝑎1, 𝑎2, 𝑎3, 𝑎4},  𝑉2 = {𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑏5} with 

𝜎(𝑎1) = 0.4, 𝜎(𝑎2) = 0.2, 𝜎(𝑎3) = 0.6, 𝜎(𝑎4) = 0.5, 𝜎(𝑎1) = 0.4𝜎(𝑏1) = 0.2, 𝜎(𝑏2) =

0.1, 𝜎(𝑏3) = 0.8, 𝜎(𝑏4) = 0.4, 𝜎(𝑏5) = 0.6 and edge membership values are shown in Fig. 

4. Here 𝑟, 𝑠 ≥ 3, so  𝛾𝑓𝑐𝑔(𝐺) = 𝑚𝑖𝑛𝑎1,𝑎2 ∈𝑉1
[𝜎(𝑎1) + 𝜎(𝑎2)] + 𝑚𝑖𝑛𝑏1,𝑏2 ∈𝑉2

[𝜎(𝑏1) +

𝜎(𝑏2)]=0.6+0.3=0.9. Thus the minimum connected geodetic dominating set is  𝑆 =

{𝑎1, 𝑎2, 𝑏1, 𝑏2} and the connected geodetic domination number is 0.9. 
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Proposition 2.24.  If 𝐺: (𝑉, 𝜎, 𝜇) is a connected fuzzy graph on 𝑛 ≥ 3 vertices containing no 

𝛿- arcs such that 𝑥 is a cut-vertex of 𝐺∗ of degree 𝑛 − 1, then 𝛾𝑓𝑐𝑔(𝐺) = 𝑝 where 𝑝 =

∑ 𝜎(𝑢)𝑢∈𝑉 . 

Proof. Let 𝑆 be any connected geodetic dominating set of 𝐺 and 𝑥 be a cut-vertex of 𝐺∗ of 

degree 𝑛 − 1. Then by Proposition 2.21, 𝑥 ∈ 𝑆. 

Claim: 𝑆 = 𝑉(𝐺) is a minimum connected geodetic dominating set of 𝐺. 

Otherwise, there exists a set 𝑊 ⊂ 𝑉(𝐺) such that 𝑊 is a connected geodetic dominating set of 

𝐺. By Proposition 2.21, 𝑥 ∈ 𝑊. Since 𝑊 ⊂ 𝑉(𝐺), there exists a vertex 𝑎 ∈ 𝑉 such that 𝑎 ∉ 𝑊. 

Since 𝑊 is a connected geodetic dominating set of 𝐺, the vertex 𝑎 lies on a geodesic joining a 

pair of vertices 𝑢 and 𝑣 of 𝑊. Let the geodesic be 𝑃: 𝑢,… , 𝑥, 𝑎, … , 𝑏. Then we have 𝑎 ≠ 𝑢, 𝑣. 

Case (i): Suppose 𝑢 = 𝑥, then the arc (𝑥, 𝑣) is the only geodesic joining 𝑥 and 𝑣, since 𝑥 is 

adjacent to every vertex of 𝐺. 

Case (ii): Suppose 𝑢 ≠ 𝑥, then 𝑢 − 𝑥 − 𝑣 is the only geodesic joining 𝑢 and 𝑣. Thus in any 

case 𝑃 is not an 𝑢 − 𝑣 geodesic, which is a contradiction. So 𝑆 = 𝑉(𝐺) is the only connected 

geodesic domination number of 𝐺. Hence 𝛾𝑓𝑐𝑔(𝐺) = 𝑝. 

Remark 2.25. The converse of Proposition 2.24 is not true. For the fuzzy graph 𝐺 given in Fig. 

5, 𝑆 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒} is a minimum connected geodetic dominating set of 𝐺 and then  𝛾𝑓𝑐𝑔(𝐺) =

1.5 = 𝑝. But no vertex of degree 𝐺∗ of degree 𝑛 − 1. 

 

 

Theorem 2.26. For any pair 𝑟, 𝑛 of integers with 3 ≤ 𝑟 ≤ 𝑛, there exists a connected fuzzy 

graph 𝐺: (𝑉, 𝜎, 𝜇) on 𝑛 vertices such that  𝛾𝑓𝑐𝑔(𝐺) = ∑ 𝜎(𝑎𝑖
𝑟
𝑖=1 ). 
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Proof. We construct a connected fuzzy graph 𝐺: (𝑉, 𝜎, 𝜇) on  𝑛 vertices having connected 

geodetic domination number ∑ 𝜎(𝑎𝑖
𝑟
𝑖=1 ) as follows: 

Let 𝑃𝑟: 𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑟 be a path on 𝑟 vertices with 𝜎(𝑎𝑖) = 0. 𝑖 (0 ≤ 𝑖 ≤ 𝑟) such that 

𝜇(𝑎𝑖, 𝑎𝑖+1) = 𝜎(𝑎𝑖) ∧ 𝜎(𝑎𝑖+1) (1 ≤ 𝑖 ≤ 𝑟 − 1). Add new vertices 𝑏1, 𝑏2, … , 𝑏𝑛−𝑟, each 

having membership value 𝜎(𝑏𝑗) =∧ { 𝜎(𝑎𝑖)}  (1 ≤ 𝑖 ≤ 𝑟)  and join each 𝑏𝑗   (1 ≤ 𝑗 ≤ 𝑛 − 𝑟) 

with 𝑎1 and 𝑎3 taking 𝜇(𝑎𝑖, 𝑏𝑗) = 𝜎(𝑎𝑖) ∧  𝜎(𝑏𝑗), 𝑖 = 1,3 and 1 ≤ 𝑗 ≤ 𝑛 − 𝑟, thereby 

obtaining a fuzzy graph 𝐺 as shown in Fig. 6. 

 

Then 𝐺 is a connected fuzzy graph on 𝑛 vertices and 𝑆 = {𝑎3, 𝑎4, … , 𝑎𝑟} is the set of all cut-

vertices of the underlying crisp graph 𝐺∗ and all the extreme vertices of 𝐺. It follows from 

Proposition 2. 19 and 2.21 that 𝛾𝑓𝑐𝑔 (𝐺) ≥ ∑ 𝜎(𝑎𝑖
𝑟
𝑖=3 ). Clearly, 𝑆 is not a geodetic dominating 

set of 𝐺, since (𝑆) ≠ 𝑉(𝐺) and thus not a connected geodetic dominating set of 𝐺. 

So, 𝛾𝑓𝑐𝑔(𝐺) > ∑ 𝜎(𝑎𝑖
𝑟
𝑖=3 ). 

 Note that neither 𝑆 ∪ {𝑏𝑗}  (1 ≤ 𝑗 ≤ 𝑛 − 𝑟) nor 𝑆 ∪ {𝑎2} is a geodetic dominating set of 𝐺. 

Thus, 𝑅 = 𝑆 ∪ {𝑎1} is a geodetic dominating set of 𝐺 but 〈𝑅〉 is not connected. However, 𝑅 ∪

{𝑎2} is a connected geodetic dominating set of 𝐺 of minimum cardinality. Hence the connected 

geodetic domination number is  𝛾𝑓𝑐𝑔(𝐺) = ∑ 𝜎(𝑎𝑖
𝑟
𝑖=1 ). 

3. Conclusion 

In this paper, the concept of connected geodetic domination number of a fuzzy graph is 

introduced and its limiting bounds are identified. It is proved that all extreme vertices of a 

connected fuzzy graph 𝐺 and all cut-vertices of its underlying crisp graph 𝐺∗ belong to its 
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connected geodetic dominating set. Also the connected geodetic domination number of 

complete fuzzy graph and complete bipartite fuzzy graphs are obtained. We extend this concept 

to other distance related parameters in fuzzy graph. 
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Abstract 

This paper introduces and investigates the concept of regular and total regular cubic 

fuzzy graphs.  This research involves a combination of theoretical and analytical approaches 

to define and analyze the degree of a vertex and total degree of a vertex in the context of cubic 

fuzzy graphs. The main findings of this paper include the specification of regular and total 

regular cubic fuzzy graphs are defined, along with illustrative examples. Additionally, some 

characterization of results on a cycle with some specific membership values has been analyzed. 

This research provides a new perspective on cubic fuzzy graphs, extending the existing 

literature on fuzzy graphs and opening up new avenues for future research in this area. 

Keywords: Degree of a vertex in Fuzzy Graphs, Total degree of a vertex in Fuzzy Graphs, 

Regular Fuzzy Graphs, Total Regular Fuzzy Graphs, Cubic Fuzzy Graphs. 

2020 Mathematics Subject Classification (AMS): 05C72, 03E72. 

1. Introduction 

Fuzzy set theory, introduced by Lotfi A. Zadeh in 1965 [18]. Zadeh further extended 

this concept to fuzzy relations in 1971 [19], where the relationship between elements is 

represented by a membership function. The fundamental characteristic of fuzzy sets is the 

membership function, which assigns a degree of membership to each element in the set. The 

integration of fuzzy set theory and graph theory gave rise to a new class of graphs known as 

fuzzy graphs. 

Fuzzy graph theory, introduced by Kaufmann in 1973 [10]. Azriel Rosenfeld developed 

fuzzy graph operations such as union, intersection, and complement in 1975 [17]. Although 

this field is relatively young, it has rapidly expanded and found numerous applications across 

various disciplines. Recently, researchers have continued to contribute to the field with notable 

mailto:laraancy2000@gmail.com
mailto:befija@gmail.com


Proceedings of the International Conference on Algebraic Graph Theory,                                              
Graph Theory and Topology – 9th & 10th January 2025 

12 
 
ISBN: 978-93-48505-23-1 

contributions including the introduction of interval-valued fuzzy graphs (IVFGs) by Akram 

and Dudek in 2011 [1], the exploration of Totally Regular Fuzzy Graphs by Edward Samuel 

and C. Kayalvizhi in 2016 [3] and the presentation of A New Approach to Regular Fuzzy 

Graphs by Kailash Kumar Kakkad and Sanjay Sharma in 2017 [9]. Additionally, Huda Mutab 

Al Mutab conducted a study on fuzzy graphs in 2019 [5], further advancing the field. 

Cubic Fuzzy Sets (CFS) are a mathematical framework that combines fuzzy sets and 

intuitionistic fuzzy sets to provide a more comprehensive and flexible approach to modeling 

uncertainty and imprecision. Introduced by Jun et al. [8], Cubic Fuzzy Set integrate fuzzy sets 

(FS) and intuitionistic fuzzy sets (IVFS). Rashid et al. [15] extended this idea to Cubic Fuzzy 

Graphs, introducing various types of graphs and their applications. Kishore Kumar et al. [11] 

investigated the concept of regularity in Cubic Fuzzy Graphs., while Muhiuddin et al. [12] 

provided a modified definition of Cubic Fuzzy Graphs, along with notions such as strong edges, 

paths, path strength, bridges and cut vertices. Furthermore, Rashmanlon et al. [6, 16] further 

elaborated on various aspects of Cubic Fuzzy Graphs.   

Cubic Fuzzy Graphs represent a novel extension of fuzzy graph theory, combining the 

concepts of fuzzy sets and graph theory. However, the study of regular and total regular cubic 

fuzzy graph remains a relatively unexplored area. Nagoor Gani and Radha introduced the 

concept Total Degree and Total Regular Fuzzy Graphs in 2008 [13]. The existing literature on 

fuzzy graphs lacks a comprehensive study on regular and total regular fuzzy graphs, which 

motivates our research. This paper aims to explore the degree and total degree of a vertex in 

cubic fuzzy graph.  We conduct a comparative study of regular and total regular cubic fuzzy 

graph through various examples. Additionally, we characterize cycles with specific 

membership function providing a comprehensive study on this topic.  This research will 

contribute to the development of fuzzy graph theory and its application. 

2. Basic Definitions 

Definition 2.1. A graph 𝐺: (𝑉, 𝐸) consists of a finite set denoted by 𝑉 as 𝑉(𝐺) and a collection 

𝐸 as 𝐸 (𝐺) are unordered pairs (𝑢, 𝑣) of distinct elements from 𝑉. Each element of 𝑉 is called 

a vertex or a point and each element of 𝐸 is called an edge or a line. 

Definition 2.2. A fuzzy graph C∗: (𝜎, 𝜇) is a pair of functions (𝜎, 𝜇), where 𝜎: 𝑉 →  [0, 1] is 

a fuzzy subset of a non-empty set 𝑉 and 𝜇: 𝑉 ×  𝑉 →  [0, 1] is a symmetric fuzzy relation on 

σ such that, ∀ 𝑢, 𝑣 in 𝑉, the relation 𝜇 (𝑢, 𝑣)  ≤  𝜎 (𝑢)  ∧  𝜎 (𝑣) is satisfied. 
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Definition 2.3. An interval-valued fuzzy set 𝐴 on 𝑉 is defined as 𝐴 = {[𝛼(𝑢), 𝛽(𝑢)]/𝑢 ∈ 𝑉}, 

where 𝛼 and 𝛽 are fuzzy sets of 𝑉, such that 𝛼(𝑢)  ≤  𝛽(𝑢), ∀ 𝑢 ∈  𝑉. 

Definition 2.4. Let 𝑈 be a non-empty set. A cubic set is a structure of the form 𝐶 =

 {𝑢, 𝐴(𝑢), 𝐵(𝑢)}, where 𝐴(𝑢) is an interval valued fuzzy set in 𝑈 and 𝐵(𝑢) is a fuzzy set in 𝑈. 

Definition 2.5. A cubic fuzzy set in 𝑉 is described as 𝑋 =  {([𝛼(𝑢), 𝛽(𝑢)], 𝛾(𝑢))/𝑢 ∈  𝑉}, 

where [𝛼(𝑢), 𝛽(𝑢)] is named the IVF- membership value and 𝛾(𝑢) is named the F- 

membership value of 𝑢, such that 𝛼, 𝛽, 𝛾: 𝑉 →  [0, 1].  𝑋 is named an internal CFS if 𝛾(𝑢)  ∈

 [𝛼(𝑢), 𝛽(𝑢)] and an external CFS whenever 𝛾 (𝑢)  ∉  [𝛼(𝑢), 𝛽(𝑢)], ∀ 𝑢 ∈  𝑉. 

Definition 2.6. A cubic fuzzy graphs on 𝐺: (𝑉, 𝐸) is a pair of functions C∗: (A,B), where 𝐴 =

 ([𝛼1, 𝛽1], 𝛾1) such that [𝛼1, 𝛽1]: 𝑉 → [0,1] and 𝛾1 : V →[0,1] is a Cubic Fuzzy Set on the 

vertex set V and B = ([α2, β2], γ2) such that [α2, β2] : E →[0,1] and γ2 : E →[0,1] is a Cubic 

Fuzzy Set on the edge set E, satisfying the following conditions: 

α2(𝑢, 𝑣)  ≤  𝑚𝑖𝑛 {α1(u),  α1(v)}, ∀ (𝑢, 𝑣)  ∈ 𝐸 

β2(𝑢, 𝑣)  ≤  𝑚𝑖𝑛 {β1(u),  β1(v)}, ∀ (𝑢, 𝑣)  ∈ 𝐸 

γ2(𝑢, 𝑣)  ≤  𝑚𝑖𝑛 {γ1(u), γ1(v)}, ∀ (𝑢, 𝑣)  ∈ 𝐸 
 

Definition 2.7. Let G∗: (σ, μ) be a fuzzy graph on 𝐺: (𝑉, 𝐸). The degree of a vertex 𝑢 in G is 

denoted by 𝑑(𝑢) and is defined as 𝑑(𝑢) = ∑ μ (u, v), ∀ (u, v) ∈ E and 𝑑(𝑢) = 0, ∀ (𝑢, 𝑣)  ∉  𝐸. 

Definition 2.8. Let G∗: (σ, μ) be a fuzzy graph on 𝐺: (𝑉, 𝐸). The total degree of a vertex 𝑢 is 

denoted by 𝑡𝑑(𝑢) and is defined as 𝑡𝑑(𝑢) = ∑ μ (u, v) +σ (u), ∀ (𝑢, 𝑣) ∈ 𝐸. It can also defined 

as 𝑡𝑑(𝑢)  =  𝑑(𝑢)  + 𝜎(𝑢). 

Definition 2.9. Let G∗: (σ, μ) be a fuzzy graph on 𝐺: (𝑉, 𝐸). If 𝑑(𝑣)  =  𝑘, ∀  v ∈ V, i.e. if each 

vertex has the same degree 𝑘, then 𝐺 is, then 𝐺∗ is said to be a regular fuzzy graph of degree 𝑘 

or a k-regular fuzzy graph. 

Definition 2.10. If each vertex of G∗ has the same total degree 𝑘, then G∗ is said to be a totally 

regular fuzzy graph of total degree 𝑘, or a k- totally regular fuzzy graph. 

Definition 2.11. A cycle of length n in a graph 𝐺, denoted by C𝑛 is a sequence (u0, u1, u2 , ..., 

u𝑛−1, u0) of vertices of G, such that, for 1 ≤ i ≤ n - 2, the vertices u𝑖 and u𝑖+1 are adjacent; 

u𝑛−1 and u0 are also adjacent and u0, u1, u2 , ...u𝑛−1 are distinct. 

     A cycle C𝑛 of length n is called an even cycle or odd cycle according as 𝑛 is even or odd. 
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3. Degree and total degree of a vertex in a cubic fuzzy graph 

Definition 3.1. Let C∗: (A, B) be a Cubic Fuzzy Graph on G: (V, E). The degree of a vertex u 

in 𝐶∗ is an interval valued fuzzy membership number such that 𝑑[α1, β1](𝑢) = ∑ [α2, β2](𝑢, 𝑣),  

∀(𝑢, 𝑣) ∈ E and also 𝑑[α1, β1](𝑢) = 0, ∀(𝑢, 𝑣)  ∉  𝐸. The degree of a vertex 𝑢 in C∗ is a fuzzy 

membership number such that 𝑑 [γ1] (u) = ∑ [γ2] (u, v), ∀ (𝑢, 𝑣) ∈ E and also 𝑑[γ1](𝑢) = 0, ∀ 

(u, v) ∉ E. Therefore, the degree of a vertex in a Cubic Fuzzy Graph is defined as 𝑑(𝑢)  =

 (𝑑 [α1, β1] (𝑢), 𝑑[γ1] (𝑢)). 

Example 3.2. Consider a Cubic Fuzzy Graph C∗: (A, B) on G: (V, E).  

 

Figure. 1 

𝑑(𝑢) = ([0.2 + 0.1, 0.4 + 0.4], 0.5 + 0.6) = ([0.3, 0.8], 1.1). Similarly, 𝑑(𝑣) = ([0.3, 1.0], 1.1), 

𝑑(𝑤) = ([0.3, 1.0], 1.0), 𝑑(𝑥) = ([0.4, 0.8], 1.1) and 𝑑(𝑦) = ([0.5, 0.8], 1.1). 

Definition 3.3. Let C∗: (A, B) be a Cubic Fuzzy Graph on 𝐺: (𝑉, 𝐸). The total degree of a 

vertex u∈V in a Cubic Fuzzy Graph is defined 𝑡𝑑(𝑢) = (𝑡𝑑[α1, β1](𝑢), 𝑡𝑑[γ1](𝑢)), where 

𝑡𝑑[α1, β1](u) = ∑ [α2, β2] (𝑢, 𝑣)  + [α1, β1](𝑢), ∀(𝑢, 𝑣)  ∈  𝐸 and 𝑡𝑑[γ1](u)= ∑ [γ2](𝑢, 𝑣) + 

[γ1](𝑢), ∀(𝑢, 𝑣) ∈ 𝐸. It can also be defined as 𝑡𝑑(𝑢) = 𝑑(𝑢) + 𝐴(𝑢), where 𝐴(𝑢)=([α1, β1] 

(𝑢), [γ1](𝑢)). 

Example 3.4. Consider a Cubic Fuzzy Graph C∗: (A, B) on 𝐺: (𝑉, 𝐸). In Figure 1, 𝑡𝑑(𝑢)  = 

([0.3, 0.8], 1.1) + ([0.2, 0.5], 0.7) = ([0.5, 1.3], 1.8).  Similarly, 𝑑(𝑣)  = ([0.9, 1.7], 2.0), 𝑑(𝑤) 

= ([0.5, 1.7], 1.6), 𝑑(𝑥) = ([0.7, 1.3], 1.8) and 𝑑(𝑦)  = ([1.2, 1.7], 2.0). 

 

 



Proceedings of the International Conference on Algebraic Graph Theory,                                              
Graph Theory and Topology – 9th & 10th January 2025 

15 
 
ISBN: 978-93-48505-23-1 

4. Regular and total regular cubic fuzzy graphs 

Definition 4.1. Let C∗: (A, B) be a Cubic Fuzzy Graph on 𝐺: (𝑉, 𝐸). If 𝑑(𝑢) = ([k1, k2], k3), 

∀𝑢 ∈  𝑉, i.e., if each vertex has the same degree ([k1, k2], k3)  then 𝐶∗ is said to be a  ([k1, 

k2], k3) - Regular Cubic Fuzzy Graph. 

Example 4.2. Consider a Cubic Fuzzy Graph C∗: (A, B) on 𝐺: (𝑉, 𝐸).           

 

Figure. 2 

𝑑(𝑢) = ([0.5, 0.7], 0.2), ∀𝑢 ∈ 𝑉. This graph is a ([0.5, 0.7], 0.2) - Regular Cubic Fuzzy Graph. 

Definition 4.3. Let C∗: (A, B) be a Cubic Fuzzy Graph on 𝐺: (𝑉, 𝐸). If each vertex of 𝐶∗ has 

the same total degree ([k1,k2],k3), then C∗ is said to be a Total ([k1,k2],k3) - Regular Cubic 

Fuzzy Graph. 

Example 4.4. Consider a Cubic Fuzzy Graph C∗: (A, B) on 𝐺: (𝑉, 𝐸).  

 

Figure. 3 

𝑡𝑑(𝑢) = ([1.0, 1.6], 1.1), ∀𝑢 ∈  𝑉. If each vertex has the same total degree ([1.0, 1.6], 1.1), 

then this graph is a Total ([1.0, 1.6], 1.1) - Regular Cubic Fuzzy Graph.  However, it is observed 

that 𝑑(𝑢)  ≠  𝑑(𝑤). Hence, C∗ is not a ([k1,k2],k3) - Regular Cubic Fuzzy Graph. 

Remark 4.5. From Example 4.4, it is clear that a Total ([k1,k2],k3) - Regular Cubic Fuzzy 

Graph is not necessarily a ([k1,k2],k3)) - Regular Cubic Fuzzy Graph. 

Example 4.6. Consider a Cubic Fuzzy Graph C∗: (A, B) on G: (𝑉, 𝐸).  Figure 2 shows that 

𝑑(𝑢) = ([0.5, 0.7], 0.2), ∀𝑢 ∈ 𝑉. If each vertex has the same degree ([0.5, 0.7], 0.2), then this 
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graph C∗ is a ([0.5, 0.7], 0.2) - Regular Cubic Fuzzy Graph. However, it is observed that 

𝑡𝑑(𝑢)  ≠  𝑡𝑑(𝑤). Hence, C∗ is not a Total ([k1,k2],k3) - Regular Cubic Fuzzy Graph. 

Remark 4.7. From Example 4.6, it is clear that a ([k1,k2],k3) - Regular Cubic Fuzzy Graph is 

not necessarily a Total ([k1,k2],k3) - Regular Cubic Fuzzy Graph. 

Example 4.8. Consider a Cubic Fuzzy Graph C∗: (A, B) on G: (V, E).  

 

Figure. 4 

𝑑(𝑢)  = ([0.5, 0.9], 0.5), ∀𝑢 ∈  𝑉 and 𝑡𝑑(𝑢)  = ([0.9, 1.5], 1.0), ∀𝑢 ∈  𝑉. If each vertex has 

the same degree ([0.5, 0.9], 0.5), then this graph is a ([0.5, 0.9], 0.5) - Regular Cubic Fuzzy 

Graph. Additionally, if each vertex has the same total degree ([0.9, 1.5], 1.0), then C∗ is a Total 

([0.9, 1.5], 1.0) - Regular Cubic Fuzzy Graph. 

Remark 4.9. From Example 4.8, it is clear that a ([k1,k2],k3) - Regular Cubic Fuzzy Graph is 

also a Total ([k1,k2],k3) - Regular Cubic Fuzzy Graph. 

Theorem 4.10. Let C∗: (A, B) be a Cubic Fuzzy Graph on 𝐺: (𝑉, 𝐸). Then A is a constant 

function if and only if the following conditions are equivalent.                                                                

(i) C∗  is a Regular Cubic Fuzzy Graph.                                     

(ii) C∗  is a Total Regular Cubic Fuzzy Graph. 

Proof. Consider 𝐴(𝑢) = ([c1,c2],c3), ∀ 𝑢 ∈ 𝑉. Assume that C∗  is a ([k1,k2],k3) - Regular Cubic 

Fuzzy Graph. Then 𝑑(𝑢) = ([k1,k2],k3), ∀ 𝑢 ∈  𝑉.  

So, 𝑡𝑑(𝑢)  =  𝑑(𝑢)  +  𝐴(𝑢) ⇒ 𝑡𝑑(𝑢) = ([k1,k2],k3) + ([c1,c2],c3) ⇒ 𝑡𝑑(𝑢) = ([k1 +c1, 

k2+c2], k3 +c3), ∀ 𝑢 ∈  𝑉. Hence C∗ is a Total Regular Cubic Fuzzy Graph. Thus (i) ⇒ (ii) is 

proved. Now, suppose C∗  is a Total ([k1 +c1, k2+c2], k3 +c3) - Regular Cubic Fuzzy Graph.  

Then 𝑡𝑑(𝑢) = ([k1 +c1, k2+c2], k3 +c3), ∀ 𝑢 ∈ 𝑉. This implies 𝑑(𝑢)  +  𝐴(𝑢) = ([k1 +c1, 

k2+c2], k3 +c3), ∀ 𝑢 ∈  𝑉. Therefore, 𝑑(𝑢) + ([c1,c2],c3) = ([k1,k2],k3) + ([c1,c2],c3), ∀ 𝑢 ∈

 𝑉. Hence 𝑑(𝑢) = ([k1,k2],k3), ∀ 𝑢 ∈  𝑉.  
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Thus C∗ is a Regular Cubic Fuzzy Graph. Therefore (ii) ⇒ (i) is proved. Conversely, assume 

that (i) and (ii) are equivalent. Suppose 𝐴(𝑢) is not a constant function. Then 𝐴(𝑢)  ≠  𝐴(𝑤) 

for at least one pair 𝑢,𝑤 ∈  𝑉, i.e., 𝑡𝑑(𝑢)  ≠  𝑡𝑑(𝑤). Let C∗ be a Regular Cubic Fuzzy Graph. 

Then, 𝑑(𝑢)  =  𝑑(𝑤) = ([k1,k2],k3).  

So, 𝑡𝑑(𝑢)  =  𝑑(𝑢) + 𝐴(𝑢), 𝑡𝑑(𝑤)  =  𝑑(𝑤)  + 𝐴(𝑤) ⇒ 𝑡𝑑(𝑢) = ([k1,k2],k3) + 𝐴(𝑢), 𝑡𝑑(𝑤) 

= ([k1,k2],k3) + 𝐴(𝑤). Since 𝐴(𝑢)  ≠  𝐴(𝑤), i.e., 𝑡𝑑(𝑢)  ≠  𝑡𝑑(𝑤) = ([k1,k2],k3) + 𝐴(𝑢)  ≠ 

([k1,k2],k3) + 𝐴(𝑤).⇒ 𝑡𝑑(𝑢)  ≠  𝑡𝑑(𝑤). 

So, C∗  is not Total Regular Cubic Fuzzy Graph. This contradicts our assumption. Now, Let C∗  

be a Total Regular Cubic Fuzzy Graph. Then, 𝑡𝑑(𝑢)  =  𝑡𝑑(𝑤).⇒ 𝑑(𝑢)  + 𝐴(𝑢)  =  𝑑(𝑤)  +

 𝐴(𝑤) ⇒ 𝑑(𝑢)  ≠  𝑑(𝑤). So C∗ is not a Regular Cubic Fuzzy Graph. This is a contradiction. 

Thus, it can be concluded that A is a constant function. 

5. Characterization of a cycle with some specific membership values 

Theorem 5.1. Let C∗: (A, B) be a Cubic Fuzzy Graph on 𝐺: (𝑉, 𝐸) which is an odd cycle. If 𝐵 

is a constant function, then C∗ is a Regular Cubic Fuzzy Graph. 

Proof. If 𝐵 is a constant function, then 𝐵 (𝑢 𝑣) = ([c1,c2],c3), ∀u ∈ V. Then, d (u) = ([c1,c2],c3) 

+ ([c1,c2],c3) = ([2c1, 2c2], 2c3). Hence C∗ is a Regular Cubic Fuzzy Graph.  

Conversely, suppose that C∗ is a ([k1,k2],k3) - Regular Cubic Fuzzy Graph. Let e1,e2,e3,...,e2𝑛, 

e2𝑛+1 be the edges of an odd cycle of C∗. Let α2(e𝑖) = {
k1             if 𝑖 is odd 
k2 = k1   if 𝑖 is even

,  

β2(e𝑖) = {
k3             if 𝑖 is odd 
k4 = k3   if 𝑖 is even

 and γ2(e𝑖) = {
k5               if 𝑖 is odd 
k6 = k5     if 𝑖 is even

     

Then, 𝑑(𝑣1) = ([α2(e1), β2(e1)], γ2(e1)) + ([α2(e2𝑛+1), β2(e2𝑛+1)], γ2(e2𝑛+1)) 

                    = ([k1,k3],k5) + ([k1,k3],k5) = ([2k1, 2k3], 2k5) 

𝑑(𝑣2) = ([α2(e2), β2(e2)], γ2(e2)) + ([α2(e1), β2(e1)], γ2(e1)) 

          = ([k1,k3],k5) + ([k1,k3],k5) = ([2k1, 2k3], 2k5) 

For i = 3,4,5,…,2n 

Proceeding similarly, we get 𝑑(v2𝑛) = ([2k1, 2k3], 2k5) and 𝑑(v𝑖) = ([2k1, 2k3], 2k5). Hence, 

C∗  is a Regular Cubic Fuzzy Graph. But it is obtained as B is not a constant function. 

Remark 5.2. If a Cubic Fuzzy Graph C∗ on 𝐺 which is an odd cycle and 𝐴 is not a constant 

function, then C∗ is not a Total Regular Cubic Fuzzy Graph. 
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Example 5.3. Consider a Cubic Fuzzy Graph C∗: (A, B) on 𝐺: (𝑉, 𝐸) which is an odd cycle. In 

Figure 3, 𝑡𝑑(𝑢) = ([1.0, 1.6], 1.1), ∀ 𝑢 ∈  𝑉. Then, this graph is a Total ([1.0, 1.6], 1.1) - 

Regular Cubic Fuzzy Graph. But it is obtained as 𝐵 is not a constant function. 

Theorem 5.4. Let C∗: (A, B) be a Cubic Fuzzy Graph on 𝐺: (𝑉, 𝐸) which is an even cycle. If 

𝐵 is a constant function or the alternate edges have the same IVF membership number and 

fuzzy membership number, then C∗ is a Regular Cubic Fuzzy Graph. 

Proof. If 𝐵 is a constant function or the alternate edges have the same IVF membership number 

and fuzzy membership number, then C∗ is a Regular Cubic Fuzzy Graph. 

Conversely, suppose that  C∗ is a ([k1,k2],k3) - Regular Cubic Fuzzy Graph. Let e1,e2,e3,...,e2𝑛 

be the edges of an even cycle of C∗. Let α2(e𝑖) ={
k1 if 𝑖 is odd 
k2 if 𝑖 is even

, β2(e𝑖) = {
k3 if 𝑖 is odd 
k4 if 𝑖 is even

 and 

γ2(e𝑖) = {
k5 if 𝑖 is odd 
k6 if 𝑖 is even

     

If 𝑑(v1) = 𝑑(v𝑖), then 𝐵 is a constant function.  If 𝑑(v1) ≠ 𝑑(v𝑖), then the alternate edges have 

the same IVF membership number and fuzzy membership number. 

Remark 5.5. If a Cubic Fuzzy Graph C∗ on 𝐺 which is an even cycle and alternate edges have 

the same IVF membership number and fuzzy membership number, then since 𝐴 is not a 

constant function 𝐶∗ is not a Total Regular Cubic Fuzzy Graph. 

Example 5.6. Consider a Cubic Fuzzy Graph C∗: (A, B) on 𝐺: (𝑉, 𝐸) which is an even cycle. 

In Figure 4, 𝑡𝑑(𝑢) = ([0.9, 1.5], 1.0), ∀ 𝑢 ∈  𝑉. Then 𝐶∗ is a Total ([0.9, 1.5], 1.0) - Regular 

Cubic Fuzzy Graph. However, this is only possible when 𝐵 is not a constant function or when 

alternate edges have the same IVF membership number and fuzzy membership number. 

6. Conclusion 

This study has explored the concepts of regular and total regular cubic fuzzy graphs, 

providing definitions, examples and characteristics of these graphs and have investigated their 

relationships and differences. The study of regular and total regular cubic fuzzy graphs has 

provided new insights into the structure and behaviour of complex systems and has opened up 

new avenues for research in fuzzy graph theory. 
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Abstract  

The Concept of this effort is to present the definition of fuzzy doubt z- ideals in Z -

algebras and several properties related to fuzzy doubt z-ideals are discussed. The Cartesian 

product and homomorphic of fuzzy doubt z-ideal is also discussed And at the same time we 

specify some common theorem belonging to them with examples. 

Key words: Z-algebra, Fuzzy set, Fuzzy z-ideal, Fuzzy Doubt z-Subalgebra, Fuzzy Doubt z-

Ideal, Intersection. 

2020 Mathematical Subject Classification (AMS): 03E72 

1. Introduction 

Fuzzy mathematics is the branch of mathematics including fuzzy set theory and fuzzy 

logic that deals with partial inclusion of elements in a set on a spectrum as opposed to simple 

binary “yes’ or ‘no” ( 0 or 1 ) inclusion. Fuzzy mathematics has its orgin on fuzzy set introduced 

by Lofti Asker Zadeh [1]. Fuzzy set theory has been developed in many directions by many 

scholars and has evolved a great deal of interest among mathematicians working in various 

fields of mathematics. As a advancement of these research works we get, the idea of 

intuitionistic fuzzy sets propounded by T. Atanassov in 2012 [10], that is a generalisation of 

the notion of fuzzy set. Imai and Iseki [2] introduced two classes of abstract algebras BCK-

algebras and BCI-algebras. It is known that the class of BCK-algebra is a proper subclass of 

the class of BCI-algebra. In 2017, M. Chandramouleeswaran [6], introduced the concept of Z-

algebras. Then in 2020, S. Sowmiya [7] gave another concept of fuzzy ideals of z-algebras. 

Following the same route, S. Sowmiya [8] established the definition of the intuitionistic fuzzy 
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sub-algebra and intuitionistic fuzzy ideal in z –algebras. In the last two decades interest of 

many mathematicians has shifted to the development of fuzzy algebra in view of generalisation 

of the well-known rules of algebraic structures. Many mathematicians have been involved in 

extending the concepts and outcomes of various algebra. 

2. Preliminaries  

We first list some basic concepts which are needed for our work. 

Definition 2.1. [6] A Z-algebra (A, *, 0) is a nonempty set X with a constant 0 and a binary 

operation * satisfying the following conditions:  

 a * 0 = 0 

 0 * a = a 

 a * a = a 

 a * b = b * a when a ≠ 0 and b ≠ 0 for every a, b ϵ A. 

Throughout this paper A means a Z-algebra without any specification. We also include some 

basic results that are necessary for this paper. 

Definition 2.2. [6] A subset I of a Z-algebra A is called an ideal of A if it satisfies 

 0 ∈ I, 

 a ∗ b ∈ I and b ∈ I imply a ∈ I, for all a, b ∈ A. 

Definition 2.3. [6] Let (A,*, 0) and (𝐴′,*,0) be two Z-Algebras. A mapping h:A→𝐴′ be Z-

homomorphism of Z-Algebras if h : (A,*,0) → (𝐴′,*,0) is said to be a Z-homomorphism of 

Z-algebras if h (x*y) = h(x) * h(y) for all x, y ϵ X. 

Definition 2.4. [7] Let h be a Z-homomorphism of Z-algebra (A, ,*,0) → (𝐴′,*,0), then h is 

called 

 A Z-monomorphism of Z-algebras if h is 1-1. 

 An Z-epimorphism of Z-algebras if h is onto. 

 An Z-endomorphism of Z-algebras if h is mapping (A, ,*,0) into itself. 

Definition 2.5. [7] A fuzzy set δ of a Z-algebra A is called a fuzzy ideal of A if it satisfies 

 δ(0)  ≥ δ(a)  

 δ (a) ≥ min {δ (a ∗ b) , δ (b)} , for all a,b ∈ A. 
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Definition 2.6. [9] Let μ be a fuzzy set in a Z-algebra A. then μ is called a fuzzy subalgebra 

of A, if it satisfies 

 μ (xy) ≥ μ(x). μ(y), for all x,y ϵ X. 

Definition 2.7. [9] Let μ be a fuzzy set in a BCI-algebra X. then μ is called a fuzzy ideal of 

A, if it satisfies 

 μ(0) ≥ μ(x) 

 μ (xy) ≥ μ(x). μ(y), for all x,y ϵ X. 

3. Fuzzy Doubt z-Ideal 

Definition 3.1. Let 𝛿𝐴 be a fuzzy set in Z-Algebra A, Then 𝛿𝐴 is called a fuzzy doubt z-

subalgebra of A, if it satisfies  

 𝛿𝐴(ω) ˄ 𝛿𝐴(κ) ≤ 𝛿𝐴(ωκ) 

Definition 3.2. Let 𝛿𝐴 be a fuzzy set in Z-Algebra A,Then 𝛿𝐴 is called a fuzzy doubt z-ideal 

of  𝛿, if it satisfies  

 𝛿𝐴(0) ≤  𝛿𝐴(ωκ) 

 𝛿𝐴(ωκ) ˄ 𝛿𝐴(κ) ≤ 𝛿𝐴(ω) 

Throughout this concept FDzI means Fuzzy Doubt z-Ideal 

Theorem 3.3. Let g: A → 𝐴′ be a homomorphism of A. If 𝐴2 is a FDzI of 𝐴′, then the pre 

image g−1(𝐴2 ) of 𝐴2 under g is a FDzI of A. 

Proof. for any 𝜔1, 𝜅1 ∈ A we have 

𝛿g−1(𝐴2 )(0) = 𝛿𝐴2(g (0))  

                   ≤ 𝛿𝐴2(g (𝜔1𝜅1))  

                   = 𝛿g−1(𝐴2 )(𝜔1𝜅1) 

𝛿g−1(𝐴2 )(𝜔1) = 𝛿𝐴2(g (𝜔1)) 

                      ≥ 𝛿𝐴2(g (𝜔1𝜅1) ˄ 𝛿𝐴2(g(𝜅1)). 

                      = 𝛿𝐴2 (g (𝜔1𝜅1)) ˄ 𝛿𝐴2(g (𝜅1)). 
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                      = 𝛿g−1(𝐴2 )(𝜔1𝜅1) ˄ 𝛿g−1(𝐴2 )(𝜅1) 

 Hence, g−1(𝐴2 ) is a FDzI of A. 

Theorem 3.4. Let 𝐴1 and 𝐴2 be a FDzI of A and 𝐴′ respectively, then the cross product 𝐴1 

𝐴2 of 𝐴1 𝑎𝑛𝑑 𝐴2 defined by 𝛿𝐴1𝐴2(𝜔1,𝜔2) = 𝛿𝐴1(𝜔1). 𝛿𝐴2(𝜔2) for all (𝜔1,𝜔2) ∈ A  𝐴′ is a 

FDzI of A 𝐴′. 

Proof. For all (𝜔1,𝜔2) ∈ A 𝐴′, we have 

𝛿𝐴1𝐴2(0, 0) = 𝛿𝐴1(0). 𝛿𝐴2(0)  

                    ≤ 𝛿𝐴1(𝜔1) ˄ 𝛿𝐴2(𝜔2) 

                    = 𝛿𝐴1𝐴2(𝜔1,𝜔2) 

Now, for all (𝜔1,𝜔2), (𝜅1,𝜅2) ∈ A𝐴′, we have 

𝛿𝐴1𝐴2(𝜔1,𝜔2) = 𝛿𝐴1(𝜔1) ˄ 𝛿𝐴2(𝜔2), 

                         ≥ (𝛿𝐴1(𝜔1𝜅1). 𝛿𝐴1(𝜅1)) ˄ ((𝛿𝐴2(𝜔2𝜅2). 𝛿𝐴2(𝜅2)) 

                         = (𝛿𝐴1(𝜔1𝜅1). (𝛿𝐴2(𝜔2𝜅2))) ˄ (𝛿𝐴1(𝜅1).𝛿𝐴2(𝜅2)) 

                         = (𝛿𝐴1𝐴2(𝜔1𝜅1,𝜔2𝜅2) ˄ 𝛿𝐴1𝐴2(𝜅1,𝜅2)) 

                         = (𝛿𝐴1𝐴2((𝜔1,𝜔2)( 𝜅1, 𝜅2)) ˄ 𝛿𝐴1𝐴2( 𝜅1, 𝜅2)) 

Thus 𝐴1 𝐴2 is a FDzI of A  𝐴′. 

Theorem 3.5. Let 𝐴1 and 𝐴2 be a FDzI of A and 𝐴′ respectively, then the cross product 𝐴1 

𝐴2 is a FDzI of A 𝐴′, then 𝐴1 𝑜𝑟 𝐴2 must be a fuzzy doubt ideal. 

Proof. Let 𝐴1 𝐴2 is FDDzI of A 𝐴′.  

We assume that 𝐴1 𝑜𝑟 𝐴2 satisfies 𝛿𝐴1(0) ≤ 𝛿𝐴1(𝜔1) or 𝛿𝐴2(0) ≤ 𝛿𝐴2(𝜔2). 

Suppose 𝛿𝐴1(0) > 𝛿𝐴1(𝜔1) and 𝛿𝐴2(0) > 𝛿𝐴2(𝜔2) for some (𝜔1,𝜔2) ∈ A 𝐴′,  

Then, we have 

𝛿𝐴1𝐴2(0, 0) = 𝛿𝐴1(0) ˄ 𝛿𝐴2(0)  

                     > 𝛿𝐴1(𝜔1) ˄ 𝛿𝐴2(𝜔2) 
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                     = 𝛿𝐴1𝐴2(𝜔1,𝜔2) which is a contradiction.  

Therefore 𝛿𝐴1(0) ≤ 𝛿𝐴1(𝜔1) or 𝛿𝐴2(0) ≤ 𝛿𝐴2(𝜔2). 

Suppose that the condition 

 𝛿𝐴1(𝜔1) ≤ 𝛿𝐴1(𝜔1, 𝜅1) ˄ 𝛿𝐴1(𝜅1) or 𝛿𝐴2(𝜔2) ≤ 𝛿𝐴2(𝜔2, 𝜅2) ˄ 𝛿𝐴2(𝜅2) is not true,  

Then (𝜔1,𝜔2), (𝜅1,𝜅2) ∈ A𝐴′,  

We have 

𝛿𝐴1𝐴2(𝜔1,𝜔2) = 𝛿𝐴1(𝜔1) ˄ 𝛿𝐴2(𝜔2), 

                         < (𝛿𝐴1(𝜔1𝜅1) ˄ 𝛿𝐴1(𝜅1)) ˄ ((𝛿𝐴2(𝜔2𝜅2)˄ (𝜅2)) 

                         = (𝛿𝐴1(𝜔1𝜅1) ˄  (𝛿𝐴2(𝜔2𝜅2))) ˄ (𝛿𝐴1(𝜅1).𝛿𝐴2(𝜅2)) 

                         = (𝛿𝐴1𝐴2(𝜔1𝜅1,𝜔2𝜅2)˄ 𝛿𝐴1𝐴2(𝜅1,𝜅2)) 

                         = (𝛿𝐴1𝐴2((𝜔1,𝜔2)( 𝜅1, 𝜅2))˄ 𝛿𝐴1𝐴2( 𝜅1, 𝜅2)) which is impossible. 

Hence 𝛿𝐴1(𝜔1) ≥ 𝛿𝐴1(𝜔1, 𝜅1) ˄ 𝛿𝐴1(𝜅1) or 𝛿𝐴2(𝜔2) ≤ 𝛿𝐴2(𝜔2, 𝜅2) ˄ 𝛿𝐴2(𝜅2) is true. 

Thus 𝐴1 or 𝐴2 is a FDzI of A  𝐴′. 

Theorem 3.6. Let M be a nonempty subset of  A and 𝛿M be a fuzzy set in A defined  by 𝛿M(ω) 

= α if ω ϵ M and 𝛿M(ω) = β otherwise α, β ϵ [0,1] with α > β. Then 𝛿M is a FDzI of A. if M is 

a ideal of A. 

Proposition 3.7. Every FDzI  of A is a FDzS of A. 

Remark 3.8. The converse of proposition 7 may not be true in the following example. 

Example 3.9. Suppose A = {0, β, ω, κ} the operation is given by the table 

* 0 β ω κ 

0 0 β ω κ 

β 0 β κ β 

ω 0 κ ω β 

κ 0 β β κ 
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Then (A, ∗, 0) is a Z-algebra. We define δ: A→ [0,1] by δ (0)=0.6, δ (β)=0.9, δ (ω)=0.7 

and δ (κ)=0.9. By simple calculations show that δ is FDzI as well as FDzS. 

Preposition 3.10. If 𝛿𝐴1and 𝛿𝐴2 are FDzI of A, then so is 𝛿𝐴1Ո 𝛿𝐴2. 

Proof. Let ω, κ ϵ A. 

Then, (𝛿𝐴1Ո𝛿𝐴2) (0) =   Ո ((𝛿𝐴1(0), 𝛿𝐴2(0)) 

                                  ≥   Ո ((𝛿𝐴1(ωκ), 𝛿𝐴2(ωκ)) 

                                   = (𝛿𝐴1Ո𝛿𝐴2) (ωκ) 

Also, (𝛿𝐴1Ո𝛿𝐴2) (ω)   = Ո (𝛿𝐴1(ω), 𝛿𝐴2(ω)) 

                                    ≥ Ո (𝛿𝐴1(ωκ) ˄ 𝛿𝐴1(κ)), (𝛿𝐴2(ωκ) ˄ 𝛿𝐴1(κ)) 

                                    = (𝛿𝐴1Ո𝛿𝐴2) (ωκ) ˄ (𝛿𝐴1Ո𝛿𝐴2) (κ) 

   Hence 𝛿𝐴1Ո 𝛿𝐴2 is a FDzI of A. 

Theorem 3.11. Let 𝐴1 be a fuzzy subset of A, assume that 𝛿𝐴1be a fuzzy subset of A A 

defined by 𝛿𝐴1(ω, κ) = 𝐴1 (ω). 𝐴1(κ) for all ω, κ ϵ A. Then 𝐴1 is FDzI of A if and only if 𝛿𝐴1 is 

a FDzI of A  A. 

Proof. Suppose 𝐴1 is a FDzI of A. For all ω, κ ϵ A. 

             𝛿𝐴1(0, 0) = 𝐴1 (0) ˄ 𝐴1(0) 

                            ≤ 𝐴1 (ωκ) ˄ 𝐴1(ωκ) 

                             = 𝛿𝐴1(ωκ, ωκ) 

For any 𝜔1, 𝜅1, 𝜔2 𝑎𝑛𝑑 𝜅2 ϵ A. 

Also, We have  

𝛿𝐴1((𝜔1, 𝜔2) (𝜅1, 𝜅2)) = 𝛿𝐴1(𝜔1𝜅1, 𝜔2𝜅2) ˄ 𝛿𝐴1( 𝜅1, 𝜅2) 

                                     = (𝐴1 (𝜔1𝜅1) ˄ 𝐴1(𝜔2𝜅2)) ˄ (𝐴1 (𝜅1) ˄ 𝐴1(𝜅2)) 

                                     = (𝐴1 (𝜔1𝜅1) ˄𝐴1(𝜅2))˄( 𝐴1(𝜔2𝜅2) ˄ 𝐴1(𝜅2)) 
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                                     ≤ 𝐴1 (𝜔1) ˄ 𝐴1(𝜔2)  

                                     = 𝛿𝐴1(ω, ω) 

Therefore, 𝛿𝐴1 is a FDzI of A  A.  

Conversely, suppose 𝛿𝐴1 is a FDzI of A  A. 

Obviously, 𝐴1 (ω) ≥ 𝛿𝐴1  (ωκ). 𝐴1(κ) is a FDzI. 

Theorem 3.12. Let 𝐴1 be a fuzzy subset of A, assume that 𝛿𝐴1be a fuzzy subset of A A 

defined by 𝐴1 (ω) = 𝛿𝐴1  (0, ω). for all ω ϵ A. If 𝛿𝐴1 is a FDzI of A  A Then 𝐴1 is FDzI of A. 

Proof. for all ω ϵ A. 

We have, 𝐴1(0) = 𝛿𝐴1 (0, 0) 

                           ≤ 𝛿𝐴1 (0, ω) 

                           =  𝐴1 (ω) 

For all ω, κ ϵ A, 

                   𝐴1(ωκ) 𝐴1(κ) = 𝛿𝐴1 (0, ωκ) 𝛿𝐴1 (0, κ) 

                                          = 𝛿𝐴1 (00, ωκ) 𝛿𝐴1 (0, κ) 

                                           = 𝛿𝐴1 ((0, ω) (0, κ)) 𝛿𝐴1  (0, κ) 

                                            ≤  𝛿𝐴1 (0, ω) 

                                            = 𝐴1 (ω) 

Thus, 𝐴1 is a FDzI.       

Proposition 3.13. If 𝛿𝐴1and its complement 𝛿𝐴1
𝑐 are a FDzI, then 𝛿𝐴1is constant. 

Proof. we know that, 𝛿𝐴1 (0) ≤ 𝛿𝐴1(𝜔) …………. (1) 

Then, 𝛿𝐴1
𝑐
(0) ≤ 𝛿𝐴1

𝑐
(ω) 

1-𝛿𝐴1 (0) ≤ 1-𝛿𝐴1(𝜔) 

𝛿𝐴1 (0) ≥ 𝛿𝐴1(𝜔)…………………… (2) 
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From (1) and (2) 𝛿𝐴1 is a constant. 

4. Conclusion  

Through this work, we present the definitions of the FDzI and study some relationship 

among these types. The goal of our future effort is to study some concepts such as p-ideals, h- 

ideals. To develop the theory of Z-algebras, the fuzzy ideal plays an important role. Also, we 

have developed several theorem of FDzI in z-algebras. Using above notion we can conclude 

that the research along this path can be continued for further developments of intuitionistic 

fuzzy doubt z-ideals in Z-algebras and their applications in various algebra.  
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Abstract 

Pentapartitioned Neutrosophic Binary Set is a new concept endowed with five degrees 

of membership functions over two universes. It is an important tool to deal certain problems 

that require two universes rather than a single one. In this paper, the concept of 𝛼-level set of 

a pentapartitioned neutrosophic binary subgroups are studied and also its some interesting 

theorems are analyzed. 

Keywords: level set, pentapartitioned neutrosophic binary set, pentapartitioned neutrosophic 
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1. Introduction 

The concept of the neutrosophic set was presented by Smarandache in 1998. As a 

continuation of neutrosophic set, Pentapartitioned neutrosophic set was established by Surpati 

Pranamik and Rama Malik. It's a five-valued logic set where each x in X has a membership 

that represents a truth, a contradiction, ignorance, unknown, and falsehood. In 2024, A. Anit 

Yoha and M. Jaslin Melbha established a new set called Pentapartitioned Neutrosophic Binary 

Set and applied it in a group structure. Awolola introduced the Concept of 𝜶 - Level Sets of 

Neutrosophic Set in 2020. This paper concentrates on 𝛼-level set of a pentapartitioned 

neutrosophic binary subgroups and its theoretical implementations 

2. Preliminaries 

Definition 2.1. A neutrosophic set (NS) 𝐴̃ over 𝑋 is defined as follows: 

mailto:anityohaabraham1997@gmail.com
mailto:mjaslinmelbha@gmail.com
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𝐴̃  = {< 𝑢, 𝜇𝐴̃(𝑢), 𝜈𝐴̃(𝑢), 𝛾𝐴̃(𝑢) >:𝑢 ∈ 𝑋}, Where 𝜇𝐴̃(𝑢), 𝜈𝐴̃(𝑢), 𝛾𝐴̃(𝑢) are the truth, 

indeterminant, and falsity membership values of each 𝑢 ∈ 𝑋. 

So, 0 ≤ 𝜇𝐴(𝑢)+ 𝜈𝐴(𝑢) + 𝛾𝐴 ≤ 3. 

Definition 2.2. Let 𝑈 and 𝑉 be two universes of discourse. The Pentapartitioned 

neutrosophic binary set (𝐴̃1, 𝐴̃2) ⊆ (𝑈,𝑉) is given by  

(𝐴̃1, 𝐴̃2) = {
< 𝑢, 𝜇𝐴1(𝑢), 𝜎𝐴1(𝑢), 𝜗𝐴1(𝑢), 𝜙𝐴1(𝑢), 𝛾𝐴1(𝑢) >,

< 𝑣, 𝜇𝐴2(𝑣), 𝜎𝐴2(𝑣), 𝜗𝐴2(𝑣), 𝜙𝐴2  (𝑣), 𝛾𝐴2(𝑣) >: 𝑢 ∈ 𝑈, 𝑣 ∈ 𝑉
} 

Where 𝜇𝐴̃1(𝑢), 𝜎𝐴̃1(𝑢), 𝜗𝐴̃1(𝑢),𝜙𝐴̃1(𝑢), 𝛾𝐴̃1(𝑢):𝑈 → [0,1] are the degrees of the 

membership of  truth, contradiction, ignorance, unknown, and falsity membership values of 

𝑢 ∈ 𝑈 and 𝜇𝐴̃2  (𝑣), 𝜎𝐴̃2  (𝑣), 𝜗𝐴̃2  (𝑣), 𝜙𝐴̃2  (𝑣), 𝛾𝐴̃2  (𝑣):𝑉 → [0,1] are the degrees of the 

membership of  truth, contradiction, ignorance, unknown, and falsity membership values of 

𝑣 ∈ 𝑉 such that 0 ≤ 𝜇𝐴̃1(𝑢) + 𝜎𝐴̃1(𝑢) + 𝜗𝐴̃1(𝑢) + 𝜙𝐴̃1(𝑢) + 𝛾𝐴̃1(𝑢) ≤ 5                                                                               

and 0 ≤ 𝜇𝐴̃2  (𝑣) + 𝜎𝐴̃2  (𝑣) + 𝜗𝐴̃2  (𝑣) + 𝜙𝐴̃2  (𝑣) + 𝛾𝐴̃2  (𝑣) ≤ 5. 

Definition 2.3. Suppose  (𝐴̃1, 𝐴̃2) represents a Pentapartitioned Neutrosophic Binary Set 

(PNBS) over two universes U and V. A Pentapartitioned Neutrosophic Binary Subgroup 

(PNBSG) is a structure ℬ(𝐴̃1,𝐴̃2) = (𝐺(𝐴̃1,𝐴̃2),∗) where 𝐺(𝐴1,𝐴2) = (𝐺 = {𝑈 ∪ 𝑉},∗) forms a 

group under a binary operation ∗ which satisfies, the following ℬ(𝐴̃1,𝐴̃2) inequality: 

(i) PNB(𝐴̃1,𝐴̃2)(𝑚, 𝑛) ≽ PNB(𝐴̃1,𝐴̃2)(𝑚)⋀PNB(𝐴̃1,𝐴̃2)(𝑛) 

(ii) PNB(𝐴̃1,𝐴̃2)(𝑚
−1) ≽ PNB(𝐴̃1,𝐴̃2)(𝑚) ; for every 𝑚, 𝑛 ∈ 𝐺  

That is, for every 𝑚, 𝑛 ∈ 𝐺, 

(i) 𝜇(𝐴̃1,𝐴̃2)(𝑚, 𝑛) ≥ 𝜇(𝐴̃1,𝐴̃2)(𝑚) ∧ 𝜇(𝐴̃1,𝐴̃2)(𝑛),  

             𝜎(𝐴̃1,𝐴̃2)(𝑚, 𝑛) ≥ 𝜎(𝐴̃1,𝐴̃2)(𝑚) ∧ 𝜎(𝐴̃1,𝐴̃2)(𝑛), 

          𝜗(𝐴̃1,𝐴̃2)(𝑚,𝑛) ≤ 𝜗(𝐴̃1,𝐴̃2)(𝑚) ∨ 𝜗(𝐴̃1,𝐴̃2)(𝑛), 

     𝜙(𝐴̃1,𝐴̃2)(𝑚,𝑛) ≤ 𝜙(𝐴̃1,𝐴̃2)(𝑚) ∨ 𝜙(𝐴̃1,𝐴̃2)(𝑛), 

       𝛾(𝐴̃1,𝐴̃2)(𝑚,𝑛) ≤ 𝛾(𝐴̃1,𝐴̃2)(𝑚) ∨ 𝛾(𝐴̃1,𝐴̃2)(𝑛) and 

(ii) 𝜇(𝐴̃1,𝐴̃2)(𝑚
−1) ≥ 𝜇(𝐴̃1,𝐴̃2)(𝑚),𝜎(𝐴̃1,𝐴̃2)(𝑚

−1) ≥ 𝜎(𝐴̃1,𝐴̃2)(𝑚), 

𝜗(𝐴̃1,𝐴̃2)(𝑚
−1) ≤ 𝜗(𝐴̃1,𝐴̃2)(𝑚), 𝜙(𝐴̃1,𝐴̃2)(𝑚

−1) ≤ 𝜙(𝐴̃1,𝐴̃2)(𝑚); 

           𝛾(𝐴̃1,𝐴̃2)(𝑚
−1) ≤ 𝛾(𝐴̃1,𝐴̃2)(𝑚). 
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Definition 2.4. Let 𝐴̃ be any neutrosophic set in a non-empty set 𝑋. Then for any 𝛼 ∈ [0,1], 

the 𝛼- lower level and the 𝛼- upper level sets of 𝐴̃ denoted by 𝐿(𝐴̃, 𝛼) and 𝑈(𝐴̃, 𝛼) are 

respectively defined as follows: 

       𝐿(𝐴̃, 𝛼) = {𝑢 ∈ 𝑋: 𝜇𝐴̃(𝑢) ≥ 𝛼, 𝜈𝐴̃(𝑢) ≥ 𝛼, 𝛾𝐴̃(𝑢) ≤ 𝛼} and  

𝑈(𝐴̃, 𝛼) = {𝑢 ∈ 𝑋: 𝜇𝐴̃(𝑢) ≤ 𝛼, 𝜈𝐴̃(𝑢) ≤ 𝛼, 𝛾𝐴̃(𝑢) ≥ 𝛼} 

Proposition 2.5. If (𝐴̃1, 𝐴̃2) represents a PNBSG with structure  ℬ(𝐴̃1,𝐴̃2) = (𝐺(𝐴̃1,𝐴̃2),∗)                                               

iff PNB(𝐴̃1,𝐴̃2)(𝑚 ∗ 𝑛−1) ≽ PNB(𝐴̃1,𝐴̃2)(𝑚)⋀ PNB(𝐴̃1,𝐴̃2)(𝑛), for every 𝑚, 𝑛 ∈ 𝐺(𝐴̃1,𝐴̃2). 

Remark 2.6. Every subgroup of an abelian group is abelian. 

3. Main Results 

Definition 3.1. If  (𝐴̃1, 𝐴̃2) represents a PNBSG with structure  ℬ(𝐴̃1,𝐴̃2) = (𝐺(𝐴̃1,𝐴̃2),∗) 

over 𝑈 and 𝑉 then the 𝛼- level set of  (𝐴̃1, 𝐴̃2) denoted by (𝐴̃1, 𝐴̃2)𝛼 and is defined as 

follows: for any 𝛼 ∈ (0,1], 

(𝐴̃1, 𝐴̃2)𝛼 = {𝑚 ∈ 𝐺(𝐴1,𝐴2): PNB(𝐴1,𝐴2)(𝑚) ≽ 𝛼} 

Theorem 3.2. If  (𝐴̃1, 𝐴̃2) represents a PNBS over 𝑈 and 𝑉. Then (𝐴̃1, 𝐴̃2) is PNBSG 

of a group 𝐺(𝐴1,𝐴2) = (𝑈 ∪𝑉,∗) iff (𝐴̃1, 𝐴̃2)𝛼 is a subgroup of  𝐺(𝐴1,𝐴2) for all 𝛼 ∈

(0,1], where PNB(𝐴̃1,𝐴̃2)(𝑒) ≽ 𝛼 and 𝑒 appears as the identity in 𝐺(𝐴1,𝐴2). 

Proof. Assume (𝐴̃1, 𝐴̃2) is PNBSG of a group 𝐺(𝐴1,𝐴2) = (𝑈 ∪ 𝑉,∗), where 

PNB(𝐴̃1,𝐴̃2)(𝑒) ≽ 𝛼 and 𝑒 appears as the identity in 𝐺(𝐴1,𝐴2). 

Clearly, (𝐴̃1, 𝐴̃2)𝛼 ≠ ∅ as ∈ (𝐴̃1, 𝐴̃2)𝛼 . Let 𝑚,𝑛 ∈ (𝐴̃1, 𝐴̃2)𝛼  be any two elements. 

Then PNB(𝐴̃1,𝐴̃2)(𝑚) ≽ 𝛼 and PNB(𝐴̃1,𝐴̃2)(𝑛) ≽ 𝛼 

              ⇒ PNB(𝐴1,𝐴2)(𝑚 ∗ 𝑛−1) ≽ PNB(𝐴1,𝐴2)(𝑚)⋀PNB(𝐴1,𝐴2)(𝑛) ≽ 𝛼  [As (𝐴̃1, 𝐴̃2) is 

a PNBSG of  𝐺(𝐴1,𝐴2)] 

                  ⇒ 𝑚 ∗ 𝑛−1 ∈ (𝐴̃1, 𝐴̃2)𝛼  

                    ⇒ (𝐴̃1, 𝐴̃2)𝛼 is a subgroup of  𝐺(𝐴1,𝐴2). 

Conversely, Let (𝐴̃1, 𝐴̃2) represents a PNBS over 𝑈 and 𝑉 such that (𝐴̃1, 𝐴̃2)𝛼 is a 

subgroup of  𝐺(𝐴1,𝐴2) for all 𝛼 ∈ (0,1]. 

Let 𝑚, 𝑛 ∈ 𝐺(𝐴̃1,𝐴̃2) and let 𝛼 = PNB(𝐴̃1,𝐴̃2)(𝑚)⋀PNB(𝐴̃1,𝐴̃2)(𝑛) 
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Then PNB(𝐴̃1,𝐴̃2)(𝑚) ≽ 𝛼 and PNB(𝐴̃1,𝐴̃2)(𝑛) ≽ 𝛼 

That is 𝑚, 𝑛 ∈ (𝐴̃1, 𝐴̃2)𝛼  

                    ⇒  𝑚 ∗ 𝑛−1 ∈ (𝐴̃1, 𝐴̃2)𝛼 [since (𝐴̃1, 𝐴̃2)𝛼 is a subgroup of  𝐺(𝐴1,𝐴2)] 

                      ⇒ PNB(𝐴̃1,𝐴̃2)(𝑚 ∗ 𝑛−1) ≽ 𝛼 = PNB(𝐴̃1,𝐴̃2)(𝑚)⋀PNB(𝐴̃1,𝐴̃2)(𝑛) 

                    ⇒ PNB(𝐴̃1,𝐴̃2)(𝑚 ∗ 𝑛−1) ≽ PNB(𝐴̃1,𝐴̃2)(𝑚)⋀PNB(𝐴̃1,𝐴̃2)(𝑛) 

Therefore, (𝐴̃1, 𝐴̃2) is PNBSG of a group 𝐺(𝐴1,𝐴2). [By Proposition 3.5] 

Definition 3.3. If  (𝐴̃1, 𝐴̃2) represents a PNBSG with structure  ℬ(𝐴̃1,𝐴̃2) = (𝐺(𝐴̃1,𝐴̃2),∗) 

over 𝑈 and 𝑉, then it is said to be pentapartitioned neutrosophic binary normal 

subgroup (PNBNSG) in 𝐺(𝐴1,𝐴2) if PNB(𝐴̃1,𝐴̃2)(𝑚 ∗ 𝑛) = PNB(𝐴̃1,𝐴̃2)(𝑛 ∗ 𝑚) for every 

𝑚, 𝑛 ∈ 𝐺(𝐴̃1,𝐴̃2). 

Remark 3.4. If  (𝐴̃1, 𝐴̃2) represents a PNBSG with structure  ℬ(𝐴̃1,𝐴̃2) = (𝐺(𝐴̃1,𝐴̃2),∗) 

over 𝑈 and 𝑉, then it is said to be normal in 𝐺(𝐴1,𝐴2) iff PNB(𝐴̃1,𝐴̃2)(𝑔
−1𝑚𝑔) =                        

PNB(𝐴̃1,𝐴̃2)(𝑚) for every 𝑚 ∈ (𝐴̃1, 𝐴̃2), 𝑔 ∈ 𝐺(𝐴̃1,𝐴̃2). 

Theorem 3.5. If  (𝐴̃1, 𝐴̃2) represents a PNBS over 𝑈 and 𝑉. Then (𝐴̃1, 𝐴̃2) is 

PNBNSG of a group 𝐺(𝐴1,𝐴2) = (𝑈 ∪ 𝑉,∗). Then  (𝐴̃1, 𝐴̃2)𝛼 is a normal subgroup of  

𝐺(𝐴1,𝐴2) for all 𝛼 ∈ (0,1], where PNB(𝐴̃1,𝐴̃2)(𝑒) ≽ 𝛼 and 𝑒 appears as the identity in 

𝐺(𝐴1,𝐴2). 

Proof. Let 𝑚 ∈ (𝐴̃1, 𝐴̃2)𝛼 and 𝑔 ∈ 𝐺(𝐴1,𝐴2) be any element. 

Then PNB(𝐴̃1,𝐴̃2)(𝑚) ≽ 𝛼. Also, (𝐴̃1, 𝐴̃2) is PNBNSG of a group 𝐺(𝐴1,𝐴2). 

 Therefore,  PNB(𝐴̃1,𝐴̃2)(𝑔
−1𝑚𝑔) = PNB(𝐴̃1,𝐴̃2)(𝑚) for all ∈ (𝐴̃1, 𝐴̃2)𝛼 , 𝑔 ∈ 𝐺(𝐴1,𝐴2). 

               ⇒ PNB(𝐴1,𝐴2)(𝑔
−1𝑚𝑔) = PNB(𝐴1,𝐴2)(𝑚) ≽ 𝛼 

               ⇒ PNB(𝐴1,𝐴2)(𝑔
−1𝑚𝑔) ≽ 𝛼 

               ⇒ 𝑔−1𝑚𝑔 ∈ (𝐴̃1, 𝐴̃2)𝛼 

Hence, (𝐴̃1, 𝐴̃2)𝛼 is a normal subgroup of 𝐺(𝐴1,𝐴2). 

Definition 3.6. If (𝐴̃1, 𝐴̃2) represents a PNBSG with structure  ℬ(𝐴̃1,𝐴̃2) =

(𝐺(𝐴̃1,𝐴̃2),∗) over 𝑈 and 𝑉, then (𝐴̃1, 𝐴̃2) is called a pentapartitioned neutrosophic 
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binary abelian subgroup (PNBASG) of 𝐺(𝐴1,𝐴2) if  (𝐴̃1, 𝐴̃2)𝛼 is an abelian subgroup 

of  𝐺(𝐴1,𝐴2) for all 𝛼 ∈ (0,1]. 

Theorem 3.7. If 𝐺(𝐴1,𝐴2) is an abelian group, then every PNBSG of 𝐺(𝐴1,𝐴2) is a 

PNBASG of 𝐺(𝐴1,𝐴2). 

Proof. Let (𝐴̃1, 𝐴̃2) be a PNBSG of 𝐺(𝐴1,𝐴2) and given that 𝐺(𝐴1,𝐴2) is an abelian 

group. 

                     ⇒ (𝐴̃1, 𝐴̃2)𝛼 is a subgroup of 𝐺(𝐴1,𝐴2) [By theorem] 

                        ⇒ (𝐴̃1, 𝐴̃2)𝛼 is an abelian subgroup of 𝐺(𝐴1,𝐴2) [By remark]              

                     ⇒ (𝐴̃1, 𝐴̃2) is a PNBASG of 𝐺(𝐴1,𝐴2) [By definition] 

Remark 3.8. The converse of Theorem 3.7 does not hold in general, as shown by 

the following counterexample: 

 Let 𝑈 = {±1,±𝑖} and 𝑉 = {−1,±𝑖,±𝑗,±𝑘} be two sets under 

consideration. Therefore we get the combined set 𝐺(𝐴1,𝐴2) = {𝑈 ∪ 𝑉}. Clearly 

(𝐺(𝐴1,𝐴2),∗) = {±1,±𝑖,±𝑗,±𝑘} forms a group. Let (𝐴̃1, 𝐴̃2) be a PNB set defined over 

𝑈 and 𝑉 as the following table: 

 

 

 

 

 

 

 

 

 

 

The membership grade of combined PNB set is given by 

for 𝑣2 = 1 𝑣4 = 1, 

𝑣 ≠ −1 

𝜇𝐴̃2(𝑣) .1 .12 

𝜎𝐴̃2(𝑣) .2 .19 

𝜗𝐴̃2(𝑣) .25 .18 

𝜙𝐴̃2  (𝑣) .099 .7 

𝛾𝐴̃2(𝑣) .1 .93 

for 𝑢 = 1 𝑢2 = 1, 

𝑢 ≠ 1 

𝑢4 = 1, 

𝑢 ≠ ±1 

𝜇𝐴̃1(𝑢) .2 .15 .1 

𝜎𝐴̃1(𝑢) .29 .1 .12 

𝜗𝐴̃1(𝑢) .09 .1 .18 

𝜙𝐴̃1(𝑢) .095 .65 .8 

𝛾𝐴̃1(𝑢) .06 .07 .95 
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Clearly, (𝐴̃1, 𝐴̃2) is a PNBSG of 𝐺(𝐴1,𝐴2). Additionally, all (𝐴̃1, 𝐴̃2)𝛼 are abelian 

subgroup of 𝐺(𝐴1,𝐴2) for any 𝛼 ∈ (0,1]. Hence, (𝐴̃1, 𝐴̃2) is a PNBASG of 𝐺(𝐴1,𝐴2), 

but 𝐺(𝐴1,𝐴2) is not an abelian group. 

Theorem 3.9. If  (𝐴̃1, 𝐴̃2) represents a PNBASG with structure  ℬ(𝐴̃1,𝐴̃2) =

(𝐺(𝐴̃1,𝐴̃2),∗) over 𝑈 and 𝑉. Then 𝐻(𝐴1,𝐴2) = {𝑢 ∈ 𝐺(𝐴1,𝐴2): PNB(𝐴1,𝐴2)(𝑢𝑣) =

PNB(𝐴1,𝐴2)(𝑣𝑢) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣 ∈ 𝐺(𝐴1,𝐴2)} is an abelian subgroup of 𝐺(𝐴1,𝐴2). 

Proof. Let (𝐴̃1, 𝐴̃2) be a PNBASG of  a group 𝐺(𝐴1,𝐴2).  

Then  by definition, (𝐴̃1, 𝐴̃2)𝛼 is an abelian subgroup of 𝐺(𝐴1,𝐴2) for all 𝛼 ∈ (0,1]. 

Clearly, 𝐻(𝐴1,𝐴2) ≠ ∅ as 𝑒 ∈ 𝐻(𝐴1,𝐴2). 

 Let 𝑚,𝑛 ∈ 𝐻(𝐴1,𝐴2) 

                ⇒ PNB(𝐴1,𝐴2)(𝑚𝑢) = PNB(𝐴1,𝐴2)(𝑢𝑚) and 

                         PNB(𝐴̃1,𝐴̃2)(𝑛𝑢) = PNB(𝐴̃1,𝐴̃2)(𝑢𝑛) for all 𝑢 ∈ 𝐺(𝐴̃1,𝐴̃2) 

Now, for 𝑢 ∈ 𝐺(𝐴1,𝐴2), PNB(𝐴̃1,𝐴̃2)((𝑚𝑛)𝑢) = PNB(𝐴̃1,𝐴̃2)(𝑚(𝑛𝑢)) [as 𝑛𝑢 ∈ 𝐺(𝐴̃1,𝐴̃2)] 

                                                                           = PNB(𝐴̃1,𝐴̃2)((𝑛𝑢)𝑚) 

                                                                           = PNB(𝐴̃1,𝐴̃2)(𝑛(𝑢𝑚)) 

                                                                           = PNB(𝐴̃1,𝐴̃2)(𝑛(𝑚𝑢)) 

                                                                           = PNB(𝐴̃1,𝐴̃2)((𝑛𝑚)𝑢) 

Therefore, 𝑚, 𝑛 ∈ 𝐻(𝐴̃1,𝐴̃2)
  

Also, let 𝑚 ∈ 𝐻(𝐴̃1,𝐴̃2)
 

              ⇒ PNB(𝐴1,𝐴2)(𝑚𝑢) = PNB(𝐴1,𝐴2)(𝑢𝑚) for all 𝑢 ∈ 𝐺(𝐴̃1,𝐴̃2)    ……(1) 

By substituting 𝑢 = 𝑣−1 in  (1), we get PNB(𝐴̃1,𝐴̃2)(𝑚𝑣
−1) = PNB(𝐴̃1,𝐴̃2)(𝑣

−1𝑚) 

𝑓𝑜𝑟 𝑚 = 1 𝑚2 = 1,𝑚 ≠ 1 𝑚4 = 1,𝑚 ≠ 1 

𝜇(𝐴̃1,𝐴̃2)(𝑚) 0.2 0.15 0.12 

𝜎(𝐴̃1,𝐴̃2)(𝑚) 0.29 0.2 0.19 

𝜗(𝐴̃1,𝐴̃2)(𝑚) 0.09 0.1 0.18 

𝜙(𝐴̃1,𝐴̃2)(𝑚) 0.095 0.099 0.7 

𝛾(𝐴̃1,𝐴̃2)(𝑚) 0.06 0.07 0.93 
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Now, PNB(𝐴̃1,𝐴̃2)(𝑚
−1𝑣) = PNB(𝐴̃1,𝐴̃2)((𝑚

−1𝑣)−1)  

= PNB(𝐴1,𝐴2)(𝑣
−1𝑚) 

= PNB(𝐴̃1,𝐴̃2)(𝑚𝑣
−1) 

                                                 = PNB(𝐴1,𝐴2)((𝑚𝑣
−1)−1) 

                          = PNB(𝐴1,𝐴2)(𝑣𝑚
−1) ∀  𝑣 ∈ 𝐺(𝐴1,𝐴2) 

Hence 𝑚−1 ∈ 𝐻(𝐴1,𝐴2). Therefore 𝐻(𝐴1,𝐴2) is a subgroup of 𝐺(𝐴1,𝐴2). 

Now, to prove that 𝐻(𝐴1,𝐴2) is an abelian subgroup of 𝐺(𝐴1,𝐴2). 

Let 𝑚,𝑛 ∈ 𝐻(𝐴1,𝐴2) be arbitrary. Without loss of generality let 𝛼𝑖 < 𝛼𝑗 for 𝑖 ≠ 𝑗 

such that PNB(𝐴̃1,𝐴̃2)(𝑚)=𝛼𝑖 and PNB(𝐴̃1,𝐴̃2)(𝑛) = 𝛼𝑗 where 𝛼𝑖, 𝛼𝑗 ∈ (0,1] 

Then 𝑚 ∈ (𝐴̃1, 𝐴̃2)𝛼𝑖
 and 𝑛 ∈ (𝐴̃1, 𝐴̃2)𝛼𝑗

  

                            ⇒ PNB(𝐴1,𝐴2)(𝑛)=𝛼𝑗 > 𝛼𝑖 

                            ⇒  𝑛 ∈ (𝐴̃1, 𝐴̃2)𝛼𝑖
 

Thus 𝑚,𝑛 ∈ (𝐴̃1, 𝐴̃2)𝛼𝑖
 so that 𝑚𝑛 = 𝑛𝑚 

Hence 𝐻(𝐴1,𝐴2) is an abelian subgroup of 𝐺(𝐴1,𝐴2). 
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Abstract 

A dominating set S is a minimal dominating set of 𝐻 if and only if for every vertex 𝑥 ∈

𝑆, 𝑝𝑛[𝑥, 𝑆] ≠ ∅. ie, for every vertex 𝑥 ∈ 𝑆, has at least one private neighbour in 𝑆. This article 

explores the concept of Irredundance Number in Cluster Hypergraphs. A set 𝑆 is irredundant 

if for every vertex 𝑥 ∈ 𝑆, 𝑝𝑛[𝑥, 𝑆] ≠ ∅. An irredundant set 𝑆 is called a Maximal Irredundant 

Set if no proper subset of 𝑆 is irredundant. The minimum cardinality of a irredundant set is 

called the Irredundance Number and is denoted by 𝑖𝑟(𝐻). The maximum cardinality of a 

irredundant set is called the Upper Irredundance Number and is denoted by 𝐼𝑅(𝐻). It is proved 

that 𝑖𝑟(𝐻) ≤ 𝐼𝑅(𝐻), 𝑖𝑟(𝐻) ≤ 𝛾(𝐻) and Γ(𝐻) ≤ 𝐼𝑅(𝐻). Also, some theorems and results 

related to the concept of Irredundance Number in Cluster Hypergraphs have been discussed 

and demonstrated in this article.  

Keywords: cluster hypergraphs, irredundant set, maximal irredundant set, upper irredundance 

number  

2020 Mathematics Subject Classification (AMS):  05C65 

1. Introduction 

  The major research area in graph theory is the study of domination and related concepts 

such as independence, irredundance and covering. This article focuses mainly on irredundance 

number. The concept irredundance number was introduced by Cockayne, Hedetniemi and 

Miller. A set 𝑆 is a irredundant set if for every vertex 𝑣 ∈ 𝑆, 𝑝𝑛[𝑣, 𝑆] ≠ ∅.  An irredundant set 

𝑆 is called a maximal irredundant set if no proper subset of 𝑆 is irredundant. The minimum 

cardinality of a maximal irredundant set in a graph 𝐺 is called the irredundance number of 𝐺 

and is denoted by 𝑖𝑟(𝐺). The maximum cardinality of a maximal irredundant set in a graph 𝐺 

is called the upper irredundance number of 𝐺 and is denoted by 𝐼𝑅(𝐺)[1]. 

mailto:1marychristal01@gmail.com
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 A set 𝑆 is a minimal dominating set in 𝐻 if and only if for every vertex 𝑦 ∈ 𝑉𝑋(𝐻) such 

that 𝑁[𝑦] ∩ 𝑆 = {𝑥}. The vertex 𝑦 is called the private neighbour of 𝑥 with respect to 𝑆. 

𝑝𝑛[𝑥, 𝑆] is called as the set all private neighbour of 𝑥 with respect to 𝑆. 

 A dominating set 𝑆 is a minimal dominating set in 𝐻 if and only if for every vertex 𝑥 ∈

𝑆, 𝑝𝑛[𝑥, 𝑆] ≠ ∅.  Ie., for every vertex 𝑥 ∈ 𝑆, has atleast one private neighbour. This minimality 

condition for a dominating set explores another concept called irredundance. C. Mary Christal 

Flower and J. Befija Minnie together introduced the concept of Irredundance Number in 

Cluster Hypergraphs. Also, some theorems and results related to the concept of Irredundance 

Number in Cluster Hypergraphs have been discussed and demonstrated in this article. 

2. Main Results 

Definition 2.1. Let  𝐻 = (𝑉𝑋 , 𝐸) be a cluster hypergraph.  A subset 𝑆 ⊆ 𝑉𝑋(𝐻) is said to be 

independent if it does not contain an edge 𝐸 in 𝐻  with |𝐸| > 1. The independence number or 

independent number 𝛼(𝐻) of a cluster hypergraph 𝐻 is defined as the maximum cardinality of 

a maximal independent set in 𝐻. 

The set 𝑆 ⊆ 𝑉𝑋(𝐻) is called a strongly independent set if no two vertices in 𝑆 are 

adjacent. The maximum cardinality of a maximal strongly independent set is denoted by  𝛽(𝐻) 

and is called the strongly independence number or strongly independent number[2]. 

Definition 2.2. Let 𝐻 be a cluster hypergraphs. A set 𝑆 ⊆  𝑉𝑋(𝐻) is called an irredundance set 

in 𝐻 if for every vertex 𝑥 in 𝑆 has atleast one private neighbour with respect to 𝑆.  

Theorem 2.3.  A dominating set S of a cluster hypergraph H is a minimal dominating set in H 

if and only if S is both a dominating and a irredudant set.  

Proof.  Let 𝐻 be a cluster hypergraph. Assume that, 𝑆 is a minimal dominating set in 𝐻. Then 

by definition, 𝑆 is both a irredundant and dominating set in 𝐻. 

Conversely, assume that, 𝑆 is both a irredundant and dominating set in 𝐻. To prove 𝑆 

is a minimal dominating set in 𝐻. Let 𝑥 ∈ 𝑆, Since 𝑆 is irredundant set in 𝐻, by definition 

𝑝𝑛[𝑥, 𝑆] ≠ 𝜙. Let 𝑦 ∈ 𝑝𝑛[𝑥, 𝑆]. Then 𝑦 is not adjacent to any vertex in 𝑆\{𝑥} and so 𝑆\{𝑥} is 

not a dominating set in 𝐻. It follows that 𝑆 is a minimal dominating set of 𝐻.  

Theorem 2.4. Every minimal dominating set S in a cluster hypergraph 𝐻 is a maximal 

irredundant set of 𝐻.  



Proceedings of the International Conference on Algebraic Graph Theory,                                              
Graph Theory and Topology – 9th & 10th January 2025 

39 
 
ISBN: 978-93-48505-23-1 

Proof.  Let 𝐻 be a cluster hypergraph and let 𝑆 be a minimal dominating set in 𝐻. Then by 

theorem 3.2, 𝑆 is an irredundant set in 𝐻. Therefore, it is enough to prove that 𝑆 is a maximal 

dominating set of 𝐻. Suppose not, there exists a vertex 𝑥 ∈ 𝑉𝑋(𝐻)\𝑆 such that 𝑆 ∪ {𝑥} is a 

irredundant set in 𝐻. It follows that 𝑝𝑛[𝑥, 𝑆 ∪ {𝑥}] ≠ 𝜙. Let 𝑦 ∈ 𝑝𝑛[𝑥, 𝑆 ∪ {𝑥}]. Then no vertex 

in 𝑆 is adjacent to 𝑦. This implies that, 𝑆 is not a dominating set in 𝐻 which gives a 

contradiction. Hence, 𝑆 is a maximal irredundant set in 𝐻.  

Definition 2.5.  The minimum cardinalily of a maximal irredundant set in a cluster hypergraph 

𝐻 is called the Irredundance Number, and is denoted by 𝑖𝑟(𝐻). The maximum cardinality of 

an irredundant set in a cluster hypergraph 𝐻 is called the Upper Irredundance Number and is 

denoted by 𝐼𝑅(𝐻).  

Observation 2.6.  For any cluster hypergraph 𝐻, 𝑖𝑟(𝐻) ≤ 𝐼𝑅(𝐻).  

Observation 2.7.  For any cluster hypergraph 𝐻, 𝑖𝑟(𝐻) ≤ 𝛾(𝐻) and 𝛤(𝐻) ≤ 𝐼𝑅(𝐻).  

Theorem 2.8.  For any cluster hypergraphs 𝐻, 𝐼𝑅(𝐻) + 𝛿(𝐻) ≤ |𝑉𝑋(𝐻)|.  

Proof.  Let 𝐻 be a cluster hypergraph and 𝑆 be a maximal irredundant set with |𝑆| = 𝐼𝑅(𝐻). 

Suppose 𝑥 ∈ 𝑆. Since 𝑆 is an irredundant set in 𝐻, there exists a vertex 𝑦 in 𝐻 such that 𝑦 ∈

𝑁[𝑥]\𝑁[𝑆\{𝑥}] . Consider the following two cases. 

Case (i) 𝑥 = 𝑦. 

 In this case, the vertex 𝑥 is not adjacent to every vertex in 𝑆 and so it must have atleast 

𝛿(𝐻) neighbours in 𝑉𝑋(𝐻)\𝑆. Hence, |𝑉𝑋(𝐻)| − 𝐼𝑅(𝐻) = |𝑉𝑋(𝐻)\𝑆| ≥ 𝛿(𝐻) and so, 

𝐼𝑅(𝐻) + 𝛿(𝐻) ≤ |𝑉𝑋(𝐻)|. 

Case (ii) 𝑥 ≠ 𝑦. 

 By the choice of 𝑦, 𝑦 ∉ 𝑆 and 𝑁(𝑦) ∩ 𝑆 = {𝑥}. Then 𝑁[𝑦]\{𝑥} ⊂ 𝑉𝑋(𝐻)\𝑆. It follows 

that, |𝑉𝑋(𝐻)| − 𝐼𝑅(𝐻) = |𝑉𝑋(𝐻)\𝑆| ≥ |𝑁[𝑦]\{𝑥}| ≥ 𝛿(𝐻) and hence, 𝐼𝑅(𝐻) + 𝛿(𝐻) ≤

|𝑉𝑋(𝐻)|.  

Corollary 2.9. For any cluster hypergraph 𝐻, 𝛤(𝐻) + 𝛿(𝐻) ≤ |𝑉𝑋(𝐻)| and 𝛽(𝐻) + 𝛿(𝐻) ≤

|𝑉𝑋(𝐻)|.  

Theorem 2.10.  For any cluster hypergraph 𝐻 𝐼𝑅(𝐻) + 𝛿(𝐻) = |𝑉𝑋(𝐻)| if and only if 𝛤(𝐻) +

𝛿(𝐻) = |𝑉𝑋(𝐻)|.   
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Proof.  Let 𝐻 be a cluster hypergraph such that Γ(𝐻) + 𝛿(𝐻) = |𝑉𝑋(𝐻)|. By observation 2.6, 

Γ(𝐻) ≤ 𝐼𝑅(𝐻).It follows that, |𝑉𝑋(𝐻)| ≤ 𝐼𝑅(𝐻) + 𝛿(𝐻). By theorem 2.7, it is concluded that 

𝐼𝑅(𝐻) + 𝛿(𝐻) = |𝑉𝑋(𝐻)|. 

  Conversely, assume 𝐻 be a cluster hypergraph such that 𝐼𝑅(𝐻) + 𝛿(𝐻) = |𝑉𝑋(𝐻)|. To prove 

that Γ(𝐻) + 𝛿(𝐻) = |𝑉𝑋(𝐻)|. Let 𝑆 be a maximal irredundant set in 𝐻 with 𝐼𝑅(𝐻) = |𝑆|. First 

to prove that, 𝑆 itself is a dominating set in 𝐻. Suppose 𝑆 is not a dominating set in 𝐻, then 

there is a vertex 𝑦 ∈ 𝑉𝑋(𝐻)\𝑆 such that 𝑦 is not adjacent to any vertex in 𝑆. Thus, 𝑁[𝑦] ⊆

𝑉𝑋(𝐻)\𝑆. But |𝑁[𝑦]| = 𝑑(𝑦) + 1 ≥ 𝛿(𝐻) + 1. It follows that, 𝛿(𝐻) + 1 ≤ |𝑁[𝑦]| ≤

|𝑉𝑋(𝐻)\𝑆| = |𝑉𝑋(𝐻)| − 𝐼𝑅(𝐻). Here it is obtained that, 𝐼𝑅(𝐻) + 𝛿(𝐻) ≤ |𝑉𝑋(𝐻)| − 1. This 

implies that, 𝐼𝑅(𝐻) − 𝛿(𝐻) < |𝑉𝑋(𝐻)|, which is a contradiction. Hence, 𝑆 is a dominating set 

in 𝐻. Since 𝑆 is an irredundant set, by theorem 3.2., 𝑆 is a minimal dominating set in 𝐻. So, 

Γ(𝐻) ≥ |𝑆| = 𝐼𝑅(𝐻) ≥ Γ(𝐻) implies that 𝐼𝑅(𝐻) = Γ(𝐻). Hence, Γ(𝐻) + 𝛿(𝐻) = |𝑉𝑋(𝐻)|. 

Theorem 2.11.  Let 𝐻 be any cluster hypergraph and let S be any dominating set in 𝐻. Then 

|Vx(H)\S| ≤ ∑x∈S d(x). Further, the inequality holds if and only if S is a strongly independent 

set in H and for every x ∈ VX(H)\S, there is unique vertex y ∈ S such that N(x) ∩ S = {y}.  

Proof.  Let 𝐻 be a cluster hypergraph and let 𝑆 be any dominating set in 𝐻. Then, by definition, 

every vertex in 𝑉𝑋(𝐻)\𝑆 adds atleast one vertex to the degree of some vertex 𝑥 in 𝑆. It follows 

that, |𝑉𝑋(𝐻)\𝑆| ≤ ∑𝑥∈𝑆 𝑑(𝑥). 

Next, assume that |𝑉𝑋(𝐻)\𝑆| = ∑𝑥∈𝑆 𝑑(𝑥). To prove that 𝑆 is a strongly independent 

set in 𝐻. Suppose 𝑆 is not a strongly independent set in 𝐻, then there exists vertices 𝑥, 𝑦 ∈ 𝑆 

such that 𝑥 and 𝑦 are adjacent. Since 𝑆 is a dominating set in 𝐻, by definition, every vertex in 

𝑉𝑋(𝐻)\𝑆 is counted or added in the sum ∑𝑥∈𝑆 𝑑(𝑥). Furthermore, the vertex 𝑥 is counted or 

added in 𝑑(𝑦) and the vertex 𝑦 is counted or added in 𝑑(𝑥). Also 𝑥, 𝑦 ∈ 𝑆, implies that 𝑥, 𝑦 ∉

𝑉𝑋(𝐻)\𝑆. This shows that, ∑𝑥∈𝑆 𝑑(𝑥) > |𝑉𝑋(𝐻)\𝑆| ≥ |𝑉𝑋(𝐻)\𝑆| + 2, implies that 

∑𝑥∈𝑆 𝑑(𝑥) > |𝑉𝑋(𝐻)\𝑆| + 1, which is a contradiction. Thus, 𝑆 is a strongly independent set in 

𝐻. Now to demonstrate that, for every vertex 𝑥 ∈ 𝑉𝑋(𝐻)\𝑆, then there is a unique vertex 𝑦 ∈ 𝑆 

such that 𝑁(𝑥) ∩ 𝑆 = {𝑦}. Since, 𝑆 is a dominating set in 𝐻, it is sufficient to show that 𝑁(𝑥) ∩

𝑆 = {𝑦}. That is, |𝑁(𝑥) ∩ 𝑆| = 1. Suppose, |𝑁(𝑥) ∩ 𝑆| ≥ 2. Let 𝑦, 𝑧 ∈ 𝑁(𝑥) ∩ 𝑆. Then the 

sum ∑𝑥∈𝑆 𝑑(𝑥) exceeds |𝑉𝑋(𝐻)\𝑆| by atleast one, since the vertex 𝑥 is counted or added atleast 

twice (one in 𝑑(𝑦) and one in 𝑑(𝑧)). So ∑𝑥∈𝑆 𝑑(𝑥) > |𝑉𝑋(𝐻)\𝑆|, which is a contradiction. 

Thus 𝑁(𝑥) ∩ 𝑆 = {𝑦}. 
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Conversely, if 𝑆 is a strongly independent set in 𝐻. For every 𝑥 ∈ 𝑉𝑋(𝐻)\𝑆, there is a 

unique vertex 𝑦 ∈ 𝑆 such that 𝑁(𝑥) ∩ 𝑆 = 𝑦 then obviously the sum ∑𝑥∈𝑆 𝑑(𝑥) = |𝑉𝑋(𝐻)\𝑆|.  

3. Conclusion 

 In this article, the concept Irredundance Number in Cluster Hypergraphs have been 

introduced and the same concept is extended to prove some theorems and results related to the 

Irredundance Number in Cluster Hypergraphs.  

References  

1.  Cockayne E.J and Hedetniemi S.T, Towards a theory of domination in graphs Netwoks, 7,  

241-261, (1997). 

2. Mary Christal Flower C, Befija Minnie J, Jancy Vini A, A Study on independence   

number in cluster hypergraphs, Journal of Computational Analysis 

andApplications, 33(7), 1209-1212,2024. 

3. Cockayne E. J and Mynhardt C.M, The sequence of upper and lower domination               

independence and irredundance numbers of a graph, Discrete Math., (1993), 122, 89-102. 

4. Cockayne E.J and Hedetniemi S.T , Miller D.J, Properties of hereditary hypergraphs and 

middle graphs, Canad. Math. Bull, 21, 461-468, (1978).  

5. Jerzy Topp, Domination, Independence and irredundance in graphs, Dissertationes 

Mathematicae, 1995. 

6. Maity A, Samanta S, Mondal S, Dubey V, A study of cluster hypergraphs and its properties, 

Social Network Analysis and Minning, 11-20, 2021. 

7. Sovan Samanta, Jeong Gon Lee, Usman Naseem, Shah Khalid Khan and Kousik Das, 

Concept of coloring of cluster hypergraphs. Mathematical Problems in Engineering,10 

pages, (2020). 

8. Odile Favaron, Teresa W. Haynes, Stephen T. Hedetniemi, Micheal A. Henning, Debra J. 

Kinsley, Total irredundance in graphs, Discrete Mathematics, 256, 115-127, (2002).  

9. Mary Christal Flower C, Befija Minnie J, Edge Product in Cluster Hypergraphs, 

Conference Proceedings, (ICHGD-2024), pg: 96-101, ISBN:978-81-19821-72-3.  

10.  Sovan Samanta, Muhiuddin G, Abdulaziz M. Alanazi, Kousik Das, A 

Mathematical approach on representations of Competitions: Competition Cluster 

Hypergraphs, Mathematical Problems in Engineering, 10 pages, (2020). 

 



Proceedings of the International Conference on Algebraic Graph Theory,                                              
Graph Theory and Topology – 9th & 10th January 2025 

42 
 
ISBN: 978-93-48505-23-1 

SECURE MONOPHONIC DOMINATION NUMBER OF SOME 

SPECIAL GRAPHS  

Dr. Sunitha K1, Josephine Divya D2 
1Assistant professor, 2Research Scholar, 

1,2Department of Mathematics, Scott Christian College (Autonomous) (Affiliated to 

Manonmanium Sundaranar University, Tirunelveli-627012), Nagercoil, Tamil Nadu, India. 

Email: 1ksunithasam@gmail.com, 2divyajosephine1999@gmail.com 

Abstract 

Let 𝐺 = (𝑉, 𝐸) be a connected graph. A monophonic dominating set 𝑀 is both a 

monophonic set and a dominating set. A monophonic dominating set 𝑀 is said to be a secure 

monophonic dominating set 𝑆𝑚 ( abbreviated as SMD set ) of 𝐺 if for each 𝑣 ∈ 𝑉\𝑀 there 

exists 𝑢 ∈ 𝑀 such that 𝑣 is adjacent to 𝑢 and 𝑆𝑚 = (𝑀  \ {𝑢}) ∪ {𝑣} is a monophonic 

dominating set.The minimum cardinality of a secure monophonic dominating set of 𝐺 is the 

secure monophonic domination number of  𝐺 and is denoted by  𝛾𝑠𝑚(𝐺). In this paper we 

investigate the secure monophonic domination number of special graph structures like Jellyfish 

graph, Ladder graph and Lollipop graph. 

Key words : Monophonic path, monophonic domination number, secure domination number, 

secure monophonic domination number. 

2020 Mathematical Subject Classification (AMS): 05C69 

1. Introduction 

By a graph 𝐺 = (𝑉, 𝐸), we mean a finite and undirected connected graph without loops 

or multiple edges. The vertex set and edge set of 𝐺 are respectively denoted by 𝑉(𝐺) and 𝐸(𝐺). 

For basic graph theoretic terminology, we refer to [5]. A chord of a path 𝑃 is an edge which 

connects two non-consecutive vertices of 𝑃. For two vertices 𝑢 and 𝑣, the closed interval 𝐽[𝑢, 𝑣] 

consists of all the vertices lying in a 𝑢 − 𝑣 monophonic path including the vertices 𝑢 and 𝑣. If 

𝑢 and 𝑣 are adjacent , then 𝐽[𝑢, 𝑣] = {𝑢, 𝑣}. For a set M of vertices, let 𝐽[𝑀] = ⋃ 𝐽[𝑢, 𝑣]𝑢,𝑣∈𝑀 . 

Then certainly 𝑀 ⊆ 𝐽[𝑀]. A set 𝑀 ⊆ 𝑉(𝐺)is called a monophonic set of 𝐺 if 𝐽[𝑀] = 𝑉 . In 

[8], Haynes et al introduced the concept of domination in graphs. A subset 𝐷 ⊆ 𝑉(𝐺) is called 

a dominating set if every vertex 𝑣 ∈ 𝑉(𝐺)\𝐷is adjacent to a vertex 𝑢 ∈ 𝐷. The domination 

mailto:ksunithasam@gmail.com
mailto:divyajosephine1999@gmail.com
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number, 𝛾(𝐺), of a graph 𝐺 denotes the minimum cardinality of such dominating sets of 𝐺. For 

each 𝑢 ∈ 𝑉\𝑆 there exists 𝑣 ∈ 𝑆 such that 𝑣 is adjacent to 𝑢 and (𝑆  \ {𝑣}) ∪ {𝑢}  is a 

dominating set of 𝐺. In this case we say that 𝑢 is  𝑆 − defended by 𝑣 or 𝑣 𝑆 − defends 𝑢. A 

dominating set 𝑆 in which every vertex in 𝑉\𝑆 is 𝑆 - defended by a vertex in 𝑆 is called a secure 

dominating set of 𝐺. The secure domination number 𝛾𝑠(𝐺) is the minimum cardinality of a 

secure dominating set of 𝐺[11]. This concept was introduced by Cockayne et al in [7]. A subset 

𝑀 of 𝑉 is said to be a monophonic dominating set of a graph 𝐺 if 𝑀 is both a monophonic set 

and a dominating set. The minimum of the cardinalities of monophonic dominating sets of 𝐺 

is called the monophonic domination number and is denoted by 𝛾𝑚(𝐺). In 2012, John et al [10] 

introduced the concept of monophonic domination number of a graph. In this paper we 

introduce the concept secure monophonic domination number of graphs. 

Definition 1.1. [7] A dominating set 𝐷 is called a secure dominating set if for each 𝑣 ∈ 𝑉\𝐷 

there exists 𝑢 ∈ 𝐷 such that 𝑣 is adjacent to 𝑢 and 𝑆 = (𝐷  \ {𝑢}) ∪ {𝑣} is a dominating set. 

Definition 1.2. [14] A chord of a path 𝑃 is an edge which connects two non-adjacent vertices 

of 𝑃. An 𝑢 − 𝑣 path is called a monophonic path if it is a chordless path. A monophonic set 𝑀 

of 𝐺 is a set 𝑀 ⊆ 𝑉(𝐺) such that every vertex of 𝐺 is contained in a monophonic path joining 

some pair of vertices in 𝑀. A monophonic dominating set 𝑀 is both a monophonic set and a 

dominating set. The minimum of the cardinalities of monophonic dominating sets of 𝐺 is called 

the monophonic domination number and is denoted by 𝛾𝑚(𝐺). 

Definition 1.3. A monophonic dominating set 𝑀 is said to be a secure monophonic dominating 

set 𝑆𝑚 (abbreviated as SMD set) of 𝐺 if for each 𝑣 ∈ 𝑉\𝑀 there exists 𝑢 ∈ 𝑀 such that 𝑣 is 

adjacent to 𝑢 and 𝑆𝑚 = (𝑀  \ {𝑢}) ∪ {𝑣} is a monophonic dominating set.The minimum 

cardinality of a secure monophonic dominating set of 𝐺 is the secure monophonic domination 

number of  𝐺 and is denoted by  𝛾𝑠𝑚(𝐺). 

2. Observation 

i. Each end vertex of a connected graph 𝐺 belongs to every SMD set of 𝐺. 

3. Main Results 

Theorem 3.1. For the Jellyfish graph 𝐺 = 𝐽𝑚,𝑛 with prime edge,  𝛾𝑠𝑚(𝐺) = 𝑚 + 𝑛 + 1  

(𝑚, 𝑛 ≥ 1). 



Proceedings of the International Conference on Algebraic Graph Theory,                                              
Graph Theory and Topology – 9th & 10th January 2025 

44 
 
ISBN: 978-93-48505-23-1 

Proof. Let 𝐺 = 𝐽𝑚,𝑛 be Jellyfish graph obtained from 4-cycle with vertices 𝑓, 𝑓′, 𝑔0, 𝑔0
′  

including the prime edge connecting 𝑓 and 𝑓′. Appending 𝑚 pendant edges to 𝑔0 and 𝑛 pendant 

edges to 𝑔0
′ . The resultant graph is 𝐽𝑚,𝑛 whose vertex set 𝑉(𝐺) = {𝑓, 𝑓′, 𝑔0, 𝑔0

′ , 𝑔𝑖, 𝑔𝑗
′  / 1 ≤ 𝑖 ≤

𝑚, 1 ≤ 𝑗 ≤ 𝑛} and edge set 𝐸(𝐺) = {𝑓𝑓′, 𝑓𝑔0, 𝑓𝑔0′, 𝑔0𝑓′, 𝑔0′𝑓′, 𝑔0𝑔𝑖 , 𝑔0′𝑔𝑗′ / 1 ≤ 𝑖 ≤

𝑚, 1 ≤ 𝑗 ≤ 𝑛} such that |𝑉(𝐺)| = 𝑚 + 𝑛 + 4 and |𝐸(𝐺)| = 𝑚 + 𝑛 + 5 . Let 𝑍 = {𝑔𝑖, 𝑔𝑗′  /

1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛} be the 𝑚 + 𝑛 end vertices of 𝐺. By observation, 𝑍 is a subset of every 

SMD set of 𝐺. Since the vertices 𝑓 and 𝑓′ are not dominated by any vertex of 𝑍, 𝑍 is not a 

SMD set of 𝐺 and so  𝛾𝑠𝑚(𝐺) ≥ 𝑚 + 𝑛 + 1. Let 𝑍′ = 𝑍 ∪ {𝑓}. Clearly monophonic path exists 

and 𝑉(𝐺) − 𝑍′ is dominated by atleast one element of 𝑍′. Therefore 𝑍′ is a SMD set of  𝐺, so 

that  𝛾𝑠𝑚(𝐺) = 𝑚 + 𝑛 + 1. 

Theorem 3.2. For the Jellyfish graph without prime edge 𝐺 = 𝐽∗𝑚,𝑛,  𝛾𝑠𝑚(𝐺) = 𝑚 + 𝑛 + 1 

(𝑚, 𝑛 ≥ 1). 

Proof. Let 𝐽𝑚,𝑛 be Jellyfish graph with vertices 𝑉(𝐽𝑚,𝑛) = {𝑓, 𝑓′, 𝑔0, 𝑔0
′ , 𝑔𝑖 , 𝑔𝑗

′  / 1 ≤ 𝑖 ≤ 𝑚,

1 ≤ 𝑗 ≤ 𝑛} and edges 𝐸(𝐽𝑚,𝑛) = {𝑓𝑓′, 𝑓𝑔0, 𝑓𝑔0′, 𝑔0𝑓′, 𝑔0′𝑓′, 𝑔0𝑔𝑖, 𝑔0′𝑔𝑗′ / 1 ≤ 𝑖 ≤ 𝑚, 1 ≤

𝑗 ≤ 𝑛}. Let 𝐺 = 𝐽∗𝑚,𝑛 be obtained by removing prime edge 𝑓𝑓′ from Jellyfish graph 𝐽𝑚,𝑛 

whose vertex set 𝑉(𝐺) = {𝑓, 𝑓′, 𝑔0, 𝑔0
′ , 𝑔𝑖 , 𝑔𝑗

′  / 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛} and edge set 𝐸(𝐺) =

{𝑓𝑔0, 𝑓𝑔0′, 𝑔0𝑓′, 𝑔0′𝑓′, 𝑔0𝑔𝑖, 𝑔0′𝑔𝑗′ / 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛} such that |𝑉(𝐺)| = 𝑚 + 𝑛 + 4 

and |𝐸(𝐺)| = 𝑚 + 𝑛 + 4. Then by similar arguement as in theorem 1. Hence  𝛾𝑠𝑚(𝐺) = 𝑚 +

𝑛 + 1 . 

Theorem 3.3. For the Extended Jellyfish graph 𝐺 = 𝐸𝐽𝑚,𝑛,𝑙,  𝛾𝑠𝑚(𝐺) = 𝑚 + 𝑛 + 𝑙 +

2 (𝑚, 𝑛, 𝑙 ≥ 1). 

Proof. Let 𝐽∗𝑚,𝑛 be Jellyfish graph with vertices 𝑉(𝐽∗𝑚,𝑛) = {𝑓, 𝑓
′, 𝑔0, 𝑔0

′ , 𝑔𝑖, 𝑔𝑗
′  / 1 ≤ 𝑖 ≤ 𝑚,

1 ≤ 𝑗 ≤ 𝑛} and edges 𝐸(𝐽𝑚,𝑛) = {𝑓𝑓′, 𝑓𝑔0, 𝑓𝑔0′, 𝑔0𝑓′, 𝑔0′𝑓′, 𝑔0𝑔𝑖, 𝑔0′𝑔𝑗′ / 1 ≤ 𝑖 ≤ 𝑚, 1 ≤

𝑗 ≤ 𝑛}. Let 𝐺 = 𝐸𝐽𝑚,𝑛,𝑙 be an extended Jellyfish graph from jellyfish graph 𝐽∗𝑚,𝑛 without prime 

edge. Appending arbitrary 𝑙 vertices(𝑎𝑘, 1 ≤ 𝑘 ≤ 𝑙) in 𝐽∗𝑚,𝑛 such a way that they all are 

connected to vertex 𝑓 and 𝑓′. The resultant graph is 𝐸𝐽𝑚,𝑛,𝑙 whose vertex set 𝑉(𝐺) =

{𝑓, 𝑓′, 𝑔0, 𝑔0
′ , 𝑔𝑖, 𝑔𝑗

′ , 𝑎𝑘 / 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛, 1 ≤ 𝑘 ≤ 𝑙} and edge set 𝐸(𝐺) =

{𝑓𝑔0, 𝑓𝑔0′, 𝑔0𝑓′, 𝑔0′𝑓′, 𝑔0𝑔𝑖, 𝑔0′𝑔𝑗′, 𝑓𝑎𝑘 , 𝑓′𝑎𝑘/ 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛, 1 ≤ 𝑘 ≤ 𝑙} such that 

|𝑉(𝐺)| = 𝑚 + 𝑛 + 𝑙 + 4 and |𝐸(𝐺)| = 𝑚 + 𝑛 + 2𝑙 + 4. Let 𝑍 = {𝑔𝑖, 𝑔𝑗′  /1 ≤ 𝑖 ≤ 𝑚, 1 ≤
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𝑗 ≤ 𝑛} be the 𝑚 + 𝑛 end vertices of 𝐺. By observation, 𝑍 is a subset of every SMD set of 𝐺. 

Since the vertices 𝑓 and 𝑓′, 𝑎𝑘(1 ≤ 𝑘 ≤ 𝑙)  are not dominated by any vertex of 𝑍, 𝑍 is not a 

SMD set of 𝐺 and so  𝛾𝑠𝑚(𝐺) ≥ 𝑚 + 𝑛 + 𝑙 + 2. Let 𝑍′ = 𝑍 ∪ {𝑓, 𝑓′, 𝑎𝑘(1 ≤ 𝑘 ≤ 𝑙)}. Clearly 

monophonic path exists and 𝑉(𝐺) − 𝑍′ is dominated by atleast one element of 𝑍′. Therefore 𝑍′ 

is a SMD set of  𝐺, so that  𝛾𝑠𝑚(𝐺) = 𝑚 + 𝑛 + 𝑙 + 2.  

Theorem 3.4. For the Lollipop graph 𝐺 = 𝐿𝑝𝑚,𝑛(𝑚 ≥ 4, 𝑛 ≥ 7),  

 𝛾𝑠𝑚(𝐺) = {
⌈
3𝑛

7
⌉ + 𝑚 + 1       𝑖𝑓             𝑛 ≡ 1,3 (𝑚𝑜𝑑7)

⌈
3𝑛

7
⌉ + 𝑚            𝑖𝑓      𝑛 ≡ 0,2,4,5,6(𝑚𝑜𝑑7)

         

Proof. Let {𝑓𝑖(1 ≤ 𝑖 ≤ 𝑚), ℎ𝑗(1 ≤ 𝑗 ≤ 𝑛) } be the vertices of 𝐺, whose edge set  𝐸(𝐺) =

𝐸(𝐾𝑚) ∪ {𝑓𝑚ℎ1, ℎ𝑖ℎ𝑖+1(1 ≤ 𝑖 ≤ 𝑛 − 1)} such that |𝑉(𝐺)| = 𝑚 + 𝑛 and |𝐸(𝐺)| =
𝑚(𝑚−1)

2
+

𝑛. Let 𝑚 ≥ 4, 𝑛 ≥ 7. Consider the following cases. 

Case a: Subcase (i): 𝑛 ≡ 0(𝑚𝑜𝑑7) 

Take 𝐺 = 𝐿𝑝𝑚,7(𝑚 ≥ 4). Choose 𝑆𝑚 = {𝑓𝑖(1 ≤ 𝑖 ≤ 𝑚 − 1), ℎ1, ℎ3, ℎ5, ℎ7}. Remove any 

vertex 𝑥 ∈ 𝑆𝑚 and add another vertex 𝑦 ∈ 𝑉\𝑆𝑚 to 𝑆𝑚 such that 𝑥 is adjacent to 𝑦. Hence the 

set 𝑆𝑚 is again a secure dominating set of 𝐺. Also the monophonic path exists and it contain 

all the vertices of 𝐺. So 𝑆𝑚 = {𝑓𝑖(1 ≤ 𝑖 ≤ 𝑚 − 1), ℎ1, ℎ3, ℎ5, ℎ7} is a minimum SMD set of 

𝐺. In general 𝑆𝑚 = ⋃ {ℎ7𝑗+1, ℎ7𝑗+3, ℎ7𝑗+5} ∪ {𝑓𝑖(1 ≤ 𝑖 ≤ 𝑚 − 1)} ∪ {ℎ𝑛}
𝑘−1
𝑗=0  is a minimum 

SMD set of 𝐺. Therefore |𝑆𝑚| = ⌈
3𝑛

7
⌉ + 𝑚. 

Subcase (ii): 𝑛 ≡ 2(𝑚𝑜𝑑7) 

Take 𝐺 = 𝐿𝑝𝑚,9(𝑚 ≥ 4). Choose 𝑆𝑚 = {𝑓𝑖(1 ≤ 𝑖 ≤ 𝑚 − 1), ℎ1, ℎ3, ℎ5, ℎ7, ℎ9}. Then by 

similar argument as in subcase (i), 𝑆𝑚 = {𝑓𝑖(1 ≤ 𝑖 ≤ 𝑚 − 1), ℎ1, ℎ3, ℎ5, ℎ7, ℎ9} is a minimum 

SMD set of 𝐺. In general 𝑆𝑚 = ⋃ {ℎ7𝑗+1, ℎ7𝑗+3, ℎ7𝑗+5} ∪ {𝑓𝑖(1 ≤ 𝑖 ≤ 𝑚 − 1)} ∪𝑘−1
𝑗=0

{ℎ𝑛−2, ℎ𝑛} is a minimum SMD set of 𝐺. Therefore |𝑆𝑚| = ⌈
3𝑛

7
⌉ + 𝑚. 

Subcase (iii): 𝑛 ≡ 4(𝑚𝑜𝑑7) 

Take 𝐺 = 𝐿𝑝𝑚,11(𝑚 ≥ 4). Choose 𝑆𝑚 = {𝑓𝑖(1 ≤ 𝑖 ≤ 𝑚 − 1), ℎ1, ℎ3, ℎ5, ℎ7, ℎ9, ℎ11}. Then by 

similar argument as in subcase (i), 𝑆𝑚 = {𝑓𝑖(1 ≤ 𝑖 ≤ 𝑚 − 1), ℎ1, ℎ3, ℎ5, ℎ7, ℎ9, ℎ11} is a 
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minimum SMD set of 𝐺. In general 𝑆𝑚 = ⋃ {ℎ7𝑗+1, ℎ7𝑗+3, ℎ7𝑗+5} ∪ {𝑓𝑖(1 ≤ 𝑖 ≤ 𝑚 − 1)} ∪𝑘−1
𝑗=0

{ℎ𝑛−4, ℎ𝑛−2, ℎ𝑛} is a minimum SMD set of 𝐺. Therefore |𝑆𝑚| = ⌈
3𝑛

7
⌉ + 𝑚. 

Subcase (iv): 𝑛 ≡ 5(𝑚𝑜𝑑7) 

Take 𝐺 = 𝐿𝑝𝑚,12(𝑚 ≥ 4). Choose 𝑆𝑚 = {𝑓𝑖(1 ≤ 𝑖 ≤ 𝑚 − 1), ℎ1, ℎ3, ℎ5, ℎ8, ℎ10, ℎ12}. Then 

by similar argument as in subcase (i), 𝑆𝑚 = {𝑓𝑖(1 ≤ 𝑖 ≤ 𝑚 − 1), ℎ1, ℎ3, ℎ5, ℎ8, ℎ10, ℎ12} is a 

minimum SMD set of 𝐺. In general 𝑆𝑚 = ⋃ {ℎ7𝑗+1, ℎ7𝑗+3, ℎ7𝑗+5} ∪ {𝑓𝑖(1 ≤ 𝑖 ≤ 𝑚 − 1)} ∪𝑘−1
𝑗=0

{ℎ𝑛−4, ℎ𝑛−2, ℎ𝑛} is a minimum SMD set of 𝐺. Therefore |𝑆𝑚| = ⌈
3𝑛

7
⌉ + 𝑚. 

Subcase (v): 𝑛 ≡ 6(𝑚𝑜𝑑7) 

Take 𝐺 = 𝐿𝑝𝑚,13(𝑚 ≥ 4). Choose 𝑆𝑚 = {𝑓𝑖(1 ≤ 𝑖 ≤ 𝑚 − 1), ℎ1, ℎ3, ℎ5, ℎ8, ℎ10, ℎ12, ℎ13}. 

Then by similar argument as in subcase (i), 𝑆𝑚 = {𝑓𝑖(1 ≤ 𝑖 ≤ 𝑚 − 1),

ℎ1, ℎ3, ℎ5, ℎ8, ℎ10, ℎ12, ℎ13} is a minimum SMD set of 𝐺. In general 𝑆𝑚 =

⋃ {ℎ7𝑗+1, ℎ7𝑗+3, ℎ7𝑗+5} ∪ {𝑓𝑖(1 ≤ 𝑖 ≤ 𝑚 − 1)} ∪ {ℎ𝑛−5, ℎ𝑛−3, ℎ𝑛−1, ℎ𝑛}
𝑘−1
𝑗=0  is a minimum 

SMD set of 𝐺. Therefore |𝑆𝑚| = ⌈
3𝑛

7
⌉ + 𝑚. 

Case b: Subcase (i): 𝑛 ≡ 1(𝑚𝑜𝑑7) 

Take 𝐺 = 𝐿𝑝𝑚,8(𝑚 ≥ 4). Choose 𝑆𝑚 = {𝑓𝑖(1 ≤ 𝑖 ≤ 𝑚 − 1), ℎ1, ℎ3, ℎ5, ℎ7, ℎ8}. Then by 

similar argument as in subcase (i), 𝑆𝑚 = {𝑓𝑖(1 ≤ 𝑖 ≤ 𝑚 − 1), ℎ1, ℎ3, ℎ5, ℎ7, ℎ8} is a minimum 

SMD set of 𝐺. In general 𝑆𝑚 = ⋃ {ℎ7𝑗+1, ℎ7𝑗+3, ℎ7𝑗+5} ∪ {𝑓𝑖(1 ≤ 𝑖 ≤ 𝑚 − 1), ℎ𝑛−1, ℎ𝑛}
𝑘−1
𝑗=0  is 

a minimum SMD set of 𝐺. Therefore |𝑆𝑚| = ⌈
3𝑛

7
⌉ + 𝑚 + 1. 

Subcase (ii): 𝑛 ≡ 3(𝑚𝑜𝑑7) 

Take 𝐺 = 𝐿𝑝𝑚,10(𝑚 ≥ 4). Choose 𝑆𝑚 = {𝑓𝑖(1 ≤ 𝑖 ≤ 𝑚 − 1), ℎ1, ℎ3, ℎ5, ℎ7, ℎ9, ℎ10}. Then by 

similar argument as in subcase (i), 𝑆𝑚 = {𝑓𝑖(1 ≤ 𝑖 ≤ 𝑚 − 1), ℎ1, ℎ3, ℎ5, ℎ7, ℎ9, ℎ10} is a 

minimum SMD set of 𝐺. In general 𝑆𝑚 = ⋃ {ℎ7𝑗+1, ℎ7𝑗+3, ℎ7𝑗+5} ∪ {𝑓𝑖(1 ≤ 𝑖 ≤ 𝑚 −𝑘−1
𝑗=0

1), ℎ𝑛−3, ℎ𝑛−1, ℎ𝑛} is a minimum SMD set of 𝐺. Therefore |𝑆𝑚| = ⌈
3𝑛

7
⌉ + 𝑚 + 1. From all the 



Proceedings of the International Conference on Algebraic Graph Theory,                                              
Graph Theory and Topology – 9th & 10th January 2025 

47 
 
ISBN: 978-93-48505-23-1 

above cases, finally we conclude that 𝑆𝑚 = ⋃ {ℎ7𝑗+1, ℎ7𝑗+3, ℎ7𝑗+5} ∪ {𝑓𝑖(1 ≤ 𝑖 ≤ 𝑚 −𝑘−1
𝑗=0

1)} ∪

{
 
 

 
 
ℎ𝑛                                     𝑖𝑓          𝑟 = 0
ℎ𝑛−1, ℎ𝑛                          𝑖𝑓        𝑟 = 1
ℎ𝑛−2, ℎ𝑛                           𝑖𝑓            𝑟 = 2
ℎ𝑛−3, ℎ𝑛−1, ℎ𝑛                𝑖𝑓        𝑟 = 3
ℎ𝑛−4, ℎ𝑛−2, ℎ𝑛                𝑖𝑓       𝑟 = 4,5
ℎ𝑛−5, ℎ𝑛−3, ℎ𝑛−1, ℎ𝑛     𝑖𝑓         𝑟 = 6 }

 
 

 
 

 

Therefore |𝑆𝑚| = {
⌈
3𝑛

7
⌉ + 𝑚 + 1    𝑖𝑓             𝑛 ≡ 1,3 (𝑚𝑜𝑑7)

⌈
3𝑛

7
⌉ + 𝑚           𝑖𝑓      𝑛 ≡ 0,2,4,5,6(𝑚𝑜𝑑7)

 

Theorem 3.5. For the Ladder graph 𝐺 = 𝐿𝑑𝑛(𝑛 ≥ 4), 

  𝛾𝑠𝑚(𝐺) =

{
 

 
𝑛               𝑖𝑓             𝑛 = 4,5,6                       

⌈
6𝑛

7
⌉ + 1     𝑖𝑓           𝑛 ≡ 0,1,2,4,5,6 (𝑚𝑜𝑑7)

⌈
6𝑛

7
⌉            𝑖𝑓              𝑛 ≡ 3(𝑚𝑜𝑑7)              

         

Proof. Let {𝑓𝑖 , 𝑔𝑖(1 ≤ 𝑖 ≤ 𝑛) } be the vertices of 𝐺, whose edge set  𝐸(𝐺) =

{𝑓𝑖𝑔𝑖(1 ≤ 𝑖 ≤ 𝑛)} ∪ {𝑓𝑖𝑓𝑖+1, 𝑔𝑖𝑔𝑖+1(1 ≤ 𝑖 ≤ 𝑛 − 1)} such that |𝑉(𝐺)| = 2𝑛 and |𝐸(𝐺)| =

3𝑛 − 2. If 𝑛 = 4, then 𝐺 = 𝐿𝑑4, 𝑆𝑚 = {𝑓1, 𝑓3, 𝑔2, 𝑔4} is minimum SMD set of 𝐺. Therefore 

 𝛾𝑠𝑚(𝐺) = 4. If 𝑛 = 5, then 𝐺 = 𝐿𝑑5, 𝑆𝑚 = {𝑓1, 𝑓3, 𝑓5, 𝑔2, 𝑔4} is minimum SMD set of 𝐺. 

Therefore  𝛾𝑠𝑚(𝐺) = 5. If 𝑛 = 6, then 𝐺 = 𝐿𝑑6, 𝑆𝑚 = {𝑓1, 𝑓3, 𝑓5, 𝑔2, 𝑔4, 𝑔6} is minimum SMD 

set of 𝐺. Therefore  𝛾𝑠𝑚(𝐺) = 6. Hence  𝛾𝑠𝑚(𝐺) = {𝑛       𝑖𝑓      𝑛 = 4,5,6}. Let 𝑛 ≥ 7. 

Consider the following cases. 

Case a: Subcase (i) 𝑛 ≡ 0(𝑚𝑜𝑑7) 

Take 𝐺 = 𝐿𝑑7. Choose 𝑆𝑚 = {𝑓1, 𝑓3, 𝑓5, 𝑓7, 𝑔2, 𝑔4, 𝑔6}. Remove any vertex 𝑥 ∈ 𝑆𝑚 and add 

another vertex 𝑦 ∈ 𝑉\𝑆𝑚 to 𝑆𝑚 such that 𝑥 is adjacent to 𝑦. Hence the set 𝑆𝑚 is again a secure 

dominating set of 𝐺. Also the monophonic path exists and it contain all the vertices of 𝐺. So 

𝑆𝑚 = {𝑓1, 𝑓3, 𝑓5, 𝑓7, 𝑔2, 𝑔4, 𝑔6} is a minimum SMD set of 𝐺. In general 𝑆𝑚 =

⋃ {𝑓7𝑗+1, 𝑓7𝑗+3, 𝑓7𝑗+5, 𝑔7𝑗+2, 𝑔7𝑗+4, 𝑔7𝑗+6} ∪ {𝑓𝑛}
𝑘−1
𝑗=0  is a minimum SMD set of 𝐺. Therefore 

|𝑆𝑚| = ⌈
6𝑛

7
⌉ + 1.  

Subcase (ii): 𝑛 ≡ 1(𝑚𝑜𝑑7) 

Take 𝐺 = 𝐿𝑑8. Choose 𝑆𝑚 = {𝑓1, 𝑓3, 𝑓5, 𝑓7, 𝑔2, 𝑔4, 𝑔6, 𝑔8}. Then by similar argument as in 

subcase(i), 𝑆𝑚 = {𝑓1, 𝑓3, 𝑓5, 𝑓7, 𝑔2, 𝑔4, 𝑔6, 𝑔8} is a minimum SMD set of 𝐺. In general 𝑆𝑚 =
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⋃ {𝑓7𝑗+1, 𝑓7𝑗+3, 𝑓7𝑗+5, 𝑔7𝑗+2, 𝑔7𝑗+4, 𝑔7𝑗+6} ∪ {𝑓𝑛−1, 𝑔𝑛}
𝑘−1
𝑗=0  is a minimum SMD set of 𝐺. 

Therefore |𝑆𝑚| = ⌈
6𝑛

7
⌉ + 1.  

Subcase (iii): 𝑛 ≡ 2(𝑚𝑜𝑑7) 

Take 𝐺 = 𝐿𝑑9. Choose 𝑆𝑚 = {𝑓1, 𝑓3, 𝑓5, 𝑓7, 𝑓9, 𝑔2, 𝑔4, 𝑔6, 𝑔8}. Then by similar argument as in 

subcase(i), 𝑆𝑚 = {𝑓1, 𝑓3, 𝑓5, 𝑓7, 𝑓9, 𝑔2, 𝑔4, 𝑔6, 𝑔8} is a minimum SMD set of 𝐺. In general 𝑆𝑚 =

⋃ {𝑓7𝑗+1, 𝑓7𝑗+3, 𝑓7𝑗+5, 𝑔7𝑗+2, 𝑔7𝑗+4, 𝑔7𝑗+6} ∪ {𝑓𝑛−1, 𝑓𝑛, 𝑔𝑛−1}
𝑘−1
𝑗=0  is a minimum SMD set of 𝐺. 

Therefore |𝑆𝑚| = ⌈
6𝑛

7
⌉ + 1.  

Subcase (iv): 𝑛 ≡ 4(𝑚𝑜𝑑7) 

Take 𝐺 = 𝐿𝑑11. Choose 𝑆𝑚 = {𝑓1, 𝑓3, 𝑓5, 𝑓8, 𝑓10, 𝑔2, 𝑔4, 𝑔6, 𝑔9, 𝑔11}. Then by similar argument 

as in subcase(i), 𝑆𝑚 = {𝑓1, 𝑓3, 𝑓5, 𝑓8, 𝑓10, 𝑔2, 𝑔4, 𝑔6, 𝑔9, 𝑔11} is a minimum SMD set of 𝐺. In 

general 𝑆𝑚 = ⋃ {𝑓7𝑗+1, 𝑓7𝑗+3, 𝑓7𝑗+5, 𝑔7𝑗+2, 𝑔7𝑗+4, 𝑔7𝑗+6}
𝑘−1
𝑗=0  ∪ {𝑓𝑛−3, 𝑓𝑛−1, 𝑔𝑛−2, 𝑔𝑛} is a 

minimum SMD set of 𝐺. Therefore |𝑆𝑚| = ⌈
6𝑛

7
⌉ + 1.  

Subcase (v): 𝑛 ≡ 5(𝑚𝑜𝑑7) 

Take 𝐺 = 𝐿𝑑12. Choose 𝑆𝑚 = {𝑓1, 𝑓3, 𝑓5, 𝑓8, 𝑓10, 𝑓12, 𝑔2, 𝑔4, 𝑔6, 𝑔9, 𝑔11}. Then by similar 

argument as in subcase(i),   𝑆𝑚 = {𝑓1, 𝑓3, 𝑓5, 𝑓8, 𝑓10, 𝑓12, 𝑔2, 𝑔4, 𝑔6, 𝑔9, 𝑔11} is a minimum SMD  

set of 𝐺. In general 𝑆𝑚 = ⋃ {𝑓7𝑗+1, 𝑓7𝑗+3, 𝑓7𝑗+5, 𝑔7𝑗+2, 𝑔7𝑗+4, 𝑔7𝑗+6} ∪
𝑘−1
𝑗=0

{𝑓𝑛−4, 𝑓𝑛−2, 𝑓𝑛, 𝑔𝑛−3, 𝑔𝑛−1} is a minimum SMD set of 𝐺. Therefore |𝑆𝑚| = ⌈
6𝑛

7
⌉ + 1.  

Subcase (vi): 𝑛 ≡ 6(𝑚𝑜𝑑7) 

Take 𝐺 = 𝐿𝑑13. Choose 𝑆𝑚 = {𝑓1, 𝑓3, 𝑓5, 𝑓8, 𝑓10, 𝑓12, 𝑔2, 𝑔4, 𝑔6, 𝑔9, 𝑔11, 𝑔13}. Then by similar 

argument as in subcase(i),      𝑆𝑚 = {𝑓1, 𝑓3, 𝑓5, 𝑓8, 𝑓10, 𝑓12, 𝑔2, 𝑔4, 𝑔6, 𝑔9, 𝑔11, 𝑔13} is a minimum 

SMD set of 𝐺. In general 𝑆𝑚 = ⋃ {𝑓7𝑗+1, 𝑓7𝑗+3, 𝑓7𝑗+5, 𝑔7𝑗+2, 𝑔7𝑗+4, 𝑔7𝑗+6} ∪
𝑘−1
𝑗=0

{𝑓𝑛−5, 𝑓𝑛−3, 𝑓𝑛−1, 𝑔𝑛−4, 𝑔𝑛−2, 𝑔𝑛} is a minimum SMD set of 𝐺. Therefore |𝑆𝑚| = ⌈
6𝑛

7
⌉ + 1.  

Case (b): 𝑛 ≡ 3(𝑚𝑜𝑑7) 

Take 𝐺 = 𝐿𝑑10. Choose 𝑆𝑚 = {𝑓1, 𝑓3, 𝑓5, 𝑓8, 𝑓10, 𝑔2, 𝑔4, 𝑔6, 𝑔9}. Then by similar argument as in 

subcase(i). So 𝑆𝑚 = {𝑓1, 𝑓3, 𝑓5, 𝑓8, 𝑓10, 𝑔2, 𝑔4, 𝑔6, 𝑔9} is a minimum SMD set of 𝐺. In general 

𝑆𝑚 = ⋃ {𝑓7𝑗+1, 𝑓7𝑗+3, 𝑓7𝑗+5, 𝑔7𝑗+2, 𝑔7𝑗+4, 𝑔7𝑗+6} ∪ {𝑓𝑛−2, 𝑓𝑛, 𝑔𝑛−1}
𝑘−1
𝑗=0  is a minimum SMD set 
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of 𝐺. Therefore |𝑆𝑚| = ⌈
6𝑛

7
⌉. From all the above cases, finally we conclude that 𝑆𝑚 =

⋃ {𝑓7𝑗+1, 𝑓7𝑗+3, 𝑓7𝑗+5, 𝑔7𝑗+2, 𝑔7𝑗+4, 𝑔7𝑗+6} ∪
𝑘−1
𝑗=0  

{
 
 

 
 
𝑓𝑛                                                            𝑖𝑓           𝑟 = 0
𝑓𝑛−1, 𝑔𝑛                                             𝑖𝑓        𝑟 = 1

𝑓𝑛−2, 𝑓𝑛 , 𝑔𝑛−1                                      𝑖𝑓         𝑟 = 2,3
𝑓𝑛−3, 𝑓𝑛−1, 𝑔𝑛−2, 𝑔𝑛                         𝑖𝑓        𝑟 = 4
𝑓𝑛−4, 𝑓𝑛−2, 𝑓𝑛, 𝑔𝑛−3, 𝑔𝑛−1              𝑖𝑓       𝑟 = 5
𝑓𝑛−5, 𝑓𝑛−3, 𝑓𝑛−1, 𝑔𝑛−4, 𝑔𝑛−2, 𝑔𝑛      𝑖𝑓         𝑟 = 6 }

 
 

 
 

 

Therefore |𝑆𝑚| = {

  

⌈
6𝑛

7
⌉ + 1        𝑖𝑓           𝑛 ≡ 0,1,2,4,5,6 (𝑚𝑜𝑑7)

⌈
6𝑛

7
⌉                  𝑖𝑓           𝑛 ≡ 3(𝑚𝑜𝑑7)                      

 

     Hence |𝑆𝑚| =

{
 

 
𝑛                  𝑖𝑓             𝑛 = 4,5,6                       

⌈
6𝑛

7
⌉ + 1        𝑖𝑓           𝑛 ≡ 0,1,2,4,5,6 (𝑚𝑜𝑑7)

⌈
6𝑛

7
⌉                  𝑖𝑓           𝑛 ≡ 3(𝑚𝑜𝑑7)                      

 

4. Conclusion 

 In this paper, we investigated the secure monophonic domination number of Jellyfish 

graph 𝐽𝑚,𝑛, Ladder graph 𝐿𝑑𝑛 and Lollipop graph 𝐿𝑝𝑚,𝑛. 
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Abstract 

We show in this paper the emerging Topological Gradient Method (TGM) which is a 

new way for modelling and we use it in detecting the skin lesions using edge detection. The 

irrelevant objects are destructed and the relevant objects are constructed with topological 

properties and objects are separated from the noisy background of an image. The developed 

pipeline integrates multiple stages of image processing to ensure high accuracy and reliability 

in lesion detection. The objective is to assist the clinicians in accurately extracting lesions from 

surrounding skin and enhancing subsequent diagnosis and treatment, it becomes feasible to 

monitor their progression over time using MATLAB. 

Keywords: Image Processing, Topological Image Processing, Topological Gradient Method, 

Edge detection, Skin lesion, Noise Removal, MATLAB. 

2020 Mathematics Subject Classification (AMS): 54H30 

1. Introduction 

 Skin lesions are abnormal changes in the skin's colour, texture, or appearance. They can 

be classified based on their characteristics, causes, and whether they are primary (directly 

associated with a disease process) or secondary (arising from the progression of a primary 

lesion). The primary skin lesions are macule, plaque, wheal, tumor etc. The secondary skin 

lesions are crust, fissure, ulcer, scar etc. The common causes of skin lesions are infections, 

allergies, injuries, cancer and other conditions like acne or benign growth like moles or 

lipomas. 

Topological image processing is an advanced technique in image analysis that uses 

principles from topology to understand and manipulate the structure and properties of an image. 

Unlike traditional methods that focus on pixel intensity or gradient-based features, topological 

approaches emphasize the connectivity, shape, and spatial relationships within an image. 

mailto:pmmahamohan@gmail.com
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Applications of topological image processing are widespread, ranging from medical imaging, 

where it can identify complex anatomical structures, to material science and data visualization. 

Its strength lies in its resilience to noise and its ability to extract meaningful information about 

an image's global and local topological structure. 

2. Preliminaries 

2.1 Topological Gradient Method 

The Topological Gradient is a method from topological image processing that can be used 

for edge detection and segmentation tasks. It uses the idea of topology (connectedness and local 

structure) to detect edges and boundaries in images. In topological image processing, the 

topological gradient is often applied in tasks like segmentation, where we look for regions of 

interest and boundaries by detecting abrupt changes in topological structures. The topological 

gradient is essentially a measure of how much a certain property (e.g., pixel intensity or 

gradient) changes when a small perturbation is made to a region of the image.[2] 

2.2 Grayscale Transformation 

Gray-scale transformation is a technique used to simplify image processing by converting 

images to grayscale, thus reducing computational load and focusing on essential features. In an 

RGB image, each pixel comprises red, green, and blue components. The grayscale conversion 

process involves combining these components into a single intensity value. This is typically 

done using a weighted sum of the red, green, and blue values, reflecting the human eye's 

sensitivity to different colours. For example, the formula: 

𝐺𝑟𝑎𝑦 = 0.2989 × 𝑅 + 0.5870 × 𝐺 + 0.1140 × 𝐵 

is commonly used, where 𝑅, 𝐺 𝑎𝑛𝑑 𝐵 are the intensities of the red, green, and blue channels 

respectively. This ensures the grayscale image accurately represents the perceived brightness 

of the original RGB image.[5] 

2.3 Histogram Equalization  

To further enhance the quality of the grayscale images, histogram equalization is applied. This 

technique redistributes the brightness values to span the entire range of possible values, thereby 

enhancing the contrast of the image. Histogram equalization is particularly useful for making 

features more distinguishable, which is crucial in medical imaging where clear visibility of 

details is necessary for accurate diagnosis [5]. 
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2.4 Topological Gradient Approximation 

The gradient of the image is computed using MATLAB’s gradient() function. This computes 

the derivative of the image in the x and y directions, effectively capturing the rate of change in 

intensity across the image. The gradient magnitude is calculated by combining the gradients in 

the x and y directions using the formula:  

Original Gradient Magnitude = √(𝛁𝒙)𝟐 + (𝛁𝒚)𝟐 

 This represents the magnitude of intensity change at each pixel, which is a good measure for 

detecting edges. 

2.5 Thresholding 

 The gradient magnitude is normalized using mat2gray() to scale it between 0 and 1. Then, a 

threshold is applied to detect significant changes in intensity, which correspond to edges. We 

can adjust the threshold value to control the sensitivity of edge detection. A higher threshold 

will only highlight the most significant edges, while a lower threshold will include more subtle 

edges. 

2.6 Noise Removal 

During image pre processing, it is frequently essential to eliminate different forms of noise, 

such as hair and other unwanted elements in the images, which may disrupt the precise 

evaluation of skin lesions. The rationale behind this can be divided into three main reasons. 

First, it enhances the clarity of images by eliminating obstructions that may obscure important 

details, thereby reducing the risk of incorrect diagnoses or misinterpretations. Second, the 

elimination of noise improves image quality, which in turn enhances the performance of 

models used for tasks such as segmentation and classification. Lastly, it ensures consistency 

by providing uniform images that are free from artifacts, thereby maintaining the integrity of 

diagnostic procedures.[5] 

2.7 Median Filtering  

Median filtering replaces a pixel's intensity I(x, y) with the median value of its neighbourhood 

N(x, y). For a k ×k kernel: 

I(x, y)= median{I(p, q)|(p, q) ∈  N 

is the filtered intensity. It effectively reduces salt-and-pepper noise while preserving edges. 
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2.8 Gaussian Filtering 

Smoothens the image to reduce Gaussian noise while introducing minimal blurring. 

Applies a Gaussian Kernel 

H(x, y)= 
𝟏

𝟐𝝅𝝈𝟐
𝒆
−𝒙𝟐+𝒚𝟐

𝟐𝝈𝟐  

Where 𝜎 controls the smoothing intensity.[6] 

2.9 Bilateral Filtering 

The bilateral filter calculates the intensity of each pixel in the output image as a weighted 

average of the nearby pixels in the input image. The weights are based on the Euclidean 

distance between pixels, as well as the radiometric differences between them, such as colour 

intensity. The bilateral filter is effective for reducing noise and blocking artifacts.[6] 

2.10 Edge Detection 

Edge detection is crucial in image analysis across fields like medical imaging, industrial 

inspection, and computer vision. It identifies significant discontinuities in intensity levels, 

which represent edges. This process utilizes first- or second-order partial derivatives, with 

methods like the Sobel row-edge and Prewitt column-edge detectors, or the Laplacian of 

Gaussian detector, to detect changes in intensity. Advanced edge detection using the 

topological gradient method identifies boundaries by evaluating how small topological changes 

impact an energy functional representing image intensity. This approach robustly highlights 

edges by analyzing structural information globally rather than relying on local intensity alone, 

excelling in noise-prone scenarios and intricate boundary detection. 

2.11 Overlaying Images 

The overlayed image combines the original skin lesion image with highlighted edges (in red). 

This visualizes: 

 The boundaries of the lesion. 

 Areas of textural or structural change. 

 Regions with sharp intensity gradients indicative of potential irregularities. 
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The highlighted edges show the precise boundaries of a lesion, which can help clinicians assess 

the size, shape, and symmetry. Topological gradient and edge detection highlight areas with 

sudden intensity changes, pointing to irregular textures within the lesion. 

3. Conceptual Connection to Topology 

Topology studies properties of spaces that are preserved under continuous deformations, such 

as stretching or twisting, but not tearing or gluing. In image processing, these properties include 

connectedness, holes, and the number of components in a space, which can be used to extract 

meaningful features for analysis. 

3.1. Topological Gradient: The topological gradient is closely related to how the image 

intensity changes locally when perturbed. In this case, the gradient magnitude approximates by 

calculating how the intensity changes in both the x and y directions. 

3.2. Edge Detection as Topological Boundary Detection: The topological gradient can be 

seen as identifying "boundaries" or changes in the image, similar to identifying connected 

components or boundaries in topology. Significant intensity changes correspond to boundaries 

between different regions (objects or edges), which aligns with the concept of detecting 

boundaries in topological terms. 

4. Application of  Topological Gradient Method in Skin Lesions 

Here we use a MATLAB Program to get the accurate image and assist the clinicians in 

accurately extracting lesions from surrounding skin and enhancing subsequent diagnosis and 

treatment, it becomes feasible to monitor their progression over time. 

MATLAB code: 

clc; 

clear; 

close all; 

 

inputImage = imread('sk.jpeg');  

grayImage = rgb2gray(inputImage); 

equalizedImage = histeq(grayImage); 

medianFiltered = medfilt2(equalizedImage, [3 3]); 

h = fspecial('gaussian', [5 5], 1);  
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gaussianFiltered = imfilter(medianFiltered, h, 'replicate'); 

bilateralFiltered = imbilatfilt(gaussianFiltered); 

cleanedImage = imnlmfilt(bilateralFiltered); 

 [Gx, Gy] = imgradientxy(cleanedImage, 'sobel'); 

topologicalGradient = sqrt(Gx.^2 + Gy.^2); 

thresholdValue = graythresh(topologicalGradient); 

binaryImage = imbinarize(topologicalGradient, thresholdValue); 

edges = edge(binaryImage, 'Canny'); 

se = strel('disk', 1); 

cleanedEdges = imdilate(edges, se); 

cleanedEdges = imerode(cleanedEdges, se); 

overlayImage = inputImage; 

if size(inputImage, 3) == 3 

    overlayImage(:, :, 1) = uint8(cleanedEdges) * 255;  

end 

figure; 

subplot(3, 3, 1); imshow(inputImage); title('Original Image'); 

subplot(3, 3, 2); imshow(grayImage); title('Grayscale Image'); 

subplot(3, 3, 3); imshow(equalizedImage); title('Histogram Equalized'); 

subplot(3, 3, 4); imshow(medianFiltered); title('Median Filtered'); 

subplot(3, 3, 5); imshow(gaussianFiltered); title('Gaussian Filtered'); 

subplot(3, 3, 6); imshow(bilateralFiltered); title('Bilateral Filtered'); 

subplot(3, 3, 7); imshow(topologicalGradient, []); title('Topological Gradient'); 

subplot(3, 3, 9); imshow(overlayImage); title('Edges Overlay on Original Image'); 

 

Output: 
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5. Discussion 

The analysis begins with loading the input image, which is then converted to grayscale using 

the rgb2gray function to simplify processing by reducing the image's dimensionality. Contrast 

enhancement is performed through histeq to redistribute pixel intensities, ensuring a uniform 

intensity distribution. Noise is sequentially removed using multiple filters: medfilt2 for salt-

and-pepper noise, imfilter with a Gaussian kernel for Gaussian noise, imbilatfilt for edge-

preserving smoothing, and imnlmfilt for advanced non-local means denoising. The topological 

gradient of the denoised image is computed using the Sobel operator via imgradientxy, 

determining intensity changes along the x and y directions, with the gradient magnitude 

highlighting key features. Thresholding is performed using graythresh based on Otsu's 

method, and the gradient image is binarized using imbinarize to segment significant regions. 

The edges are refined using the Canny edge detector (edge), producing precise edge 

delineation. Further enhancement is achieved through morphological operations: imdilate fills 

gaps in the detected edges, and imerode refines their boundaries, ensuring smooth contours. 

The processed edges are then overlayed in red onto the original image by modifying the red 

channel, creating a clear visualization for clinical interpretation. The results, visualized using 

subplot, provide a step-by-step transformation of the image. The overlayed edges highlight 

lesion boundaries, aiding clinicians in identifying critical features such as size, shape, and 

texture. This pipeline effectively combines topological, morphological, and noise-removal 

techniques to deliver enhanced, accurate images for medical analysis. 

6. How it Helps Clinicians 

This program significantly enhances clinicians ability to assess skin lesions by 

providing clear visualizations and precise diagnostic tools. Overlayed edges, highlighted in red, 
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delineate lesion boundaries, aiding in their clear identification. Grayscale mapping emphasizes 

intensity variations within the lesion, offering additional insights. By highlighting contrasts and 

edges, the program facilitates a detailed assessment of lesion shape, size, and texture, 

improving diagnostic accuracy. It supports both automated and manual segmentation, enabling 

precise feature measurements for analysis and classification. The colour mapping further 

enhances interpretation, with red representing detected edges and grayscale indicating intensity 

changes. This pre processing tool effectively extracts essential features from medical images, 

streamlining diagnostic workflows and contributing to advanced research in dermatological 

imaging. 

7. Conclusion 

This study introduces an integrated pipeline for enhancing skin lesion analysis using 

topological image processing techniques. The process begins by converting the lesion image 

to grayscale and enhancing contrast through histogram equalization. Advanced noise removal 

methods, including median, Gaussian, bilateral filtering, and non-local means denoising, refine 

the image while preserving critical features. A topological gradient approximation is applied 

to capture significant intensity variations, identifying boundaries and regions of interest within 

the lesion. Thresholding isolates key features, followed by the Canny edge detector, which 

ensures precise delineation of lesion edges. Morphological operations further enhance these 

boundaries, creating a refined binary representation. The final step overlays the detected edges 

onto the original image, highlighting lesion boundaries for clinical interpretation. This 

approach aids in analyzing lesion characteristics like size, shape, and texture, offering a robust 

visual aid for diagnostics. The pipeline’s ability to handle noise effectively and extract features 

with high precision underscores its potential to support dermatological assessments and 

decision-making processes, advancing automated medical imaging techniques. 
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Abstract 

               Problem solving in engineering, science and other disciplines often requires complex 

analysis. A problem that requires effort is determining the value of electric current in a circuit. 

This research presents an alternative approach to determine the implementation of Gauss 

Elimination method in Electrical Circuits using PYTHON. This method is effective in finding 

unknown values in a system of linear equations through matrix operations. A deep 

understanding of currents in electrical circuits is essential in the design, analysis and 

maintenance of electrical systems. The application of the Gauss Elimination method becomes 

important in determining the value of current in complicated electrical circuits. Furthermore, 

this research also presents the results of identifying the voltage value of the circuit accurately 

and relevantly. 

Keywords: Gauss Elimination, Electric Circuits, System of Linear Equations, Kirchoff`s Law. 
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1. Introduction 

      The application of mathematical models is essential for addressing problems across 

various domains, including the analysis of electrical circuits. When tackling such problems, it 

is crucial to understand that electrical circuits often comprise numerous components-such as 

resistors, capacitors, and inductors-connected through nodes. Calculating the current flowing 

through each component is vital, as it significantly influences the overall performance of an 

electrical circuit, including parameters such as voltage, power, and efficiency. 

      Several techniques can be employed for electrical circuit analysis [4], such as node analysis 

and super node analysis. Nodes are points where two or more components in a circuit intersect. 

These analytical methods are typically formulated into mathematical models, which are then 
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represented numerically as Systems of Linear Equations (SLE). These models can become 

complex, often involving multiple equations, necessitating efficient solutions. The Gauss 

elimination method provides a systematic approach to solving such systems [1]. 

      Gaussian elimination, widely recognized as the row reduction algorithm, is a mathematical 

method for solving systems of linear equations. This technique involves performing a sequence 

of operations on the coefficient matrix to derive solutions. Its versatility makes it suitable for 

various scenarios that can be modeled using SLEs [5, 2]. Practical applications of Gaussian 

elimination include solving problems related to nuclear fuel depletion. 

       This study introduces an alternative approach to determining the electric current in circuits 

using the Gauss Elimination method, facilitated by Python programming. The research 

emphasizes transforming electrical circuit problems into matrix form, demonstrating the 

process for efficiently obtaining accurate and relevant solutions to electrical engineering 

challenges. 

2. Preliminaries 

Electric Current 

                    Electric current is the time rate of flow of electric charge through a circuit 

element or conductor. 

Kirchhoff`s Law 

                     Kirchhoff`s law are valid for all circuits and are considered essential tools for 

analyzing electrical circuits. 

Current Law 

                    Kirchhoff`s first law or the node law, “This law states that the total current 

entering a node in a circuit must equal the total current leaving the node”. This is because 

charge is conserved   

Ʃ Iin =Ʃ Iout 

Voltage Law 

“This law states that the total voltage around any closed loop in a circuit must equal zero”. This 

is because energy is conserved  
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                                  Ʃɛ +ƩIR=0 

Augmented Matrix  

                      A matrix obtained by appending a-dimensional column vector, on the right, as a 

further column to a-dimensional matrix. 

Augmented matrix =[A/B] 

3. Research Method 

             This study contains five processes (shown in Figure 1). These are initializing the 

research, Deriving Equation by Kirchoff`s law, transform equation to matrix, solved by 

Gauss elimination method and analyzing the result.  

 

 

 

 

 

 

 

                                                       Fig 1: Research workflow  

3.1. Research Initialization 

            At this stage, research defines its objectives, and studies literature to find simple 

electrical circuits to be used as simulation material. In addition, research determines the 

parameters to be studied, such as current and voltage on each component. 

3.2. Kirchhoff`s law 

Kirchhoff’s first law declares, “The amount of electric current entering (Ʃ Iin) a node 

in a circuit must be equal to the amount of electric current leaving (ƩIout) the node”, by 

equation (1).  

Kirchhoff’s second law relates to Kirchhoff`s voltage law or loop. The law states, “The 
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sum of the voltage (R) drops in a loop in the circuit must be equal to the sum of voltage 

increases”, by equation (2). 

ƩI in = ƩI out                     (1) 

Ʃ ɛ + ƩIR =0                      (2) 

3.3. Gauss Elimination Method  

              This study focuses on the Gaussian elimination method, a technique used to solve 

systems of linear equations by performing three types of matrix row operations on an 

augmented matrix. The process involves two main stages: forward elimination and back 

substitution. 

3.3.1. Forward elimination 

              This step simplifies the matrix into its row echelon form. The primary objective here 

is to determine whether the system of equations has: 

a. A single unique solution, 

b. Infinitely many solutions, or 

c. No solution at all. If the system is found to have no solution, further steps are unnecessary. 

3.3.2. Back Substitution 

         If solutions are possible, this step is performed to further simplify the matrix into its 

reduced row echelon form. 

        The Gaussian elimination rules are the same as the rules for the three basic row operations, 

in other words, you can algebraically act on a matrix's rows in the following three ways:  

a. Interchanging two rows, for example, R2 ↔ R3 

b. Multiplying a row by a constant, for example, R1 → kR1 where k is some nonzero 

number. 

c. Adding a row to another row, for example, R2 → R2 + 3R1. 

4. Application of Gauss Elimination Method in Electrical Circuit using 

Python 

               The electrical installation was shown in an electrical circuit (Fig 2). The condition is 

an example of a real case to be simulated and determined the value of the voltage generated 
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from each loop with the Gauss elimination method. There are four loops in the electrical circuit 

and four sources of electric current. Each loop is identified with the first Kirchhoff's law 

                                                 Loop 1:  𝑖1 + 2𝑖2 − 𝑖3 + 𝑖4 = 6 

 Loop 2: −𝑖1 + 𝑖2 + 2𝑖3 − 𝑖4 = 3 

    Loop 3: 2𝑖1 − 𝑖2 + 2𝑖3 + 2𝑖4 = 14 

                                                 Loop 4:  𝑖1 + 𝑖2 − 𝑖3 + 2𝑖4 = 8 

 

Fig 2: Example of electrical circuit 

3.1 Gauss Elimination Result 

Furthermore, the SPL of loop is transformed into a 4 x4 matrix, according to the number 

of electric current variables. 

                                       [

1 2 −1 1
−1 1 2 −1
2 −1 2 2
1 1 −1 2

] [

𝑖1
𝑖2
𝑖3
𝑖4

] = [

6
3
14
8

] 

         The Gauss elimination method is used to determine the value of each electric 

current. The solution steps are as follows: First iteration: operated (R2+R4) in other 

words adding row 2 and 4. So that the resulting equation 

 

    [

1 2 −1 1
−1 1 2 −1
2 −1 2 2
1 1 −1 2

] [

𝑖1
𝑖2
𝑖3
𝑖4

] = [

6
3
14
8

] 𝑅2 + 𝑅4   [

1 2 −1 1
−1 1 2 −1
2 −1 2 2
0 2 1 1

] [

6
3
14
11

] 

 
        The second iteration operates on the first row such that all values of the first 

column (except diagonal 1) are 0. The third row is operated with 2R2+ 𝑅3 and the 

second row is operated with 𝑅1 + 𝑅2. Meanwhile, the fourth line is not operated 

because it is already 0. 
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     [

1 2 −1 1
−1 1 2 −1
2 −1 2 2
0 2 1 1

] [

6
3
14
11

] 2𝑅2 + 𝑅3 [

1 2 −1 1
−1 1 2 −1
0 1 6 0
0 2 1 1

] [

6
3
20
11

] 

 
        The third iteration operates on the second row so as to obtain the identity matrix   
component. 

   [

1 2 −1 1
−1 1 2 −1
0 1 6 0
0 2 1 1

] [

6
3
20
11

] 𝑅1 + 𝑅2    [

1 2 −1 1
0 3 1 0
0 1 6 0
0 2 1 1

] [

6
9
20
11

] 

 

     [

1 2 −1 1
0 3 1 0
0 1 6 0
0 2 1 1

] [

6
9
20
11

] -2𝑅3 + 𝑅4 [

1 2 −1 1
0 3 1 0
0 1 6 0
0 0 −11 1

] [

6
9
20
−29

] 

 
 

     [

1 2 −1 1
0 3 1 0
0 1 6 0
0 0 −11 1

] [

6
9
20
−29

] 𝑅2−3𝑅3   [

1 2 −1 1
0 3 1 0
0 0 −17 0
0 0 −11 1

] [

6
9
−51
−29

] 

        

     [

1 2 −1 1
0 3 1 0
0 0 −17 0
0 0 −11 1

] [

6
9
−51
−29

] -11𝑅3 + 17𝑅4   [

1 2 −1 1
0 3 1 0
0 0 −17 0
0 0 0 17

] [

6
9
−51
68

]    

 

     [

1 2 −1 1
0 3 1 0
0 0 −17 0
0 0 0 17

] [

6
9
−51
68

] 1/3𝑅2  [

1 2 −1 1
0 1 1/3 0
0 0 −17 0
0 0 0 17

] [

6
3
−51
68

]    

 

           [

1 2 −1 1
0 1 1/3 0
0 0 −17 0
0 0 0 17

] [

6
3
−51
68

] -1/17𝑅3 [

1 2 −1 1
0 1 1/3 0
0 0 1 0
0 0 0 17

] [

6
3
3
68

] 

 

                 [

1 2 −1 1
0 1 1/3 0
0 0 1 0
0 0 0 17

] [

6
3
3
68

] 1/17𝑅4  [

1 2 −1 1
0 1 1/3 0
0 0 1 0
0 0 0 1

] [

6
3
3
4

] 

 

             This research produces an identity matrix in the ninth iteration, the final result is the 

matrix below. At the ninth iteration, the strong current value in each loop is obtained. The 

current value in each loop 𝑖1  =  6, 𝑖2  =  3, 𝑖3  =  3, 𝑖4  =  4. 
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[

1 2 −1 1
0 1 1/3 0
0 0 1 0
0 0 0 1

] [

6
3
3
4

] 

              This study not only manually applied the Gauss elimination method but also executed 

in algorithm using Python programming. To simplify calculations, the process of determining 

electric current values was effectively implemented in Python. The results from the two 

approaches showed only a small difference, ranging between 3-6%. Thus, it can be concluded 

that both methods produce nearly identical outcomes with no significant variance. 

 

 

                                            Gauss Elimination Using Python 

4.2. Voltage Analysis 

                    The next step involves analyzing the voltage (V) in each loop of the circuit. The 

voltage is calculated using Kirchhoff's second law (𝑉 = ∑𝐼𝑅). Analyzing voltage values in 

electrical circuits is essential for diagnosing issues and maintaining electrical systems in 

circuits and other applications. The voltage values for the electrical circuit are represented in 

the matrix below. 
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                                [

1 2 −1 1
−1 1 2 −1
2 −1 2 2
1 1 −1 2

]x[

0.66
1.86
3.4
5

]=[

5.98
2.96
16.3
9.12

] 

5. Conclusion  

                     From the identification, simulation, and analysis of the electrical circuit, it has 

been demonstrated that the Gauss elimination method is effective in determining the electric 

current in electrical circuits. To reduce the computational process, the Gauss elimination 

method can be executed using Python programming. In summary, this study successfully 

determined the current and voltage values in the analyzed electrical circuit. The mathematical 

approach is used to be efficient in addressing the problem, providing valuable insights into the 

characteristics and behavior of complex electrical circuits. 

References 

1. Basnet G B, Numerical Solution of Electrostatic Potential Distribution on a Unit Circular 

Disc Using Possion Equation, Nepal Journal of Mathematical Sciences, Vol. 4, issue. 1, 

10.3126/njmathsci.v4i1.53158, 2023. 

2. Egts H, Durben D J, Dixson J A , and Zehfus M H, A Multicomponent UV analysis of α 

and β-acids in hops, Journal of Chemical Education, Vol. 89,issue. 1, 10.1021/ed1010536, 

2012. 

3. Ichwanul Muslim Karo Karo, Justaman Arifin Karo Karo, Yunianto, Hariyanto, Mifta hul 

Falah, Manan Ginting, Implementation of Gauss Elimination Method on Electrical Circuits 

Using Python, Journal of Artificial Intelligence and Engineering Application, Vol. 4, 

issuse. 1, e-ISSN: 2808-4519, 15th October 2024. 

4. Nawaz A, Sarwar N, Jeong D I, and Yoon D H, Energy from discarded graphite-based 

pencils: Recycling the potential waste material for sensing application, Journal Sensors     

Actuators A: Physical, Vol. 336, 10.1016/j.sna.2022.113403, 2022 

5. Van Tran N and Van den Berg I, A parameter method for linear algebra and optimization 

with uncertainties, Journal Optimization, Vol. 69, issue.1, 

10.1080/02331934.2019.1638387, 2020. 

 



Proceedings of the International Conference on Algebraic Graph Theory,                                              
Graph Theory and Topology – 9th & 10th January 2025 

68 
 
ISBN: 978-93-48505-23-1 

APPLICATION OF LINEAR PROGRAMMING FOR 

OPTIMAL USE OF RAW MATERIALS IN MAKING A 

TRADITIONAL SWEET ADHIRASAM 

Mahalakshmi P M1, Aunja J² 

Assistant Professor1, Post Graduate student2, 
1,2Department of Mathematics, PSGR Krishnammal college for women (Affiliated to 

Bharathiyar University), Coimbatore. 

Email: 1pmmahamohan@gmail.com, 223mma0014@psgrkcw.ac.in 

Abstract 

               This work utilized the concept of Simplex algorithm, an aspect of linear programming 

to allocate raw materials to competing variables (big size, small size, medium size) in making 

the traditional sweet Adhirasam for the purpose of profit maximization. The analysis was 

carried out and the result showed that 880 pieces of medium size, 500 pieces of small size and 

0 pieces of big size should be produced respectively in order to make a profit of ₹20580. From 

the analysis, it was observed that medium size of pieces contribute objectively to the profit. 

Hence, more of medium size of pieces are needed to be produced and sold in order to maximize 

the profit. 

Keywords: Linear programming model, Simplex method, Decision variables, Optimal result 

using PYTHON LAB. 

2020 Mathematics Subject Classification (AMS): 90C05  

1.   Introduction 

Linear programming is a family of mathematical programming that is concerned with or useful 

for allocation of scarce or limited resources to several competing activities on the basis of given 

criterion of optimality. In statistics, linear programming (LP) is a special techniques employed 

in operation research for the purpose of optimization of linear function subject to linear equality 

and inequality constraint. Linear programming determines the way to achieve best outcome, 

such as maximum profit or minimum cost in a given mathematical model and given some list 

of requirement as a linear equation. The technique of linear programming is used in a wide 

range as applications, including agriculture, industry, transportation, economics, health system, 

behavioural and social science and the military. Although many business organization see 

mailto:23mma0014@psgrkcw.ac.in
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linear programming as a “new science” or recently development in mathematical history, but 

there is nothing new about the maximization of profit in any business organization, i.e in a 

production company or manufacturing company.  

2. Literature review  

The lack of good literature on the relationship between linear programmingutilization 

and optimization of raw materials in the breadbaking industry in Nigeria is another issue that 

has triggered this research work.To authenticate this, for instance, Akpan and Iwok (2016) 

investigated the application of linear programming to optimizeraw materials in a bakery. They 

found that a small loaf, followed by a big loaf, contributes objectively to the profit [1]. 

In their work titled “use of linear programming for optimal production” in Coca-Cola 

Company, they were able to applied linear programming in obtaining the optimal production 

process for Coca-Cola Company. In the course of formulating a linear programming model for 

the production process, they identified the decision variables to be the following Coke, Fanta, 

Schweppes, Fanta tonic, Krest soda etc. which some up to nine decision variables and the 

constraint were identified to be concentration of the drinks, sugar content, water volume and 

carbon (iv)oxide. The resulting model was solve using the simplex algorithm, after the data 

analysis they came to a conclusion that out of the nine product the company was producing 

only two contribute most to their profit maximization, that is Fanta orange 50cl and Coke 50cl 

with a specified quantity of 462,547 and 415,593 in order to obtain a maximum profit of 

N263,497,283. They advise the company to concentrate in the production of the two products 

in order not to run into high cost [2].  

3. Preliminaries 

Constraints are a series of equalities and inequalities that are a set of criteria necessary to 

satisfy when finding the optimal solution. 

Optimal solution   of a maximization linear programming model are the values assigned to 

the variables in the objective function to give the largest zeta value. The optimal solution would 

exist on the corner points of the graph of the entire model. 

Simplex method is an approach to solving linear programming models by hand using slack 

variables, tableaus, and pivot variables as a means to finding the optimal solution of an 

optimization problem. 
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Slack variables are additional variables that are introduced into the linear constraints of a 

linear program to transform them from inequality constraints to equality constraints. 

Decision Variable are quantities that influence the objective function of a mathematical 

optimization model. They are represented by mathematical symbols and can take on any of a 

set of possible values. 

4. Linear Programming Model  

The general linear programming model with n decision variables and m constraints can 

be stated in the following form 

Optimize (max or min) 𝑍 = 𝑐1𝑥1 + 𝑐2𝑥2+. . . +𝑐𝑛𝑥𝑛 

Subject to                              𝑎11𝑥1 + 𝑎12𝑥2+. . . +𝑎1𝑛𝑥𝑛(≤,=,≥)𝑏1 

𝑎21𝑥1 + 𝑎22𝑥2+. . . +𝑎2𝑛𝑥𝑛(≤,=,≥)𝑏2 

                                                                               …….                      ………….        ………… 

                                               𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2+. . . +𝑎𝑚𝑛𝑥𝑛(≤,=,≥)𝑏𝑚 

The above model can also be expressed in a compact form as follows.  

Optimize (max or min) Z = ∑ 𝑐𝑗𝑥𝑖
𝑛
𝑗=1 …(objective function) 

Subject to the linear constraints 

 Z =  ∑ 𝑎𝑖𝑗
𝑛
𝑗=1 𝑥𝑗(≤, =, ≥)𝑏𝑖, i = 1,2,…, m and 𝑥𝑗 ≥ 0, j = 1,2,…n 

Where  𝑐1,𝑐2,...,𝑐𝑛 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑡ℎ𝑒 each piece profit (or cost) of decision variables 𝑥1,𝑥2,...,𝑥𝑛to 

the value of the objective function and 𝑎11, 𝑎12, . . . , 𝑎21,𝑎22,. . . , 𝑎𝑚1,𝑎𝑚2, . . . , 𝑎𝑚𝑛𝑟𝑒𝑝𝑟𝑒sent the 

amount of resource per unit of the decision variables. The 𝑏𝑖 represents the total availability of 

the 𝑖𝑡ℎ resource. Z represent the measure of performance which can be either profit, or cost or 

reverence etc[1, 2, 3, 4]. 

4.1. Standard form of a Linear Programming Model  

The use of the simplex method to solve a linear programming problem requires that the 

problem be converted into its standard form. For n decision variables and m constraints, the 

standard form of the linear programming model can be,  

Optimize (max or min) 𝑍 = 𝑐1𝑥1 + 𝑐2𝑥2+. . . +𝑐𝑛𝑥𝑛 + 0𝑠1 + 0𝑠2+. . . +0𝑠𝑚 
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Subject to linear constraints      𝑎11𝑥1 + 𝑎12𝑥2+. . . +𝑎1𝑛𝑥𝑛+. . . +𝑠1 = 𝑏1 

                                                  𝑎21𝑥1 + 𝑎22𝑥2+. . . +𝑎2𝑛𝑥𝑛+. . . +𝑠2 = 𝑏2 

                                                                                           …….                      ………….        ………… 

                                                   𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2+. . . +𝑎𝑚𝑛𝑥𝑛+. . . +𝑠𝑚 = 𝑏𝑚  

                                                                    𝑥1, 𝑥2, . . 𝑥𝑛, 𝑠1, 𝑠2, . . 𝑠𝑚≥0 

This can be stated in a more compact form as:   

Optimize (max)Z = ∑ 𝑐𝑗𝑥𝑖
𝑛
𝑗=1  + ∑ 0𝑠𝑖

𝑚
𝑗=1  

Subject to the linear constraints 

 Z =  ∑ 𝑎𝑖𝑗
𝑛
𝑗=1 𝑥𝑗𝑠𝑖 = 𝑏𝑖 , i = 1, 2,…, m and 𝑥𝑗𝑠𝑖 ≥ 0, (for all i and j) 

4.2 Data Presentation and Analysis 

The data for this research project was collected from Marudham Adhirasam, 

Vadambacheri, Coimbatore, Tamilnadu. The data consist of total amount of raw materials 

(flour, jaggery and oil) available for daily production of three different sizes of Adhirasam (big 

size, small size, medium size) and profit contribution per each size of Adhirasam produced. 

The data analysis was carried out with PYTHON software. The content of each raw material 

per eachpiece of Adhirasam produced is shown below.  

Flour  

Total amount of flour available = 32kg 

Each size of big piece requires 0.025kg of flour 

Each size of small piece requires 0.02kg of flour 

Each size of medium piece requires 0.025kg of flour 

Jaggery 

Total amount of jiggery available = 16kg 

Each size of big piece requires 0.017kg of jaggery 



Proceedings of the International Conference on Algebraic Graph Theory,                                              
Graph Theory and Topology – 9th & 10th January 2025 

72 
 
ISBN: 978-93-48505-23-1 

Each size of small piece requires 0.01kg of jaggery 

Each size of medium piece requires 0.0125kg of jaggery 

Oil 

Total amount (volume) of oil available = 9L 

Each size of big piece requires 0.0083L of oil 

Each size of small piece requires 0.007L of oil 

Each size of medium piece require 0.00625L of  oil 

Profit contribution per unit product (size) of adhirasam produced  

Each unit of big size = ₹20 

Each unit of small size = ₹13 

Each unit of medium size = ₹16 

The above data can be summarized in a tabular form. 

Raw materials                                       Product Availability of 

raw materials Big size Small size Medium size 

Flour (kg) 0.025 0.02 0.025 32 

Jaggery (kg) 0.017 0.01 0.0125 16 

Oil (L) 0.0083 0.007 0.00625 9 

Profit (₹) 20 13 16  

 

4.3 Model formulation 

Let the quantity of big size to be produce = 𝑥1 

Let the quantity of small size to be produce =𝑥2 

Let the quantity of medium size to be produce = 𝑥3 

Let Z denote the profit to be maximize. The linear programming model for the above 

production data is given by 

Max Z = 20 𝑥1 +13 𝑥2 + 16𝑥3 
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Subject to constraints 

0.025𝑥1 + 0.02𝑥2+ 0.025 𝑥3 ≤ 32 

0.017 𝑥1 + 0.01𝑥2 + 0.0125 𝑥3 ≤16 

0.0083𝑥1 + 0.007 𝑥2 + 0.00625 𝑥3≤ 9 

𝑥1, 𝑥2, 𝑥3≥0 

Converting the model into its corresponding standard form; 

Max Z = 20𝑥1+ 13𝑥2 + 16 𝑥3+0s1 +0s2 +0s3 

Subject to constraints 

0.025𝑥1+ 0.02𝑥2 + 0.025 𝑥3+ 𝑠1 = 32 

0.017𝑥1+ 0.01𝑥2  + 0.0125 𝑥3+ 𝑠2 = 16   

0.0083𝑥1+ 0.007𝑥2 + 0.00625 𝑥3 + 𝑠3 = 9 

𝑥1, 𝑥2, 𝑥3,𝑠1,𝑠2,𝑠3 ≥ 0 

The above linear programming model was solved using PYTHON software, which gives an 

optimal solution of:  𝑥1  = 0, 𝑥2 = 500, 𝑥3 = 880.Z = 20580. 

4.4 Interpretation of Result 

Based on the data collected the optimum result derived from the model indicates that 

two sizes of Adhirasam should be produced, small size and medium size. Their production 

quantities should be 500 and 880 respectively. This will produce a maximum profit of ₹20580. 

4.5 Simplex Method using PYTHON 

from scipy.optimize import linprog 
 
# Define a large value for Big-M 
M = 1e6  # Big-M penalty for artificial variables 
 
# Objective function coefficients (Max Z -> Min -Z) 
# Variables: x1, x2, x3, s1, s2, s3, a1, a2, a3 
c = [-20, -13, -16, 0, 0, 0, M, M, M] 
 
# Coefficients of the constraints (LHS) 
A = [ 
    [0.025, 0.02, 0.025, 1, 0, 0, 1, 0, 0],  # Constraint 1 
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    [0.017, 0.01, 0.0125, 0, 1, 0, 0, 1, 0], # Constraint 2 
    [0.0083, 0.007, 0.00625, 0, 0, 1, 0, 0, 1] # Constraint 3 
] 
 
# Right-hand side (RHS) of the constraints 
b = [32, 16, 9] 
 
# Bounds for the decision variables (all non-negative) 
x_bounds = (0, None)  # All variables must be >= 0 
 
# Solve the linear programming problem using the simplex method 
result = linprog(c, A_eq=A, b_eq=b, bounds=[x_bounds] * len(c), method='highs') 
 
# Display results 
if result.success: 
    print("Optimal solution found:") 
    print(f"x1 = {result.x[0]:.2f}, x2 = {result.x[1]:.2f}, x3 = {result.x[2]:.2f}") 
    print(f"Maximum Z = {abs(result.fun):.2f}") 
else: 
    print("No optimal solution found.") 
  

 

5. Summary 

          The objective of this research work was to apply linear programming for optimal use of 

raw material in Adhirasam production. Marudham Adhirasam was used as our case study. The 

decision variables in this research work are the three different sizes of Adhirasam (big size, 

small size and medium size) produced by Marudham Adhirasam. The researcher focused 

mainly on three raw materials (flour, jaggery and oil)used in the production and the quantity 

of raw material required for each variable (Adhirasam size). The result shows that 0 piece of 
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big size, 500 piece of small size and 880 piece of medium size should be produce respectively 

which will give a maximum profit of ₹20580. 

6. Conclusion  

Based on the analysis carried out in this research work and the result shown, Marudham 

Adhirasam should produce the three sizes of Adhirasam (big size, small size and medium size) 

in order to satisfy the customers. Also, more of medium size should be produce in order to 

attain maximum profit, because they contribute mostly to the profit earned by the company. 
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Abstract 

 The Pythagorean Neutrosophic fuzzy magic graph is the combination of Pythagorean 

Neutrosophic Fuzzy set and graph model which  is mainly applied across various fields. 

Pythagorean Neutrosophic set composed of elements with dependent Membership function     

(∝), Non Membership function (𝛾) and independent indeterminancy function (𝛽) with the 

condition that 0 ≤∝2+ 𝛽2 + 𝛾2 ≤ 2. The concept of Pythagorean Neutrosophic fuzzy graph 

extended to Pythagorean Neutrosophic fuzzy magic graph. In this paper we define some 

operations that can be performed on Pythagorean Neutrosophic  magic graph include Cartesian 

Product, Composition, Complement, Union, Intersection, and investigate their important 

properties. 

Keywords: Pythagorean Neutrosophic fuzzy magic graph (PNFMG), Cartesian Product, 

Composition, Complement, Union, Intersection 
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1. Introduction 

 Fuzzy set was coined by Zadeh L.A in 1965. Atanassov presented the concept of 

intutionistic fuzzy set. A set which has only one component with degree of membership 

between 0 and 1 is a fuzzyset, while in intutionistic fuzzy set has two components namely, 

degree of membership and degree of non-membership value lies between 0 and 1. Thus this 

intutionistic fuzzy set was extended into neutrosophic set. To deal with intricate vagueness and 

ambiguity, Pythagorean fuzzy set was developed by Yager, which is sum of square of 

membership and non-membership value must lies between 0 and 1. Smarandache introduced 

the concept of neutrosophic fuzzy set, which is the generalisation of fuzzy and intutionistic 

fuzzy set includes three constraints as membership, non-membership and indeterminancy 
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function and their sum must be lies between 0 and 3. In 2016, Smarandache developed the 

Pythagorean Neutrosophic set, which is the fusion of neutrosophic and Pythagorean set holding 

membership and non-membership grades as dependent and indeterminancy grade as 

independent components in which total square of membership, non-membership and 

indeterminancy value must lies between 0 and 2. 

 Pythagorean Neutrosophic fuzzy graph is the combination of Pythagorean 

Neutrosophic set and fuzzy graph theory. In recent years, some kinds of fuzzy graphs have 

been introduced. In this paper, we define some operations like Cartesian Product, Composition, 

Complement, Union and Intersection of Pythagorean Neutrosophic fuzzy Magic Graph and 

also investigate and discuss some of its properties. 

2. Preliminaries 

Definition 2.1. A fuzzy set  A in X is defined as 𝐴 = {(𝑎, 𝜇𝐴(𝑎))/ 𝑎 ∈ 𝑋} where 𝜇𝐴(𝑎) ∈

[0, 1] is called the membership fuction for the fuzzy set A. 

Definition 2.2. A fuzzy graph defined by 𝐺 = (𝜎, 𝜇)  is a pair of functions 𝜎: 𝑉 → [0, 1] and  

𝜇: 𝑉 × 𝑉 → [0, 1] where, ∀ 𝑢 𝑣 ∈ 𝑉, 𝜇(𝑢𝑣) ≤ 𝜎(𝑢) ∧ 𝜎(𝑣) 

Definition 2.3. A magic labeling on G will mean a one-to-one map 𝜆 from 𝑉(𝐺) ∪ 𝐸(𝐺) onto 

the integers 1,2,…,v+e, where 𝑣 = |𝑉(𝐺)| and 𝑒 = |𝐸(𝐺)|, with the property that, given any 

edge  (x, y), 𝜆(𝑥) + 𝜆(𝑥, 𝑦) + 𝜆(𝑦) = 𝑘, for some constant k. 

Definition 2.4. A fuzzy graph G = (σ, µ) is said to be a fuzzy labeling graph, if 𝜎: 𝑉 → [0, 1] 

and 𝜇: 𝑉 × 𝑉 → [0, 1]  is bijective such that the membership value of edges and vertices are 

distinct and for all 𝑢, 𝑣 ∈ 𝑉, 𝜇(𝑢, 𝑣) < 𝜎(𝑢) ∧ 𝜎(𝑣). 

Definition 2.5. Pythagorean Neutrosophic Fuzzy Graph (PNFG) is 𝐺 = (𝑉, 𝐸)  where 𝑉 =

{𝑣1, 𝑣2, … , 𝑣𝑛} such that 𝜇1, 𝛽1 𝑎𝑛𝑑 𝜎1  from 𝑉 𝑡𝑜 [0, 1] with  0 ≤ 𝜇1(𝑣𝑖)
2 + 𝛽1 (𝑣𝑖)

2 +

𝜎1(𝑣𝑖)
2 ≤ 2 ∀ 𝑣𝑖 ∈ 𝑉 signifies membership, indeterminacy and non-membership functions 

correspondingly and 𝐸 ⊆ 𝑉 × 𝑉 where  𝜇2, 𝛽2 𝑎𝑛𝑑 𝜎2  from 𝑉 × 𝑉 𝑡𝑜 [0, 1] such that 

𝜇2(𝑣𝑖 𝑣𝑗) ≤  𝜇1(𝑣𝑖) ∧ 𝜇1(𝑣𝑗) 

𝛽2(𝑣𝑖 𝑣𝑗) ≤  𝛽1(𝑣𝑖) ∧ 𝛽1(𝑣𝑗) 

𝜎2(𝑣𝑖 𝑣𝑗) ≤  𝜎1(𝑣𝑖) ∨ 𝜎1(𝑣𝑗) 

With 0 ≤ (𝜇2(𝑣𝑖 𝑣𝑗))
2
+ (𝛽2(𝑣𝑖 𝑣𝑗))

2
+ (𝜎2(𝑣𝑖 𝑣𝑗))

2
≤ 2 ∀ 𝑣𝑖𝑣𝑗 ∈ 𝐸 
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3. Pythagorean Neutrosophic Fuzzy Magic Labelling Graph 

Definition 3.1. A Pythagorean Neutrosophic Fuzzy Graph 𝐺 = (𝑉, 𝐸) is said to be 

Pythagorean Neutrosophic Fuzzy magic graph if there exist a magic graph M such that  

𝜇(𝑣𝑖) + 𝛼(𝑣𝑖  𝑣𝑗) + 𝜇(𝑣𝑗) having a constant value denoted by 𝑚, 

 𝜂(𝑣𝑖) + 𝛽(𝑣𝑖  𝑣𝑗) + 𝜂(𝑣𝑗) having a constant value denoted by 𝑚′ and  

𝛿(𝑣𝑖) + 𝛾(𝑣𝑖  𝑣𝑗) + 𝛿(𝑣𝑗) having a  constant value denoted by  𝑚′′  ∀  𝑣𝑖 , 𝑣𝑗  ∈ 𝑉 

We denote a Pythagorean Neutrosophic Fuzzy Magic Constant by 𝑀0(𝐺) = (𝑚,𝑚′, 𝑚′′) 

Example: 

 

 

  

 

 

                                                Figure 1 

4. Main Results 

Definition 4.1. Let 𝐺′ = (𝑉1, 𝐸1) and 𝐺′′ = (𝑉2, 𝐸2) be two PNFMG’s where 𝑉1 = (𝜇, 𝜂, 𝛿)), 

 𝑉2 = 𝜇∗,  𝜂∗,  𝛿∗) and 𝐸1 = (𝛼, 𝛽, 𝛾)), 𝐸2 = 𝛼
∗,  𝛽∗,  𝛾∗). The Cartesian Product  𝐺′ × 𝐺′′ = 

(𝑉1 × 𝑉2, 𝐸1 × 𝐸2)  is defined by  

(i) (𝜇 × 𝜇∗)(𝑢1, 𝑢2) = 𝑚𝑖𝑛{𝜇(𝑢1),  𝜇∗(𝑢2)} 

        (𝜂 × 𝜂∗)(𝑢1, 𝑢2) = 𝑚𝑖𝑛{𝜂(𝑢1),  𝜂
∗(𝑢2)} 

        (𝛿 × 𝛿∗)(𝑢1, 𝑢2) = 𝑚𝑎𝑥{𝛿(𝑢1),  𝛿
∗(𝑢2)}     ∀ 𝑢1, 𝑢2 ∈ 𝑉1 × 𝑉2 

(ii) (𝛼 × 𝛼∗)((𝑢, 𝑢2), (𝑢, 𝑣2)) = 𝑚𝑖𝑛{𝜇(𝑢),  𝛼∗(𝑢2 𝑣2)} 

(𝛽 × 𝛽∗)((𝑢, 𝑢2), (𝑢, 𝑣2)) = 𝑚𝑖𝑛{𝜂(𝑢),  𝛽
∗(𝑢2 𝑣2)} 

(𝛾 × 𝛾∗)((𝑢, 𝑢2), (𝑢, 𝑣2)) = 𝑚𝑎𝑥{𝛿(𝑢),  𝛾
∗(𝑢2 𝑣2)}     ∀ 𝑢 ∈ 𝑉1 𝑎𝑛𝑑 𝑢2𝑣2 ∈ 𝐸2 

 

(iii)(𝛼 × 𝛼∗)((𝑢1, 𝑤), ( 𝑣1, 𝑤)) = 𝑚𝑖𝑛{𝛼(𝑢1 𝑣1),  𝜇
∗(𝑤)} 

𝑢1(0.8, 0.6, 0.7)  

(0.2, 0.4, 0.1) 

𝑢2(0.5, 0.9, 0.6)  

(0.1, 0.5, 0.4) 

𝑢3(0.6, 0.8, 0.3)  

(0.2, 0.4, 0.2) 

𝑢4 (0.7, 0.7, 0.9) 
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(𝛽 × 𝛽∗)((𝑢1, 𝑤), ( 𝑣1, 𝑤)) = 𝑚𝑖𝑛{𝛽(𝑢1 𝑣1),  𝜂
∗(𝑤)} 

(𝛾 × 𝛾∗)((𝑢1, 𝑤), ( 𝑣1, 𝑤)) = 𝑚𝑎𝑥{𝛾(𝑢1 𝑣1),  𝛿
∗(𝑤)}     ∀ 𝑤 ∈ 𝑉2 𝑎𝑛𝑑 𝑢1𝑣1 ∈ 𝐸1 

Theorem 4.2. Let  𝐺′ 𝑎𝑛𝑑 𝐺′′ be two Pythagorean Neutrosophic fuzzy Magic Labelled Graph 

then 𝐺′ × 𝐺′′ is a Pythagorean Neutrosophic  Fuzzy Graph 

Proof. Let 𝑢 ∈ 𝑉1 𝑎𝑛𝑑 𝑢2𝑣2 ∈ 𝐸2. Then we get, 

  (𝛼 × 𝛼∗)((𝑢, 𝑢2), (𝑢, 𝑣2)) = 𝑚𝑖𝑛{𝜇(𝑢),  𝛼∗(𝑢2 𝑣2)} 

        ≤ 𝑚𝑖𝑛 {𝜇(𝑢), (𝑚𝑖𝑛( 𝜇∗(𝑢2),  𝜇
∗(𝑣2)))} 

                                           = min {min(𝜇(𝑢),  𝜇∗(𝑢2)),𝑚𝑖𝑛(𝜇(𝑢),  𝜇
∗(𝑣2))} 

        = min{ (𝜇 × 𝜇∗)(𝑢, 𝑢2), (𝜇 × 𝜇
∗)(𝑢, 𝑣2)} 

 (𝛽 × 𝛽∗)((𝑢, 𝑢2), (𝑢, 𝑣2)) = 𝑚𝑖𝑛{𝜂(𝑢),  𝛽
∗(𝑢2 𝑣2)} 

        ≤ 𝑚𝑖𝑛 {𝜂(𝑢), (𝑚𝑖𝑛( 𝜂∗(𝑢2),  𝜂
∗(𝑣2)))} 

                                           = min {min(𝜂(𝑢),  𝜂∗(𝑢2)),𝑚𝑖𝑛(𝜂(𝑢),  𝜂
∗(𝑣2))} 

        = min{ (𝜂 × 𝜂∗)(𝑢, 𝑢2), (𝜂 × 𝜂
∗)(𝑢, 𝑣2)} 

  (𝛾 × 𝛾∗)((𝑢, 𝑢2), (𝑢, 𝑣2)) = 𝑚𝑎𝑥{𝛿(𝑢),  𝛾
∗(𝑢2 𝑣2)} 

           ≤ 𝑚𝑎𝑥 {𝛿(𝑢), (𝑚𝑎𝑥(𝛿∗(𝑢2),  𝛿
∗(𝑣2)))} 

                                           = max {max(𝛿(𝑢),  𝛿∗(𝑢2)),𝑚𝑎𝑥(𝛿(𝑢),  𝛿
∗(𝑣2))} 

        = max{ (𝛿 × 𝛿∗)(𝑢, 𝑢2), (𝛿 × 𝛿
∗)(𝑢, 𝑣2)} 

 Let 𝑤 ∈ 𝑉2 𝑎𝑛𝑑 𝑢1𝑣1 ∈ 𝐸1. Then, we get 

  (𝛼 × 𝛼∗)((𝑢1, 𝑤), ( 𝑣1, 𝑤)) = 𝑚𝑖𝑛{𝛼(𝑢1 𝑣1),  𝜇
∗(𝑤)} 

           ≤ 𝑚𝑖𝑛 {(𝑚𝑖𝑛( 𝜇(𝑢1), 𝜇(𝑣1)),  𝜇
∗(𝑤))} 

           =  min {min(𝜇(𝑢1),  𝜇
∗(𝑤)),𝑚𝑖𝑛(𝜇(𝑣1),  𝜇

∗(𝑤))} 

           = min{ (𝜇 × 𝜇∗)( 𝑢1, 𝑤), (𝜇 × 𝜇
∗)( 𝑣1, 𝑤)} 

 (𝛽 × 𝛽∗)((𝑢1, 𝑤), ( 𝑣1, 𝑤)) = 𝑚𝑖𝑛{𝛽(𝑢1 𝑣1),  𝜂
∗(𝑤)} 

              ≤ 𝑚𝑖𝑛 {(𝑚𝑖𝑛( 𝜂(𝑢1), 𝜇(𝑣1)), 𝜂
∗(𝑤))} 

           =  min {min( 𝜂(𝑢1),  𝜂
∗(𝑤)),𝑚𝑖𝑛( 𝜂(𝑣1),  𝜂

∗(𝑤))} 

           = min{ ( 𝜂 ×  𝜂∗)( 𝑢1, 𝑤), ( 𝜂 ×  𝜂
∗)( 𝑣1, 𝑤)} 

  (𝛾 × 𝛾∗)((𝑢1, 𝑤), ( 𝑣1, 𝑤)) = 𝑚𝑎𝑥{𝛾(𝑢1 𝑣1),  𝛿
∗(𝑤)} 

          ≤ 𝑚𝑎𝑥 {(𝑚𝑎𝑥( 𝛿(𝑢1), 𝛿(𝑣1)),  𝛿
∗(𝑤))} 

           = max {max( 𝛿(𝑢1), 𝛿
∗(𝑤)),𝑚𝑎𝑥(  𝛿(𝑣1), 𝛿

∗(𝑤))} 
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          = max{(𝛿 ×  𝛿∗)( 𝑢1, 𝑤), ( 𝛿 ×  𝛿
∗)( 𝑣1, 𝑤)} 

 This completes the proof 

Definition 4.3. Let 𝐺′ = (𝑉1, 𝐸1) and 𝐺′′ = (𝑉2, 𝐸2) be two PNFMG’s where 𝑉1 = (𝜇, 𝜂, 𝛿)),   

𝑉2 = (𝜇∗, 𝜂∗, 𝛿∗) and 𝐸1 = (𝛼, 𝛽, 𝛾)), 𝐸2 = 𝛼∗,  𝛽∗,  𝛾∗). The composition 𝐺′[𝐺′′] = (𝑉1 ∘

𝑉2, 𝐸1 ∘ 𝐸2)  is defined by  

(i) (𝜇 ∘ 𝜇∗)(𝑢1, 𝑢2) = 𝑚𝑖𝑛{𝜇(𝑢1),  𝜇∗(𝑢2)} 

        (𝜂 ∘ 𝜂∗)(𝑢1, 𝑢2) = 𝑚𝑖𝑛{𝜂(𝑢1),  𝜂
∗(𝑢2)} 

        (𝛿 ∘ 𝛿∗)(𝑢1, 𝑢2) = 𝑚𝑎𝑥{𝛿(𝑢1),  𝛿
∗(𝑢2)}     ∀ 𝑢1, 𝑢2 ∈ 𝑉1 × 𝑉2 

(ii) (𝛼 ∘ 𝛼∗)((𝑢, 𝑢2), (𝑢, 𝑣2)) = 𝑚𝑖𝑛{𝜇(𝑢),  𝛼∗(𝑢2 𝑣2)} 

(𝛽 ∘ 𝛽∗)((𝑢, 𝑢2), (𝑢, 𝑣2)) = 𝑚𝑖𝑛{𝜂(𝑢),  𝛽∗(𝑢2 𝑣2)} 

(𝛾 ∘ 𝛾∗)((𝑢, 𝑢2), (𝑢, 𝑣2)) = 𝑚𝑎𝑥{𝛿(𝑢),  𝛾
∗(𝑢2 𝑣2)}     ∀ 𝑢 ∈ 𝑉1 𝑎𝑛𝑑 𝑢2𝑣2 ∈ 𝐸2 

(iii)(𝛼 ∘ 𝛼∗)((𝑢1, 𝑤), ( 𝑣1, 𝑤)) = 𝑚𝑖𝑛{𝛼(𝑢1 𝑣1),  𝜇
∗(𝑤)} 

(𝛽 ∘ 𝛽∗)((𝑢1, 𝑤), ( 𝑣1, 𝑤)) = 𝑚𝑖𝑛{𝛽(𝑢1 𝑣1),  𝜂
∗(𝑤)} 

(𝛾 ∘ 𝛾∗)((𝑢1, 𝑤), ( 𝑣1, 𝑤)) = 𝑚𝑎𝑥{𝛾(𝑢1 𝑣1),  𝛿
∗(𝑤)}     ∀ 𝑤 ∈ 𝑉2 𝑎𝑛𝑑 𝑢1𝑣1 ∈ 𝐸1 

(iv) (𝛼 ∘ 𝛼∗)((𝑢1, 𝑢2 ), ( 𝑣1, 𝑣2)) = 𝑚𝑖𝑛{𝛼(𝑢1 𝑣1),  𝜇∗(𝑢2),  𝜇∗(𝑣2)} 

(𝛽 ∘ 𝛽∗)((𝑢1, 𝑢2 ), ( 𝑣1, 𝑣2)) = 𝑚𝑖𝑛{𝛽(𝑢1 𝑣1),  𝜂
∗(𝑢2),  𝜂

∗(𝑣2) } 

(𝛾 ∘ 𝛾∗)((𝑢1, 𝑢2 ), ( 𝑣1, 𝑣2)) = 𝑚𝑎𝑥{𝛾(𝑢1 𝑣1),  𝛿
∗(𝑢2),  𝛿

∗(𝑣2)}   

      ∀ 𝑢2, 𝑣2 ∈ 𝑉2 𝑎𝑛𝑑 𝑢1𝑣1 ∈ 𝐸1, 𝑢2 ≠  𝑣2                                                                               

Theorem 4.4. Let  𝐺′ 𝑎𝑛𝑑 𝐺′′ be two Pythagorean Neutrosophic fuzzy Magic Labelled Graph 

then 𝐺′[ 𝐺′′] is a Pythagorean Neutrosophic  Fuzzy Graph 

Proof. Let 𝑢 ∈ 𝑉1 𝑎𝑛𝑑 𝑢2𝑣2 ∈ 𝐸2. Then we get, 

  (𝛼 ∘ 𝛼∗)((𝑢, 𝑢2), (𝑢, 𝑣2)) = 𝑚𝑖𝑛{𝜇(𝑢),  𝛼∗(𝑢2 𝑣2)} 

        ≤ 𝑚𝑖𝑛 {𝜇(𝑢), (𝑚𝑖𝑛( 𝜇∗(𝑢2),  𝜇
∗(𝑣2)))} 

                                           = min {min(𝜇(𝑢),  𝜇∗(𝑢2)),𝑚𝑖𝑛(𝜇(𝑢),  𝜇
∗(𝑣2))} 

        = min{ (𝜇 ∘ 𝜇∗)(𝑢, 𝑢2), (𝜇 ∘ 𝜇
∗)(𝑢, 𝑣2)} 

 (𝛽 ∘ 𝛽∗)((𝑢, 𝑢2), (𝑢, 𝑣2)) = 𝑚𝑖𝑛{𝜂(𝑢),  𝛽∗(𝑢2 𝑣2)} 

        ≤ 𝑚𝑖𝑛 {𝜂(𝑢), (𝑚𝑖𝑛( 𝜂∗(𝑢2),  𝜂
∗(𝑣2)))} 

                                           = min {min(𝜂(𝑢),  𝜂∗(𝑢2)),𝑚𝑖𝑛(𝜂(𝑢),  𝜂
∗(𝑣2))} 

        = min{ (𝜂 ∘ 𝜂∗)(𝑢, 𝑢2), (𝜂 ∘ 𝜂
∗)(𝑢, 𝑣2)} 
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  (𝛾 ∘ 𝛾∗)((𝑢, 𝑢2), (𝑢, 𝑣2)) = 𝑚𝑎𝑥{𝛿(𝑢),  𝛾
∗(𝑢2 𝑣2)} 

            ≤ 𝑚𝑎𝑥 {𝛿(𝑢), (𝑚𝑎𝑥(𝛿∗(𝑢2),  𝛿
∗(𝑣2)))} 

                                            = max {max(𝛿(𝑢),  𝛿∗(𝑢2)),𝑚𝑎𝑥(𝛿(𝑢),  𝛿
∗(𝑣2))} 

         = max{ (𝛿 ∘ 𝛿∗)(𝑢, 𝑢2), (𝛿 ∘ 𝛿
∗)(𝑢, 𝑣2)} 

 Let 𝑤 ∈ 𝑉2 𝑎𝑛𝑑 𝑢1𝑣1 ∈ 𝐸1. Then, we get 

          (𝛼 ∘ 𝛼∗)((𝑢1, 𝑤), ( 𝑣1, 𝑤)) = 𝑚𝑖𝑛{𝛼(𝑢1 𝑣1),  𝜇
∗(𝑤)} 

          ≤ 𝑚𝑖𝑛 {(𝑚𝑖𝑛( 𝜇(𝑢1), 𝜇(𝑣1)),  𝜇
∗(𝑤))} 

          =  min {min(𝜇(𝑢1),  𝜇
∗(𝑤)),𝑚𝑖𝑛(𝜇(𝑣1),  𝜇

∗(𝑤))} 

          = min{ (𝜇 ∘ 𝜇∗)( 𝑢1, 𝑤), (𝜇 ∘ 𝜇
∗)( 𝑣1, 𝑤)} 

                     (𝛽 ∘ 𝛽∗)((𝑢1, 𝑤), ( 𝑣1, 𝑤)) = 𝑚𝑖𝑛{𝛽(𝑢1 𝑣1),  𝜂
∗(𝑤)}  

             ≤ 𝑚𝑖𝑛 {(𝑚𝑖𝑛( 𝜂(𝑢1), 𝜇(𝑣1)), 𝜂
∗(𝑤))} 

          =  min {min( 𝜂(𝑢1),  𝜂
∗(𝑤)),𝑚𝑖𝑛( 𝜂(𝑣1),  𝜂

∗(𝑤))} 

          = min{ ( 𝜂 ∘  𝜂∗)( 𝑢1, 𝑤), ( 𝜂 ∘  𝜂
∗)( 𝑣1, 𝑤)} 

          (𝛾 ∘ 𝛾∗)((𝑢1, 𝑤), ( 𝑣1, 𝑤)) = 𝑚𝑎𝑥{𝛾(𝑢1 𝑣1),  𝛿
∗(𝑤)} 

                     ≤ 𝑚𝑎𝑥 {(𝑚𝑎𝑥( 𝛿(𝑢1), 𝛿(𝑣1)),  𝛿
∗(𝑤))} 

         = max {max( 𝛿(𝑢1),  𝛿
∗(𝑤)),𝑚𝑎𝑥(  𝛿(𝑣1),  𝛿

∗(𝑤))} 

         = max{(𝛿 ∘  𝛿∗)( 𝑢1, 𝑤), ( 𝛿 ∘  𝛿
∗)( 𝑣1, 𝑤)} 

Again, Let  𝑢2, 𝑣2 ∈ 𝑉2 , 𝑢1𝑣1 ∈ 𝐸1 and 𝑢2 ≠  𝑣2 

       (𝛼 ∘ 𝛼∗)((𝑢1, 𝑢2), ( 𝑣1, 𝑣2)) = 𝑚𝑖𝑛{𝛼(𝑢1𝑣1),  𝜇
∗(𝑢2),  𝜇

∗(𝑣2)} 

          ≤ 𝑚𝑖𝑛 {(𝑚𝑖𝑛( 𝜇(𝑢1), 𝜇(𝑣1)),  𝜇
∗(𝑢2),  𝜇

∗(𝑣2))} 

                     =  min {( 𝜇(𝑢1), 𝜇(𝑣1)),  𝜇
∗(𝑢2),  𝜇

∗(𝑣2)} 

                     = min{ (𝜇 ∘ 𝜇∗)( 𝑢1, 𝑢2), (𝜇 ∘ 𝜇
∗)( 𝑣1, 𝑣2)} 

                   (𝛽 ∘ 𝛽∗)((𝑢1, 𝑢2), ( 𝑣1, 𝑣2)) = 𝑚𝑖𝑛{𝛽(𝑢1𝑣1),  𝜂
∗(𝑤)}   

             ≤ 𝑚𝑖𝑛 {(𝑚𝑖𝑛( 𝜂(𝑢1), 𝜂(𝑣1)),  𝜂
∗(𝑢2),  𝜂

∗(𝑣2))} 

                             =  min {( 𝜂(𝑢1), 𝜂(𝑣1)),  𝜂
∗(𝑢2), 𝜂

∗(𝑣2)} 

          = min{ (𝜂 ∘ 𝜂∗)( 𝑢1, 𝑢2), (𝜂 ∘ 𝜂
∗)( 𝑣1, 𝑣2)} 

                (𝛾 ∘ 𝛾∗)((𝑢1, 𝑢2), ( 𝑣1, 𝑣2)) = 𝑚𝑎𝑥{𝛾(𝑢1 𝑣1),  𝛿
∗(𝑤)} 
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                     ≤ 𝑚𝑎𝑥 {(𝑚𝑎𝑥( 𝛿(𝑢1), 𝛿(𝑣1)),  𝛿
∗(𝑢2), 𝛿

∗(𝑣2))} 

          =  max {( 𝛿(𝑢1), 𝛿(𝑣1)),  𝛿
∗(𝑢2),  𝛿

∗(𝑣2)} 

          = max{ (𝛿 ∘ 𝛿∗)( 𝑢1, 𝑢2), (𝛿 ∘ 𝛿
∗)( 𝑣1, 𝑣2)} 

 This completes the proof 

Definition 4.5. Let 𝐺′ 𝑎𝑛𝑑 𝐺′′  be two Pythagorean Neutrosophic fuzzy Magic Labelled 

Graph, the union of 𝐺′ 𝑎𝑛𝑑 𝐺′′  denoted as 𝐺′ ∪ 𝐺′′ = (𝑉1 ∪ 𝑉2, 𝐸1 ∪ 𝐸2) is defined as  

(i) (𝜇 ∪ 𝜇∗)(𝑢1) = {
𝜇(𝑢1)                     𝑖𝑓 𝑢1 ∈ 𝑉1 𝑎𝑛𝑑 𝑢1 ∉ 𝑉2
𝜇∗(𝑢1)                   𝑖𝑓 𝑢1 ∉ 𝑉1 𝑎𝑛𝑑 𝑢1 ∈ 𝑉2
𝑚𝑎𝑥{𝜇(𝑢1), 𝜇

∗(𝑢1)}       𝑖𝑓 𝑢1 ∈ 𝑉1 ∩ 𝑉2

 

(ii) (𝜂 ∪ 𝜂∗)(𝑢1) = {
𝜂(𝑢1)                     𝑖𝑓 𝑢1 ∈ 𝑉1 𝑎𝑛𝑑 𝑢1 ∉ 𝑉2
𝜂∗(𝑢1)                   𝑖𝑓 𝑢1 ∉ 𝑉1 𝑎𝑛𝑑 𝑢1 ∈ 𝑉2
𝑚𝑎𝑥{𝜂(𝑢1), 𝜂

∗(𝑢1)}       𝑖𝑓 𝑢1 ∈ 𝑉1 ∩ 𝑉2

 

(iii)(𝛿 ∪ 𝛿∗)(𝑢1) = {

𝛿(𝑢1)                     𝑖𝑓 𝑢1 ∈ 𝑉1 𝑎𝑛𝑑 𝑢1 ∉ 𝑉2
𝛿∗(𝑢1)                   𝑖𝑓 𝑢1 ∉ 𝑉1 𝑎𝑛𝑑 𝑢1 ∈ 𝑉2
𝑚𝑖𝑛 {𝛿(𝑢1), 𝛿

∗(𝑢1)}       𝑖𝑓 𝑢1 ∈ 𝑉1 ∩ 𝑉2

 

(iv) (𝛼 ∪ 𝛼∗)(𝑢1𝑢2 ) = {

𝛼(𝑢1𝑢2 )                     𝑖𝑓 𝑢1𝑢2 ∈ 𝐸1 𝑎𝑛𝑑 𝑢1𝑢2 ∉ 𝐸2
𝛼∗(𝑢1𝑢2 )                   𝑖𝑓 𝑢1𝑢2 ∉ 𝐸1 𝑎𝑛𝑑 𝑢1𝑢2 ∈ 𝐸2
𝑚𝑎𝑥{𝛼(𝑢1𝑢2 ), 𝛼

∗(𝑢1𝑢2 )}       𝑖𝑓 𝑢1𝑢2 ∈ 𝐸1 ∩ 𝐸2

 

(v) (𝛽 ∪ 𝛽∗)(𝑢1𝑢2 ) = {
𝛽(𝑢1𝑢2 )                       𝑖𝑓 𝑢1𝑢2 ∈ 𝐸1 𝑎𝑛𝑑 𝑢1𝑢2 ∉ 𝐸2
𝛽∗(𝑢1𝑢2 )                      𝑖𝑓 𝑢1𝑢2 ∉ 𝐸1 𝑎𝑛𝑑 𝑢1𝑢2 ∈ 𝐸2
𝑚𝑎𝑥{𝛽(𝑢1𝑢2 ), 𝛽

∗(𝑢1𝑢2 )}          𝑖𝑓 𝑢1𝑢2 ∈ 𝐸1 ∩ 𝐸2

 

(vi) (𝛾 ∪ 𝛾∗)(𝑢1𝑢2 ) = {

𝛾(𝑢1𝑢2 )                            𝑖𝑓 𝑢1 ∈ 𝑉1 𝑎𝑛𝑑 𝑢1 ∉ 𝑉2
𝛾∗(𝑢1𝑢2 )                          𝑖𝑓 𝑢1 ∉ 𝑉1 𝑎𝑛𝑑 𝑢1 ∈ 𝑉2
𝑚𝑖𝑛{𝛾(𝑢1𝑢2 ), 𝛾

∗(𝑢1𝑢2 )}       𝑖𝑓 𝑢1𝑢2 ∈ 𝐸1 ∩ 𝐸2

 

Theorem 4.6. Let  𝐺′ 𝑎𝑛𝑑 𝐺′′ be two Pythagorean Neutrosophic fuzzy Magic Labelled Graph 

then 𝐺′ ∪ 𝐺′′ is a Pythagorean Neutrosophic Fuzzy Graph. 

Definition 4.7. Let 𝐺′ 𝑎𝑛𝑑 𝐺′′  be two Pythagorean Neutrosophic fuzzy Magic Labelled 

Graph, the intersection of 𝐺′ 𝑎𝑛𝑑 𝐺′′  denoted as 𝐺′ ∩ 𝐺′′ = (𝑉1 ∩ 𝑉2, 𝐸1 ∩ 𝐸2) is defined as  

(i) (𝜇 ∩ 𝜇∗)(𝑢1) = 𝑚𝑖𝑛{𝜇(𝑢1), 𝜇∗(𝑢1) }       𝑖𝑓 𝑢1 ∈ 𝑉1 ∩ 𝑉2 

       (𝜂 ∩ 𝜂∗)(𝑢1) = 𝑚𝑖𝑛{𝜂(𝑢1), 𝜂
∗(𝑢1) }       𝑖𝑓 𝑢1 ∈ 𝑉1 ∩ 𝑉2 

                    (𝛿 ∩ 𝛿∗)(𝑢1) = 𝑚𝑎𝑥{𝜇(𝑢1), 𝜇
∗(𝑢1) }       𝑖𝑓 𝑢1 ∈ 𝑉1 ∩ 𝑉2 

(ii) (𝛼 ∩ 𝛼∗)(𝑢1𝑢2 ) = 𝑚𝑖𝑛{𝛼(𝑢1𝑢2 ), 𝛼
∗(𝑢1𝑢2 )}       𝑖𝑓 𝑢1𝑢2 ∈ 𝐸1 ∩ 𝐸2 

(𝛽 ∩ 𝛽∗)(𝑢1𝑢2 ) = 𝑚𝑖𝑛{𝛽(𝑢1𝑢2 ), 𝛽
∗(𝑢1𝑢2 )}       𝑖𝑓 𝑢1𝑢2 ∈ 𝐸1 ∩ 𝐸2 
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(𝛾 ∩ 𝛾∗)(𝑢1𝑢2 ) = 𝑚𝑎𝑥{𝛾(𝑢1𝑢2 ), 𝛾
∗(𝑢1𝑢2 )}       𝑖𝑓 𝑢1𝑢2 ∈ 𝐸1 ∩ 𝐸2 

Theorem 4.8. Let  𝐺′ 𝑎𝑛𝑑 𝐺′′ be two Pythagorean Neutrosophic fuzzy Magic Labelled Graph 

then 𝐺′ ∩ 𝐺′′ is a Pythagorean Neutrosophic Fuzzy Graph. 

Definition 4.9. The complement of Pythagorean Neutrosophic fuzzy Magic Labelled Graph 

𝐺 = (𝑉, 𝐸) is denoted as 𝐺̅: (𝜇, 𝜂, 𝛿,̅̅ ̅̅ ̅̅ ̅̅ , 𝛼, 𝛽, 𝛾̅̅ ̅̅ ̅̅ ̅̅ ), where 𝜇, 𝜂, 𝛿,̅̅ ̅̅ ̅̅ ̅̅ = (𝜇, 𝜂, 𝛿 ) and 𝛼, 𝛽, 𝛾̅̅ ̅̅ ̅̅ ̅̅ = (𝛼̅, 𝛽̅, 𝛾̅), 

where  

𝛼̅(𝑢, 𝑣) = min{𝜇(𝑢), 𝜇(𝑣)} − 𝛼(𝑢, 𝑣) 

𝛽̅(𝑢, 𝑣) = min{𝜂(𝑢), 𝜂(𝑣)} − 𝛽(𝑢, 𝑣) 

𝛾̅(𝑢, 𝑣) = min{𝛿(𝑢), 𝛿(𝑣)} − 𝛾(𝑢, 𝑣) 

Theorem 4.10. The complement of complement of a Pythagorean Neutrosophic Fuzzy Magic 

Graph G is G i.e., 𝐺̿ = 𝐺 

Proof. Let 𝐺 = (𝑉, 𝐸) be a fuzzy magic Graph. Then the complement of Fuzzy magic Graph 

is 𝐺̅: (𝜇, 𝜂, 𝛿,̅̅ ̅̅ ̅̅ ̅̅ , 𝛼, 𝛽, 𝛾̅̅ ̅̅ ̅̅ ̅̅ ), where 𝜇, 𝜂, 𝛿,̅̅ ̅̅ ̅̅ ̅̅ = (𝜇, 𝜂, 𝛿 ) and 𝛼, 𝛽, 𝛾̅̅ ̅̅ ̅̅ ̅̅ = (𝛼̅, 𝛽̅, 𝛾̅), where  

𝛼̅(𝑢, 𝑣) = min{𝜇(𝑢), 𝜇(𝑣)} − 𝛼(𝑢, 𝑣) ∀ 𝑢, 𝑣 ∈ 𝑉 

Now 𝜇̅̅ = 𝜇̅ = 𝜇 and 𝛼̅(𝑢, 𝑣) = min{𝜇̅(𝑢),  𝜇̅(𝑣)} − 𝛼̅(𝑢, 𝑣) 

           = min{𝜇(𝑢), 𝜇(𝑣)} − [min{𝜇(𝑢), 𝜇(𝑣)} − 𝛼(𝑢, 𝑣)] 

           =  𝛼(𝑢, 𝑣) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 ∈ 𝑉 

Similarly, 𝜂̅̅ = 𝜂̅ = 𝜂 and  𝛽̅(𝑢, 𝑣) =  𝛽(𝑢, 𝑣) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 ∈ 𝑉 and 

         𝛿̅̅ = 𝛿̅ = 𝛿 and  𝛾̅(𝑢, 𝑣) =  𝛾(𝑢, 𝑣) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 ∈ 𝑉 

Hence, 𝐺̿ = 𝐺 

5. Conclusion 

 Pythagorean Neutrosophic fuzzy graph is the fussion of graph theory and Pythagorean 

neutrosophic set. The notion of Pythagorean neutrosophic fuzzy graph extended to Pythagorean 

neutrosophic fuzzy magic graph. In this article, we define some operations like cartesion 

product, composition, complement union and intersection and also investigate their properties. 

In future we develop a model using this defined graph and applies it in real life decision making 

problems. 
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Abstract 

Let 𝐺 = (𝑉, 𝐸) be a simple graph.  A dominating set 𝑆 is a certified dominating set of 

𝐺 if 𝑆 has either zero or at least two neighbours in 𝑉 − 𝑆.  Let 𝐵(3, 𝑛) be the triangular book 

graph with 𝑛 + 2 vertices. Let 𝐷𝑐𝑒𝑟(𝐵(3, 𝑛), 𝑖) denote the family of all certified dominating 

sets with cardinality 𝑖 of 𝐵(3, 𝑛).  Let 𝑑𝑐𝑒𝑟(𝐵(3, 𝑛), 𝑖) = |𝐷𝑐𝑒𝑟(𝐵(3, 𝑛), 𝑖)| .  In this paper, we 

obtain a exact formula for 𝑑𝑐𝑒𝑟(𝐵(3, 𝑛), 𝑖).  Using this formula, we construct the polynomial,  

𝐷𝑐𝑒𝑟(𝐵(3, 𝑛), 𝑥) = ∑ 𝑑𝑐𝑒𝑟(𝐵(3, 𝑛), 𝑖)
𝑛+2
1 𝑥𝑖, which we call the certified domination 

polynomial of 𝐵(3, 𝑛) and also obtain some  properties of this polynomials.  

Key words: Certified domination number, Certified domination polynomial. 

2020 Mathematics Subject Classification (AMS): 05C69,05C31,05 

1. Introduction 

Let 𝐺 = (𝑉, 𝐸) be a simple graph of order |𝑉| = 𝑛.  For any vertex 𝑣 ∈ 𝑉, the open 

neighbourhood of 𝑣 is the set 𝑁(𝑣) =  {𝑢 ∈ 𝑉 / 𝑢𝑣 ∈ 𝐸} and the closed neighbourhood of 𝑣 is 

the set 𝑁[𝑣] =  𝑁(𝑣) ∪ {𝑣}.  For a set 𝑆 ⊆ 𝑉, the open neighbourhood of 𝑆 is 𝑁(𝑆) =

⋃ 𝑁(𝑣)𝑣∈𝑆  and the closed neighbourhood of 𝑆 is 𝑁[𝑆] = 𝑁(𝑆) ∪ 𝑆.   

The concept of certified domination in graphs was introduced by Dettlaf et al., 2020.  

A set 𝑆 ⊆ 𝑉 is a dominating set of 𝐺, if every vertex in 𝑉 − 𝑆 is adjacent to at least one vertex 

in 𝑆.  A dominating set 𝑆 is a certified dominating set of 𝐺 if 𝑆 has either zero or at least two 

neighbours in 𝑉 − 𝑆. The certified domination number 𝛾𝑐𝑒𝑟(𝐺) of 𝐺 is the minimum cardinality 

of certified dominating set.  
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Triangular book with 𝑛 pages is defined as 𝑛 copies of cycle 𝐶3 sharing a common 

edge. The common edge is called the spine or base of the book. This graph is denoted by 

𝐵(3, 𝑛).  Let 𝐵(3, 𝑛) be the triangular book graph with 𝑛 + 2 vertices and  𝑉(𝐵(3, 𝑛)) = 𝑋 ∪

𝑌, where  𝑋 = {𝑥𝑖/𝑖 = 1,2} and 𝑌 = {𝑦𝑖/1 ≤ 𝑖 ≤ 𝑛} and 𝐸(𝐵(3, 𝑛)) = {𝑥1𝑥2} ∪ {𝑥𝑖𝑦𝑗/1 ≤

𝑖 ≤ 𝑛}. 

In the next sections, we construct the certified domination polynomials of 𝐵(3, 𝑛). 

Definition 1.1.  Let 𝐺 be a simple connected graph.  Let 𝐷𝑐𝑒𝑟(𝐺, 𝑖) be a family of all certified 

dominating sets of 𝐺 with cardinality 𝑖 and let 𝑑𝑐𝑒𝑟(𝐺, 𝑖) = |𝐷𝑐𝑒𝑟(𝐺, 𝑖)|.  Then the certified 

domination polynomial 𝐷𝑐𝑒𝑟(𝐺, 𝑥) is defined as  

𝐷𝑐𝑒𝑟(𝐺, 𝑥) = ∑ 𝑑𝑐𝑒𝑟(𝐺, 𝑖)

|𝑉(𝐺)|

𝑖=𝛾𝑐𝑒𝑟(𝐺)

𝑥𝑖 

Where 𝛾𝑐𝑒𝑟(𝐺) is the certified domination number of 𝐺.  

2. Certified domination polynomial of 𝑩(𝟑, 𝒏) 

Observation 2.1. For a triangular book graph 𝛾𝑐𝑒𝑟(𝐵(3, 𝑛)) = 1,  for all 𝑛 ∈ 𝑁  

Lemma 2.2.  Let 𝐺 be the graph with 𝑛 vertices.  Then 

(i) 𝑑𝑐𝑒𝑟(𝐺, 𝑛) = 1 

(ii) 𝑑𝑐𝑒𝑟(𝐺, 𝑖) = 0 if and only if 𝑖 < 𝛾𝑐𝑒𝑟(𝐺) or 𝑖 = 𝑛 − 1 or 𝑖 > 𝑛 

(iii) 𝐷𝑐𝑒𝑟(𝐺, 𝑥) has no constant term. 

Lemma 2.3. Let 𝐵(3, 𝑛) be a triangular book graph with 𝑛 + 2 vertices, then for all  𝑛 ≥ 2, 

𝑑𝑐𝑒𝑟(𝐵(3, 𝑛), 𝑖) =

{
 
 

 
 

 2,                                                   𝑖𝑓  𝑖 = 1

(
𝑛

𝑖 − 2
) ,       𝑖𝑓  2 ≤ 𝑖 ≤ 𝑛 − 1 𝑎𝑛𝑑 𝑖 = 𝑛 + 2  

(
𝑛

𝑖 − 2
) + 1,                                 𝑖𝑓  𝑖 = 𝑛                   

0   ,                                           𝑖𝑓  𝑖 = 𝑛 + 1         

 

Proof. Let 𝐵(3, 𝑛) be a triangular book graph with 𝑛 + 2 vertices. Let 𝑉(𝐵(3, 𝑛)) = 𝑋 ∪ 𝑌, 

where  𝑋 = {𝑥𝑖/𝑖 = 1,2} and 𝑌 = {𝑦𝑖/1 ≤ 𝑖 ≤ 𝑛} 

When 𝑖 = 1, 
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 {𝑥1} and {𝑥2} are  the only certified dominating sets. Therefore 𝑑𝑐𝑒𝑟(𝐵(3, 𝑛),1) = 2 

When 2 ≤ 𝑖 ≤ 𝑛 − 1 and 𝑖 = 𝑛 + 2, 

 for the certified dominating set, we need to select all vertices from 𝑋 and  𝑖 − 2 vertices 

from  𝑌. This means there are ( 𝑛
𝑖−2
)sets. 

When 𝑖 = 𝑛, 

 for the certified dominating set, we need to select all vertices from 𝑋 and  𝑖 − 2 vertices 

from  𝑌. In addition to that  𝑌 is also a certified dominating set.  This means there are ( 𝑛
𝑖−2
) +

1sets 

When 𝑖 = 𝑛 + 1, 

 by Lemma 2.2, 𝑑𝑐𝑒𝑟(𝐵(3, 𝑛), 𝑛 + 1) = 0 

Lemma 2.4. 

(i) 𝑑𝑐𝑒𝑟(𝐵(3, 𝑛), 𝑖) = 𝑑𝑐𝑒𝑟(𝐵(3, 𝑛), 𝑛 − 𝑖 + 4), where 𝑛 ≥ 7 and 𝑖 = 2, 𝑛 + 2, 5 to 𝑛 − 1 

(ii) For all  𝑛 ≥ 5, 

𝑑𝑐𝑒𝑟(𝐵(3, 𝑛), 𝑖)

= {

𝑑𝑐𝑒𝑟(𝐵(3, 𝑛 − 1), 𝑖 − 1) + 𝑑𝑐𝑒𝑟(𝐵(3, 𝑛 − 1), 𝑖)            𝑖𝑓 3 ≤ 𝑖 ≤ 𝑛 − 2

𝑑𝑐𝑒𝑟(𝐵(3, 𝑛 − 1), 𝑖 − 1) + 𝑑𝑐𝑒𝑟(𝐵(3, 𝑛 − 1), 𝑖) − 1        𝑖𝑓    𝑖 = 𝑛 − 1          

𝑑𝑐𝑒𝑟(𝐵(3, 𝑛 − 1), 𝑖 − 1) + (𝑛 − 1)                            𝑖𝑓     𝑖 = 𝑛      

 

Proof. 

(i) 𝑑𝑐𝑒𝑟(𝐵(3, 𝑛), 𝑖) = ( 𝑛
𝑖−2
)  (by Lemma 2.3) 

      = ( 𝑛
𝑛−𝑖+2

)  (𝑛𝐶𝑟 = 𝑛𝐶𝑛−𝑟) 

      = 𝑑𝑐𝑒𝑟(𝐵(3, 𝑛), 𝑛 − 𝑖 + 4)  

(ii) When 3 ≤ 𝑖 ≤ 𝑛 − 2, 

𝑑𝑐𝑒𝑟(𝐵(3, 𝑛 − 1), 𝑖) = ( 𝑛
𝑖−2
)   (by Lemma 2.3) 

                                 = (𝑛−1
𝑖−3
) + (𝑛−1

𝑖−2
) ((𝑛

𝑟
) = (𝑛−1

𝑟
) + (𝑛−1

𝑟−1
)) 

                                 = 𝑑𝑐𝑒𝑟(𝐵(3, 𝑛 − 1), 𝑖 − 1) + 𝑑𝑐𝑒𝑟(𝐵(3, 𝑛 − 1), 𝑖)  
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When 𝑖 = 𝑛 − 1, 

𝑑𝑐𝑒𝑟(𝐵𝑡𝑛, 𝑛 − 1)   = (
𝑛
𝑛−3

)    

      = (𝑛−1
𝑛−4

) + {(𝑛−1
𝑛−3

) + 1} − 1   

      = 𝑑𝑐𝑒𝑟(𝐵(3, 𝑛 − 1), 𝑛 − 2) + 𝑑𝑐𝑒𝑟(𝐵(3, 𝑛 − 1), 𝑛 − 1) − 1  

When 𝑖 = 𝑛, 

𝑑𝑐𝑒𝑟(𝐵𝑡𝑛, 𝑛) = ( 𝑛
𝑛−2

) + 1    

                      = (𝑛−1
𝑛−2

) + {(𝑛−1
𝑛−3

) + 1}   

                      = 𝑑𝑐𝑒𝑟(𝐵(3, 𝑛 − 1), 𝑛 − 1) + (𝑛 − 1)  

Theorem 2.5. For the triangular book graph 𝐵(3, 𝑛), 𝐷𝑐𝑒𝑟(𝐵(3, 𝑛), 𝑥) = 𝑥2[(1 + 𝑥)𝑛 −

𝑛𝑥𝑛−1] + (𝑥𝑛 + 2𝑥), for all 𝑛. 

Proof.  

𝐷𝑐𝑒𝑟(𝐵(3, 𝑛), 𝑥) = 𝑑𝑐𝑒𝑟(𝐵(3, 𝑛),1)𝑥 + 𝑑𝑐𝑒𝑟(𝐵(3, 𝑛),2)𝑥
2 +⋯+ 𝑑𝑐𝑒𝑟(𝐵(3, 𝑛), 𝑛 + 2) 𝑥

𝑛+2 

                 = 2𝑥 + (𝑛
0
)𝑥2 + (𝑛

1
)𝑥3 +⋯+ {( 𝑛

𝑛−2
) + 1}𝑥𝑛 + 0 + (𝑛

𝑛
)𝑥𝑛+2 

      = 2𝑥 + 𝑥2{∑ (𝑛
𝑟
)𝑛

𝑟=0 𝑥𝑟 − ( 𝑛
𝑛−1

)𝑥𝑛−1} + 𝑥𝑛 

      = 𝑥2[(1 + 𝑥)𝑛 − 𝑛𝑥𝑛−1] + (𝑥𝑛 + 2𝑥) 

Remark 2.6. Sum of co-efficients of a certified dominating polynomial of the triangular book 

graph is 2𝑛 − (𝑛 − 3), for all 𝑛 ≥ 3. 

n/i 1 2 3 4 5 6 7 8 9 10 11 12 

1 3 0 1          

2 2 2 0 1         

3 2 1 4 0 1        

4 2 1 4 7 0 1       

5 2 1 5 10 11 0 1      
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6 2 1 6 15 20 16 0 1     

7 2 1 7 21 35 35 22 0 1    

8 2 1 8 28 56 70 56 29 0 1   

9 2 1 9 36 84 126 126 84 37 0 1  

10 2 1 10 45 120 210 252 210 120 46 0 1 

 

Table 1: 𝑑𝑐𝑒𝑟(𝐵(3, 𝑛), 𝑖), the number of certified dominating sets of 𝐵𝑡𝑛 with cardinality 𝑖. 

3. Conclusion 

In this paper, we have derived the important relation of  𝑑𝑐𝑒𝑟(𝐵(3, 𝑛), 𝑖). Using this relation 

we have to found out the certified domination polynomial of the triangular book graph 𝐵(3, 𝑛). 
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Abstract 

Assignment model comes under the class of linear programming model, which looks 

alike with the transportation model with an objective function of minimizing the time or 

cost of manufacturing the products by allocating one job to one machine or one machine to 

one job or one destination to one origin or one origin to one destination only. Basically 

assignment model is a minimization model. In this paper to introduce a new approach to 

assignment problem namely an approach to assignment using play fair cipher method and 

the result is verified using PYTHON. 

Keywords: Assignment problem, Hungarian method, Cost matrix, Optimization, 

Cryptography, Play fair cipher, Encryption. 

2020 Mathematics Subject Classification (AMS): 90C05 

1. Introduction 
 

  The assignment problem is a special structure of transportation problem, in which 

number of jobs (tasks) is equal to number of persons (facilities). Thus the objective of the 

problem is how the assignment should be made to archieved allocation. In the assignment 

model worker represent source and jobs represent destination. The supply amount at each 

source exactly 1. For example if 𝑛 = 3 person can assigned to 3 jobs. Then the possible 

ways is 3!=6. These allocation will take large time. There are many methods to develop 

such problem. Hungarian is one of them [1, 3]. 

Cryptography is the study of mathematical techniques related to aspects of information 

security such as confidentiality, data integrity, entity authentication, and data origin 

authentication. In this, play fair cipher is a classic cryptographic method developed in 1854 by 

Charles Wheatstone [9]. It is a systematic encryption technique that encrypts text using a 5x5 

matrix of letters based on the key, offering a secure and systematic approach to data 

mailto:pmmahamohan@gmail.com
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confidentiality. This paper explores the intersection of these two areas by addressing the 

assignment problem using the fair play cipher-based method. 

2. Hungarian method for solving assignment problem: 

2.1 Numerical example 

Three men are available to do three different jobs. From past records, the time (in hours), that 

each man takes to do each jobs is known and is given in the following table. 

 
JOB/MAN A B C 

1 8 7 6 

2 5 7 8 

3 6 8 7 

Solution: 

Step 1: Subtract the least element from every column of each row. 

 
JOB/MAN A B C 

1 2 1 0 

2 0 2 3 

3 0 2 1 

 

Step 2: Subtract the least element from every column of each column. 

 
JOB/MAN A B C 

1 2 0 0 

2 0 1 3 

3 0 1 1 

 
Step 3: Assigning the zeros to the matrix in regular manner, the matrix is reduced. Since 

the row 3 and column 3 has no assignment, we proceed with the minimal number of lines 

being drawn. 
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JOB/MAN A B C 

1 2 (0) 0 

2 (0) 1 3 

3 0 1 1 

 
Step 4: The least number that do not contain lines is 1. Subtracting the number 1 from 

elements that do not contain line and adding to intersection of lines, We make the zero 

assignment. Hence the optimal solution is obtained.  

 

JOB/MAN A B C 

1 2 (0) 0 

2 (0) 0 2 

3 0 0 (0) 

The obtained assignment is given as 1 → 𝐵, 2 → 𝐴, 3 → 𝐶  

Minimal assignment = 7+5+7= 19. 

3. Approach to assignment problem using play fair cipher 

The new algorithm is as follows: 

1. Subtract the smallest element of each row from every element of the 

correspondingrow. 

2. Subtract the smallest element of each column from every element of the 

corresponding column. 

3. Consider the location of the zero at each row. If there is no zero in any of the row, 

then subtract the least number from the particular row. Now consider the number 

next to zero in each row and each column. And consider the least number from 

the each row and each column. Here rows and columns are the two conditions. 

4. Subtract the least element in the first row and first column and it forms the 

matrix.Then again consider the least element from the second row and second 

column fromthe obtained matrix. 

5. Repeat the process for all rows and columns that we have taken. 
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6. Now we assign the zeros. If there is no assignment , then we proceed the minimal 

line condition of the assignment problem. 

7. Now we obtain the encrypted optimal solution. 

8. Here now we use the keyword to decrypt the optimal solution that we obtained 

by assignment method. The keyword varies for each problem according to 

obtained optimal solution. 

3.1  Numerical Problem 
 

Three men are available to do three different jobs. From past records, the time (in hour) 

that each man takes to do each job is known and is given in the following table. 

 
JOB/MAN A B C 

1 8 7 6 

2 5 7 8 

3 6 8 7 

Solution:  

Step 1: Subtract the least element row each column of every element. 

 
JOB/MAN A B C 

1 2 0 0 

2 0 1 3 

3 0 1 1 

 

Step 2: Subtract the least element from each column of every element. 

 
JOB/MAN A B C 

1 2 0 0 

2 0 1 3 

3 0 1 1 
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Step 3: Now we consider the numbers next to zeros in each row and column. Here row and 

column are the two conditions. 

ROW COLUMN 

 
1→ 0,2 A→0,2 

 
2→1 B→1 

 
3→1 C→3 

 
Step 4: Now we consider least number in the first row and the first column. Here the least 

element is 0, subtract the number in first row and first column 

 
JOB/MAN A B C 

1 2 0 0 

2 0 1 3 

3 0 1 1 

 

Step 5: Consider the least number in second row and second column. Here the least number 

is 1. Subtract the number in second row and second column. Repeat the same process for 

the third row and column. The process takes upto the number of columns and the row that 

we have taken. 

 
JOB/MAN A B C 

1 2 1 0 

2 1 0 2 

3 0 0 1 

 

 
JOB/MAN A B C 

1 2 1 1 

2 1 0 1 
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3 1 1 0 

 

Step 6: Since the first row does not have any zeros, subtract the least number from all other 

elements in the row. Assign zeros to the matrix. 

 
JOB/MAN A B C 

1 1 0 (0) 

2 1 (0) 1 

3 1 1 0 

 
Step 7: Since the third row does not have the assignment, we draw minimal number of 

lines. Then the encrypted optimal solution is obtained. The encrypted optimal solution is 

given as 1→C, 2→B, 3→A 

 
JOB/MAN A B C 

1 0 0 (0) 

2 1 (0) 2 

3 (0) 0 0 

 
The encrypted optimal solution is given as 1→C, 2→B, 3→A 

Minimal solution for encrypted problem = 6+7+6 = 19 

Here the encrypted keyword is taken as 2n. The value of n is taken as number that gets 

repeated maximum times in the final assigning step. 

Here there is no repeatation, the n value is zero. Hence by decrypting the optimal value is 5. 

4. Result verification by Python 

import numpy as np 

from scipy.optimize import linear_sum_assignment 

#Define the cost matrix  

cost_matrix = np.array ([ 

[8, 7, 6], 

[5, 7, 8], 

[6, 8, 7], 
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]) 

 # Use the Hungarian algorithm to solve the assignment problem 

row_indices,col_indices=linear_sum_assignment(cost_matrix) 

optimal_assignment = list(zip(row_indices, col_indices)) 

minimum_cost = cost_matrix[row_indices, col_indices].sum() 

# Output the results 

print("Optimal Assignment(Job to Machine):",optimal_assignment)  

print("Minimum Total Cost:", minimum_cost) 

 
 

5. Conclusion 
 

In this paper, the use of play fair cipher method in the assignment has provided 

valuable insights into the application of the polygraphic encryption techniques. By 

employing a 5x5 matrix for digraph substitution, the play fair cipher enhances  the security 

of the plaintext beyond basic substitution ciphers, offering a more complex approach of 

encryption. Throughout the assignment, the process of constructing the matrix, and 

applying cipher encryption and decryption is explored in detailed. This assignment has 

helped reinforce the importance of cryptographic methods in information security and play 

fair cipher provides a valuable educational tool for learning the fundamentals of encryption 

and cryptanalysis. 
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Abstract 

            Graph theory is one of the approaches used to secure data protection and message 

transmission, which is one of the most crucial methods used in cryptography. Many techniques 

are available to encrypt and decrypt the info[13]. Cryptography is especially used to make the 

text unintelligible and non-readable so that the opponents cannot understand the meaning of 

the text. Cryptography provides privacy and security for the key information by hiding it. It is 

done through mathematical technique. This paper provides the concept of secure 

communication by using graph theory in cryptography. 

Keywords: Cryptography, Substitution, Adjacent Matrix, Data Encryption. 
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1. Introduction 

             Cryptography is the study of techniques to secure communication by making it 

unreadable to unauthorized parties. It deals with protecting sensitive information from hackers 

and ensuring the privacy, integrity, and authenticity of data. The main goal of cryptography is 

to enable secure data transmission over insecure channels. This is achieved through encryption, 

which converts plaintext (readable data) into ciphertext (unreadable data). Only authorized 

parties can decrypt the ciphertext to retrieve the original message.  

Graph theory, a branch of mathematics, plays a crucial role in cryptography. It involves 

the study of graphs, which are used to model relationships between objects. Graph theory has 

been successfully applied to develop stronger encryption algorithms that are resistant to 

hacking. This paper presents a new cryptosystem that combines cryptography and graph theory 

principles to provide high security and efficient data processing. 

mailto:pmmahamohan@gmail.com
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2. Preliminaries 

Plain text- Plain text, also known as cleartext or plaintext, refers to unencrypted and 

human-readable text data. It is text that has not been encrypted or encoded in any way, making 

it easily readable and understandable by anyone who has access to it. 

Cipher text- Cipher text is encrypted text that has been transformed from plain text 

using an encryption algorithm and a secret key. The resulting cipher text is unreadable and 

unintelligible to anyone without the corresponding decryption key or algorithm.  

Key- In the context of cryptography and encryption, a key is a unique string of 

characters, numbers, or symbols used to encrypt and decrypt data. Keys are used to control the 

encryption and decryption processes, ensuring that only authorized parties can  access the 

encrypted data.  

Encipher- Encipher, also known as encrypt, is the process of converting plaintext 

(readable data) into ciphertext (unreadable data) using an encryption algorithm and a secret 

key.  

Decipher- Decipher, also known as decrypt, is the process of converting ciphertext 

(unreadable data) back using a decryption algorithm and a secret key.  

Encryption and Decryption- The process of encoding a message using some key or 

method so that it is the meaning is not easily understood. The reverse process of the ciphertext 

conversion encryption method into plain text is decryption. 

Brute Force Attack- A brute force attack is a type of cyber attack where an attacker 

attempts to guess or crack a password, encryption key, or other type of secret information by 

systematically trying all possible combinations. 

Graph- A graph is a non-linear data structure consisting of nodes or vertices connected 

by edges. Each nodes represents an entity, and the edges represent the relationships or 

connections between these entities.  

Cycle- A cycle is a path in a graph that starts and ends at the same node, and passes 

through at least one edge. In other words, a cycle is a closed path in a graph.  

2.1 Adjacency matrix 

 This is a matrix representation of the graph. It is used in computer processing. In graph 
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theory and computer science, an adjacency matrix is a square matrix used to represent a finite 

graph. The matrix elements indicate whether a pair of vertices in the graph are adjacent or not. 

3. Proposed Algorithm 

 Use the proposed algorithm to encrypt and decrypt data. (Send key2 in the form of 

graph) 

3.1 Encryption Algorithm 

 This algorithm is used to convert plain text to cipher text. 

 Input Message: Receive a message from the user to be encrypted. 

 Shift Characters: Use a secret key (Key 1) to shift each character in the message. 

 Encrypt Message: Replace each letter with the shifted character based on Key 1. 

 Matrix Formation: Arrange the encrypted message in a matrix format, with 

dimensions (n-1) x n, where n is the number of digits in Key 2. 

 Column Permutation: Read the matrix row by row and rearrange the columns 

according to a predetermined permutation. 

 Re-Matrix Formation: Rearrange the permuted columns into a new matrix. 

 Cipher Text Generation: Read the final matrix row by row to obtain the encrypted 

cipher text. 

3.2 Decryption Algorithm 

This algorithm is used to convert cipher text to plain text. 

 Cipher Text Input: Receive the encrypted cipher text. 

 Matrix Formation: Use Key 2 to arrange the cipher text in a matrix format, with 

dimensions (n-1) x n, where n is the number of digits in Key 2. 

 Column Rearrangement: Rearrange the matrix columns using Key 2. 

 Row-by-Row Read: Read the rearranged matrix row by row to obtain the intermediate 

decrypted text. 

 Re-Matrix Formation: Rearrange the intermediate decrypted text in a matrix format, 

column by column, using Key 2. 

 Decryption with Key 1: Use Key 1 to decrypt the rearranged matrix, reversing the initial 

encryption process. 

 Plain Text Recovery: Obtain the original plain text after decryption. 
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3.3 Example: Encryption 

First take a message or plain text from user which we have to encrypt. For ex. TEACHERS 

INSPIRE YOUNG MINDS DAILY. 

 Use key1 to shift character. 

 Suppose key 1 = +4 

 Encrypt the message by replacing each letter by decided key 1. 

 YJFHMJWXNSXUNWJDTZSLRNSLRNSIXIFNQD 

 Write encrypted message in the form of matrix(where (n-1) x n where n = number of 

digits in key2) which is decided by sender and receiver. 

 Key2 is shared in the form of adjacent graph, sender and receiver have to calculate key2 

from the given graph 

 

 

                                                          V1 

                                   V2                                                                      V6 

 

                                                                                                  V5 

                            V3                                                                

                                                         

                                                        V4 

 

                                       Fig.1: Graph for the calculation for key2 

Convert the above graph into adjacent matrix which is used as key 2. 
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                                         Table 1: Adjacent matrix of key2 

 V1 V2 V3 V4 V5 V6 

V1 1 1 1 1 1 1 

V2 1 1 1 1 0 0 

V3 1 1 0 1 0 0 

V4 1 1 1 1 1 0 

V5 1 0 0 1 0 0 

V6 1 0 0 0 0 0 

 

Now the key2 is 6 4 3 5 2 1 

Table 2(a): Message creation from key2 

6 4 3 5 2 1 

Y J F H M J 

W X N S X U 

N W J D T Z 

S L R N S I 

X I F N Q D 

 

Read off the message row by row and permute the order of column 

JUZIDMXTSQFNJRFJXWLIHSDNNYWNSX. 

The output of step 5, write in matrix form again and read row by row. 
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Table 2(b): Message creation from key2 

6 4 3 5 2 1 

J U Z I D M 

X T S Q F N 

J R F J X W 

L I H S D N 

N Y W N S X 

 

After reading row by row, we get our cipher text.  

MNWNXDFXDSZSFHWUTRIYIQJSNJXJLN(cipher text to be sent) 

3.4 Decryption 

It takes the cipher text and use key2 to write cipher text in the form of matrix (where (n-1) x 

n, where n = number of digits in key2) which is decided by sender and receiver. 

Received cipher text is: - MNWNXDFXDSZSFHWUTRIYIQJSNJXJLN 

Arrange the cipher in matrix form column by column using key2. 

                                         Table 3(a): Cipher text in matrix form 

6 4 3 5 2 1 

J U Z I D M 

X T S Q F N 

J R F J X W 

L I H S D N 

N Y W N S X 

Read message row by row. JUZIDMXTSQFNJRFJXWLIHSDNNYWNSX. 

Again, arrange the cipher of step 3 in matrix form column by column using key 2 
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                                         Table 3(b): Cipher text in matrix form 

6 4 3 5 2 1 

Y J F H M J 

W X N S X U 

N W J D T Z 

S L R N S I 

X I F N Q D 

 

Received cipher text is: - YJFHMJWXNSXUNWJDTZSLRNSLRNSIXIFNQD 

Now decrypt the message with key1. Key1= (-4) 

Finally, we get plain text. 

Result: Teachers inspire young minds daily. 

4. Conclusion 

            The Double Transposition Column method, which leverages graph theory as the key, 

offers significant advantages over basic algorithms. By incorporating a graph to generate the 

key, cryptanalysis becomes more complex, enhancing security and making the plaintext output 

nearly impossible to crack. This approach eliminates the possibility of brute-force attacks, 

thereby overcoming the limitations of the traditional Caesar cipher. Furthermore, the algorithm 

is adaptable and can easily be integrated into new applications. It supports the creation of 

multiple keys, making it ideal for secure applications like online banking, e-commerce, and 

electronic voting. However, due to the use of graph theory, the implementation may require 

additional memory, making the simple Caesar cipher more challenging to implement. 
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Abstract 

The term “Domination” refers to the act of exerting control or influence over someone 

or something. In graph theory, the concept of domination has spread all over the world in 

various fields and has a special impact in maximizing the efficiency with minimum input. 

Along with distance parameter, the concept of domination has been improvised in many aspects 

by providing solutions to unsolved real – life problems. Middle graphs, though primarily a 

theoretical construction in graph theory, have several uses and applications in various areas of 

research and practical problem-solving. It provides a direct way to model these edge-to-edge 

relationships. This can be useful in problems related to symmetry breaking such as 

crystallography. In this paper, we calculate the signal domination number of middle graph of 

some common graph families. 

Keywords: Signal number, signal domination number, middle graph. 

2020 Mathematics Subject Classification (AMS): 05C12, 05C69, 05C76 

1. Introduction 

In the domains of mathematics and computer science, graph theory is the study of graphs, 

which concerns the relationships among vertices and edges. A graph is a pictorial 

representation of a set of objects where some pairs of objects are connected by links. Formally, 

a graph 𝐺 is a non-empty finite undirected graph with no multiple edges or loops. It is widely 

used in designing circuit connections, representing data organization, networks of 

communication, flow of computation, molecular and chemical structures, as well as in 

algorithms such as Kruskal’s, Prim’s, and Dijkstra’s, among many other branches of biological 

and applied sciences. For a better understanding on graphs, refer [4]. 

The study of domination in graphs originated from the 8 × 8 chessboard, where the 

minimum number of queens required covering all 64 squares was investigated. This problem 

of dominating the squares of a chessboard can be formulated as the problem of dominating the 

vertices of a graph. The theory of domination has a wide range of applications in computer 

mailto:jachinsamuel@gmail.com
mailto:angelinkavitha.s@gmail.com
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networking, communication networks, and also in the fields of transportation. For a detailed 

study, refer [8]. 

Throughout this paper, we consider 𝐺 to be a connected graph. A subset 𝐷 of vertices 

in a graph 𝐺 is a dominating set if each vertex of 𝐺 that is not in 𝐷 is adjacent to at least one 

vertex of 𝐷. The size of the dominating set with minimum number of elements among all 

dominating sets in 𝐺 is called the domination number of 𝐺 and is denoted by 𝛾(𝐺). For a 

vertex 𝑢 ∈ 𝑉(𝐺), the open neighborhood 𝑁(𝑢) is the set of all vertices that are adjacent to 𝑢, 

and 𝑁[𝑢]  =  𝑁(𝑢)  ∪ {𝑢} is the closed neighborhood of 𝑢. The degree of a vertex 𝑣 is defined 

by  𝑑𝑒𝑔(𝑣)  =  |𝑁(𝑣)|. A 𝑥 − 𝑦 path of length 𝑑(𝑥, 𝑦) in a graph is called 𝑥 − 𝑦 geodesic. A 

vertex 𝑣 is said to be an internal vertex of 𝑥 − 𝑦  path if it lies in the 𝑥 − 𝑦 path. The shortest 

distance between any two vertices u and v in a graph G is known as geodesic distance. For a 

detailed study on distances in graphs, refer [3].  

In the year 2010, Kathiresan introduced a distance parameter called signal distance refer 

to [6]. Through research on signal distance, Sethu Ramalingam and Balamurugan introduced 

the concept of the signal number [7]. Furthermore, Balamurugan and Antony Doss worked on 

the signal number, and the signal chain was constructed [2]. In this paper, we estimate the 

values of signal domination number of middle graphs of some common families of graphs.  

2. Preliminaries 

Definition 2.1. [6] The signal distance between a pair of vertices u and v in a graph 𝐺 is defined 

as min{𝑑(𝑢, 𝑣) + (deg(𝑢) − 1) + (deg(𝑣) − 1) + ∑ (deg(𝑤) − 2)𝑤∈𝑢−𝑣 }, where 𝑑(𝑢, 𝑣) is 

the length of the u – v path and w is the internal vertices of u – v path The signal path between 

u and v is called as the geosig path. 

Definition 2.2. [7] The subset 𝑆 ⊆ 𝑉 is called the signal set of 𝐺 if every vertex 𝑢 in 𝐺 lies in 

a geosig path between the vertices in 𝑆 and the minimum cardinality of the set 𝑆 is called as 

the signal number of a graph. It is denoted by 𝑠𝑛(𝐺). 

Definition 2.3. [5] A set 𝑆 ⊆ 𝑉 is called a signal dominating set of a graph 𝐺 if 𝑆 is a 

dominating set of 𝐺 as well as a signal set of 𝐺. The minimum cardinality of the signal 

dominating set is called the signal domination number and it is denoted by 𝛾𝑠𝑛(𝐺).  

Definition 2.4. [1] The middle graph 𝑀(𝐺) of a graph 𝐺 is the graph whose vertex set is 

𝑉(𝐺) ∪  𝐸(𝐺) and two vertices 𝑥, 𝑦 in the vertex set of 𝑀(𝐺) are adjacent in 𝑀(𝐺) if one of 

the following conditions holds. 

1. 𝑥, 𝑦 ∈  𝐸(𝐺) and 𝑥, 𝑦 are adjacent in 𝐺. 

2. 𝑥 ∈  𝑉(𝐺), 𝑦 ∈  𝐸(𝐺) and 𝑥, 𝑦 are incident in 𝐺. 
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3. Main Results 

Proposition 3.1. For a path 𝑃𝑛, 𝛾𝑠𝑛(𝑀(𝑃𝑛)) = 𝑛. 

Proof. Let 𝑢1, 𝑢2, … , 𝑢𝑛 be the vertices of a path graph 𝑃𝑛 whose edge set is {𝑣1, 𝑣2, … , 𝑣𝑛−1}. 

By the definition of middle graph, 𝑃𝑛 is transformed into 𝑀(𝑃𝑛), where 

(𝑢𝑖𝑣𝑖), (𝑣𝑗𝑣𝑗+1), (𝑢𝑖+1𝑣𝑖) with 1 ≤ 𝑖 ≤ 𝑛 − 1 and 1 ≤ 𝑗 ≤ 𝑛 − 2 forms and edge set in 

𝑀(𝑃𝑛) and |𝑉(𝑀(𝑃𝑛))| = 2𝑛 − 1. Since 𝑢1 and 𝑢𝑛 are pendant vertices, 2 ≤ 𝑠𝑛(𝑀(𝑃𝑛)). 

Since the signal distance between the pendant vertices is 3𝑛 − 4, the 𝑢1 − 𝑢𝑛 geosig path 

covers 𝑣𝑗  (1 ≤ 𝑗 ≤ 𝑛 − 1) while 𝑢𝑖  (2 ≤ 𝑖 ≤ 𝑛 − 1) are not covered by the geosig path, 

Hence the set {𝑢𝑖 / 1 ≤ 𝑖 ≤ 𝑛} forms a signal basis of 𝑀(𝑃𝑛). Furthermore, the signal basis 

set dominates every vertices of 𝑀(𝑃𝑛). So  𝛾𝑠𝑛(𝑀(𝑃𝑛)) = 𝑛.                                                                                                                            

Proposition 3.2. For a cycle 𝐶𝑛, with 𝑛 ≥ 3, we have 𝛾𝑠𝑛(𝑀(𝐶𝑛)) = 𝑛. 

Proof. Let {𝑥1, 𝑥2, … , 𝑥𝑛} be the vertex set of a cycle 𝐶𝑛 with the corresponding edge set 

{𝑦1, 𝑦2, … , 𝑦𝑛}. According to the definition of middle graph, 𝐶𝑛 is transformed into 𝑀(𝐶𝑛) 

whose vertex set is 𝑉(𝑀(𝐶𝑛)) =  {𝑥𝑖, 𝑦𝑖  / 1 ≤ 𝑖 ≤ 𝑛} with |𝑉(𝑀(𝐶𝑛))| = 2𝑛 and the edge set 

is formed in such a way that 𝑦1, 𝑦2, … , 𝑦𝑛 induces a cycle of length 𝑛 and 𝑁(𝑦𝑖) =

 {𝑦𝑖+1, 𝑦𝑖−1, 𝑥𝑖, 𝑥𝑖+1} for 1 < 𝑖 < 𝑛 with 𝐸(𝑀(𝐶𝑛)) =  3𝑛. Since 𝑥𝑖 and 𝑥𝑗 are not adjacent in 

𝑀(𝐶𝑛) for every 𝑖 ≠ 𝑗, the geosig path formed by every distinct pair of 𝑥𝑖 and 𝑥𝑗 can cover 

𝑉(𝑀(𝐶𝑛)) and so 𝑠𝑛(𝑀(𝐶𝑛)) ≤ 𝑛. Suppose 𝑠𝑛(𝑀(𝐶𝑛)) = 𝑛 − 1, then there exist a vertex 𝑥𝑘 

in 𝑀(𝐶𝑛) such that 𝑥𝑘 is not in 𝑠𝑛(𝑀(𝐶𝑛)). However 𝑥𝑖−1 − 𝑥𝑖+1 geosig path only covers 𝑦𝑖−1 

and 𝑦𝑖 leaving 𝑥𝑖 behind which leads to a contradiction. So 𝑠𝑛(𝑀(𝐶𝑛)) = 𝑛. In addition, the 

𝑠𝑛- set of 𝑀(𝐶𝑛) dominates every vertices of 𝑀(𝐶𝑛). Therefore 𝛾𝑠𝑛(𝑀(𝐶𝑛)) = 𝑛.  

Proposition 3.3. For a complete graph 𝐾𝑛, 𝛾𝑠𝑛(𝑀(𝐾𝑛)) =  𝑛. 

Proof. Let 𝐾𝑛 be a complete graph of order 𝑛 whose vertex set is {𝑢1, 𝑢2, … , 𝑢𝑛} and the edge 

set is {𝑒1, 𝑒2, … , 𝑒𝑛(𝑛−1)
2

}. By the definition of middle graph, |𝑉(𝑀(𝐾𝑛))| =
𝑛(𝑛+1)

2
. Since it is a 

complete graph, the signal distance between 𝑢𝑖 and 𝑢𝑗  with 𝑖 ≠ 𝑗 in 𝑀(𝐾𝑛) is 4𝑛 − 6 and 

𝑑(𝑢𝑖 , 𝑢𝑗) = 2. Clearly the geosig path formed by every pair of 𝑢𝑖’s covers every vertices of 

𝑀(𝐾𝑛) and forms a signal basis of 𝑀(𝐾𝑛). Therefore, 𝑠𝑛(𝑀(𝐾𝑛)) = 𝑛. Moreover, the set 

{𝑢1, 𝑢2, … , 𝑢𝑛} dominates every vertices of 𝑀(𝐾𝑛). So 𝛾𝑠𝑛(𝑀(𝐾𝑛)) = 𝑛.                                     

Corollary 3.4. 𝛾𝑠𝑛(𝑀(𝐾𝑛)) = 𝛾𝑠𝑛(𝐾𝑛). 

The proof is obvious. 
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Proposition 3.5. For a star graph 𝐾1,𝑛, 𝛾𝑠𝑛 (𝑀(𝐾1,𝑛)) = 𝑛 + 1. 

Proof. Let 𝐾1,𝑛 be a star graph of order 𝑛 + 1 whose vertices are  𝑥, 𝑥1, 𝑥2, … , 𝑥𝑛 where, 𝑥 is 

the central vertex and let 𝑒𝑖 = 𝑥𝑥𝑖  (1 ≤ 𝑖 ≤ 𝑛) be the edges of 𝐾1,𝑛. Upon transforming 𝐾1,𝑛 

to obtain its middle graph 𝑀(𝐾1,𝑛), we get |𝑉(𝑀(𝐾1,𝑛))| = 2𝑛 + 1 and 𝑒𝑖𝑒𝑗 becomes an edge 

in 𝑀(𝐾1,𝑛) where 𝑖 and 𝑗 are distinct. It is obvious that all the pendant vertices are contained 

in the signal set and so 𝑠𝑛 (𝑀(𝐾1,𝑛)) ≥ 𝑛. Since 𝑒𝑖𝑒𝑗 (𝑖 ≠ 𝑗) is an edge in 𝑀(𝐾1,𝑛), the geosig 

path formed by any pair of 𝑥𝑖’s does not cover 𝑥. So we conclude that 𝑠𝑛 (𝑀(𝐾1,𝑛)) = 𝑛 + 1. 

Furthermore, the set {𝑥1, 𝑥2, … , 𝑥𝑛} forms a dominating set of 𝑀(𝐾1,𝑛). Hence 

𝛾𝑠𝑛 (𝑀(𝐾1,𝑛)) = 𝑛 + 1.                                                                                                                                                

Corollary 3.6.  𝛾
𝑠𝑛
(𝑀(𝐾1,𝑛)) = 𝛾

𝑠𝑛
(𝐾1,𝑛) + 𝛾(𝐾1,𝑛). 

The proof is obvious. 

Theorem 3.7. For any connected graph 𝐺, 𝛾𝑠𝑛(𝐺) ≤ 𝛾𝑠𝑛(𝑀(𝐺)). 

Proof. Let 𝐺 be a connected graph of order 𝑛 and size 𝑚. Let 𝑆1 and 𝑆2 be the minimum signal 

dominating sets of 𝐺 and 𝑀(𝐺) respectively. Clearly, 𝑆1 ≤ 𝑛. Since 𝑀(𝐺) contains 𝑛 +𝑚 

vertices, 𝑆2 ≤ 𝑛 +𝑚. If 𝑆1 = 𝑛, then the result is obvious. Suppose not, let 𝑆1 = 𝑛 − 𝑎 where 

𝑎 is any positive integer with 𝑎 < 𝑛. Then 𝑆2 ≤ 𝑆1 + 𝑎 +𝑚. Since 𝑎 +𝑚 is positive, we 

conclude that 𝛾𝑠𝑛(𝐺) ≤ 𝛾𝑠𝑛(𝑀(𝐺)).                  

4. Conclusion 

Continued research into this area will likely unveil more sophisticated methods and 

applications, advancing our knowledge of graph theory and its practical implications. Since 

middle graph is constructed based on edge to edge relation, we can have a better understanding 

regarding the relationship between vertices and the potential for optimization in network 

design, resource allocation, and other applied fields. Moving forward, further research into the 

nuances of signal domination in middle graphs will deepen our understanding of their structure, 

ultimately advancing both theoretical frameworks and practical strategies for solving complex 

problems in diverse domains.                                                                                               
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Abstract 

Meteorological forecasting is one of the most underappreciated and challenging 

operational roles of worldwide meteorological agencies. Temperature is the most important 

factor in all seasonal processes in life for humans. Several approaches for predicting 

temperature distribution have been presented using fuzzy time series data, but accuracy remains 

a serious challenge. The goal of this study is to compare the performance of several fuzzy time 

series approaches. In this work, 42 years of temperature data from the Chennai region using 

the statistical tools Mean Squared Error (MSE) and Mean Absolute Error (MAE). 

Keywords: Inverse Fuzzy Number, Forecasting, Temperature, Fuzzy Time Series. 

2020 Mathematics Subject Classification (AMS): 62M10, 62A86, 90C70. 

1. Introduction 

Song and Chissom proposed a fuzzy time series in 1993. Forecasting is anticipating 

future events, in which decision-makers examine connected facts and graphs to make the best 

judgments for the future. The model specifies the collection of inaccurate data at equally spaced 

discrete time intervals, which are then characterized as fuzzy variables. The collection of 

discrete fuzzy data constitutes a fuzzy time series, and it also specifies that chronological 

sequences of imprecise data are called time series with fuzzy data. 

  A discrete domain is a set of input values that are either a finite or countable infinite set 

of numbers. Discrete domains are used to represent signals that are not continuous functions of 
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a variable. Discrete domains can be used to represent data that is disconnected or 

separate. Discrete domains are used in probability distributions, such as Bernoulli, Poisson, 

Binomial, and Multinomial. A Fuzzy number A is a fuzzy set on the real line R, must satisfy 

the following conditions: 

i)  𝜇𝐴(𝑥0) is precewise continuous. 

ii) There exists atleast one 𝑥0 ∈ 𝑅 with 𝜇𝐴(𝑥0) = 1.   

iii) A must be normal and convex. 

Inverse fuzzy number is the inverse of fuzzy number. If A is a fuzzy number and if A * B = I, 

then B is the inverse of A, where * is any binary operator. A time series including fuzzy data 

is known as a fuzzy time series. Several fuzzy time series (FTS) models have been studied in 

the scientific literature for the past twenty years. This article proposes a forecasting model 

different from fuzzy time series forecasting approaches. Chennai district temperature statistics 

over the previous 42 years (1981–2022) demonstrate the suggested approach's forecasting 

procedure. Mean Squared Error (MSE) and Mean Absolute Error (MAE) are the two statistical 

criteria used to analyze the comparative data. 

2. Methodology 

The data used in this investigation is yearly temperature data, taken over 42 years for 

the Chennai district. 

2.1 Construction of Fuzzy Time Series Model 

Step 1: Let D be the discrete domain 

                 𝐷 = 𝐸𝑖 − 𝐸𝑖−1 

Where, 𝐸𝑖 are the historical data. 

Step 2: Compute the inverse fuzzy number 

                                    vα =
1+0.0001
1

dα
+
0.0001

dα+1

 

                                    vα =
0.0001+1+0.0001
0.0001

dα−1
+
1

dα
+
0.0001

dα+1

,1983≤ 𝛼 ≤2022 

                                        vα =
0.0001+1
0.0001

dα−1
+
1

dα
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Step 3: Compute the forecasted value using formula  

                    𝐹∝ = 𝐸∝−1 − 𝑣∝ 

Where, 

            𝐹∝, 𝐸∝−1 𝑎𝑛𝑑 𝑣∝ are forecasting data, historical data and inverse fuzzy numbers 

respectively. 

Step 4: The accuracy error of the fitted model is measured by using the following formula. 

Mean Absolute Error (MAE) = ∑
|𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒−𝐴𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑒|

𝑛

𝑛
𝑖=1  

Mean Squared Error (MSE) = ∑
(𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒−𝐴𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑒)2

𝑛

𝑛
𝑖=1  

3. Result and Discussion 

3.1 Fuzzy Time Series Model 

Step 1: The discrete domain D are calculated using formula 𝐷 = 𝐸𝑖 − 𝐸𝑖−1 

Where, 𝐸𝑖 are the historical data. 

Discrete domain  Discrete domain 

𝑑1982 = 0.17 𝑑2003 = 0.11 

𝑑1983 = 0.49 𝑑2004 = −0.74 

𝑑1984 = −0.58 𝑑2005 = 0.41 

𝑑1985 = −0.08 𝑑2006 = −0.08 

𝑑1986 = 0.49 𝑑2007 = −0.17 

𝑑1987 = 0.2 𝑑2008 = 0.02 

𝑑1988 = −0.21 𝑑2009 = 0.58 

𝑑1989 = −0.1 𝑑2010 = −0.4 

𝑑1990 = 0.13 𝑑2011 = −0.1 

𝑑1991 = 0.17 𝑑2012 = 0.25 

𝑑1992 − 0.19 𝑑2013 = −0.19 

𝑑1993 = −0.17 𝑑2014 = 0.19 

𝑑1994 = 0.07 𝑑2015 = −0.11 

𝑑1995 = −0.52 𝑑2016 = 0.24 



Proceedings of the International Conference on Algebraic Graph Theory,                                              
Graph Theory and Topology – 9th & 10th January 2025 

114 
 
ISBN: 978-93-48505-23-1 

𝑑1996 = 0.25 𝑑2017 = 0.02 

𝑑1997 = 0.59 𝑑2018 = −0.05 

𝑑1998 = 0.21 𝑑2019 = 0.29 

𝑑1999 = −0.62 𝑑2020 = −0.47 

𝑑2000 = 0.12 𝑑2021 = −0.28 

𝑑2001 = 0.33 𝑑2022 = 0.03 

𝑑2002 = −0.03 

                             

                            Table 1 Discrete Domain of Temperature 

Step 2: We have computed the inverse fuzzy numbers using above mentioned formula  

                                                    𝑣1982 =
1+0.0001
1

𝑑1982
+
0.0001

𝑑1983

  

                                              𝑣1982 =
1+0.0001
1

0.17
+
0.0001

0.49

     

                                              𝑣1982 =
1.0002

5.88255702
 

                                               𝑣1982 = 0.170011 

                                               𝑣1983 =
1.0002

0.0001

𝑑1982
+

1

𝑑1983
+
0.0001

𝑑1984

 

                                               𝑣1983 =
1.0002

0.0001

0.17
+

1

0.49
+
0.0001

−0.58

 

                                               𝑣1983 =
1.0002

2.04123215
 

                                               𝑣1983 = 0.489998 

                                                            ……… 

                                                     ……… 

                                                      ……… 

                                              𝑣2022 =
1+0.0001

0.0001

𝑑2021
+

1

𝑑2022

 

                                               𝑣2022 =
1.0002

0.0001

−0.28
+

1

0.03
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                                               𝑣2022 =
1.0002

33.3329762
 

                                               𝑣2022 = 0.030003 

Step 3: We have computed the forecasting value using the above-mentioned formula and the 

values are given in the table below 3.2. 

Year 𝐸𝑖 𝐹𝑖 Year 𝐸𝑖 𝐹𝑖 

1981 27.4       - 2002 28.12 28.11999 

1982 27.57 27.57001 2003 28.23 28.23006 

1983 28.06 28.06 2004 27.49 27.48928 

1984 27.48 27.48024 2005 27.9 27.90032 

1985 27.4 27.39998 2006 27.82 27.81999 

1986 27.89 27.89028 2007 27.63 27.62983 

1987 28.09 28.09005 2008 27.65 27.65 

1988 27.88 27.87998 2009 28.23 28.22852 

1989 27.78 27.77998 2010 27.83 27.83005 

1990 27.91 27.91003 2011 27.73 27.72998 

1991 28.08 28.08003 2012 27.98 27.98015 

1992 27.89 27.88996 2013 27.79 27.78993 

1993 27.72 27.71994 2014 27.98 27.98009 

1994 27.79 27.79002 2015 27.87 27.86887 

1995 27.27 27.2694 2016 28.11 28.10981 

1996 27.52 27.52005 2017 28.13 28.13 

1997 28.11 28.10981 2018 28.08 28.07998 

1998 28.32 28.32004 2019 28.37 28.37024 

1999 27.7 27.69937 2020 27.9 27.89991 

2000 27.82 27.82002 2021 27.62 27.6197 

2001 28.15 28.15034 2022 27.65 27.65 

                                

                                        Table 2 Observed and Estimated Value of Temperature 

Step 4: 

                                  Mean Absolute Error = 0.652543 
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                                  Mean Squared Error = 17.87524 

4. Conclusion 

This research aims to improve prediction accuracy by eliminating detected outliers from 

the dataset. In this paper, we calculated and compared the forecasted values of the Chennai 

district's temperature data using the forecasting models and fuzzy inverse numbers. The 

experimental findings indicate that the forecasting error for mean absolute error is 0.652543, 

and the mean squared error is 17.87524. 
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Abstract 

The field of graph theory is vast and evolving quickly. Duplication is the process of 

generating a new graph in graph theory by appending vertices or edges to an already existing 

graph. In this research, we study certain duplication parameters in relation to the radio contra 

harmonic mean D-distance graph, including duplication of a vertex, duplicate graph and anti-

duplication of vertex. The radio contra harmonic mean D-distance labeling process establishes 

several outcomes on the resulting graphs. 

Keywords: D-distance, D-diameter, 𝑟𝑐ℎ𝑚𝐷𝑛(𝐺), Duplication. 

2020 Mathematics Subject Classification (AMS): 05C07, 05C12, 05C78. 

1. Introduction 

 By a graph 𝐺 we mean a finite undirected simple graph. The concept of radio contra 

harmonic mean D-distance of graphs was introduced by Ashika T S and Dr. Asha S and also 

they calculated its radio contra harmonic mean D-distance number [1]. Sampathkumar E 

introduced the notation Duplication of graphs [5]. Jayasekaran C, Ashwin Shijo M introduced 

the concept Anti-duplication of a vertex in graphs and investigated some properties of the 

resultant graphs [2]. Thulukkanam K, Vijayakumar P, and Thirusangu K studied some kinds 

of duplication parameters like extended duplication of graph in the paper titled Various 

Harmonious Labeling in Some Duplicate Graphs [6].  Throughout this paper for some basic 

graphs we referred Gallian [3]. 

2. Preliminaries 

Definition 2.1. [4] Duplication of a vertex 𝑣 of graph 𝐺 produces a new graph 𝐺′ by adding a 

new vertex 𝑣′ such that 𝑁(𝑣′) = 𝑁(𝑣).  
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Definition 2.2. [5] Let 𝑉′ be a set such that 𝑉 ∩ 𝑉′ = ϕ, |𝑉| = |𝑉′| and 𝑓: 𝑉 → 𝑉′ be bijective. 

For 𝑎 ∈ 𝑉 we write 𝑓(𝑎) as 𝑎′ for convenience. Consider the graph 𝐷𝐺 on the vertex set 𝑉 ∪

𝑉′, whose edges are given as follows: In the graph 𝐺, 𝑎𝑏 is an edge if and only if both 𝑎𝑏′ and 

𝑎′𝑏 are edges in 𝐷𝐺. The graph 𝐷𝐺 is called the duplicate of 𝐺.  

Theorem 2.3. [5] For a connected graph 𝐺 

(i) 𝐷𝐺 is connected if and only if 𝐺 contains an odd cycle. 

(ii) 𝐷𝐺 = 2𝐺 iff 𝐺 has no odd cycle. 

Definition 2.4. [2] Anti duplication of a vertex 𝑣 in 𝐺 produces a new graph 𝐺′ by adding a 

new vertex 𝑣′ such that 𝑁𝐺′(𝑣
′) = [𝑁𝐺[𝑣]]

𝑐
. The graph obtained from 𝐺 by anti-duplication 

of the vertex 𝑣 is denoted by 𝐴𝐷(𝑣𝐺). 

Definition 2.5. [1] The Radio contra harmonic mean D-distance labeling of a connected graph 

𝐺 is an injective function 𝑓: 𝑉(𝐺) →  ℤ+ such that for any two distinct vertices 𝑢, 𝑣 

𝑑𝐷(𝑢, 𝑣) + ⌈
(𝑓(𝑢))

2
+(𝑓(𝑣))

2

𝑓(𝑢)+𝑓(𝑣)
⌉ ≥ 1 + 𝑑𝑖𝑎𝑚𝐷(𝐺)∀ 𝑢, 𝑣 ∈ 𝑉(𝐺)   ……………. (1) or 

 𝑑𝐷(𝑢, 𝑣) + ⌊
(𝑓(𝑢))

2
+(𝑓(𝑣))

2

𝑓(𝑢)+𝑓(𝑣)
⌋ ≥ 1 + 𝑑𝑖𝑎𝑚𝐷(𝐺) ∀ 𝑢, 𝑣 ∈ 𝑉(𝐺)   

where  𝑑𝐷(𝑢, 𝑣) denote D-distance or D-length between 𝑢 and 𝑣 of 𝐺 and 𝑑𝑖𝑎𝑚𝐷(𝐺) denote 

the D-diameter of 𝐺, then 𝐺 is a radio contra harmonic mean D-distance graph. The radio contra 

harmonic mean D-distance number of 𝑓 is represented as 𝑟𝑐ℎ𝑚𝐷𝑛(𝑓) is the highest integer 

allocated to any vertex 𝑣 ∈  𝑉(𝐺) under the mapping 𝑓. Further, the radio contra harmonic 

mean D-distance number of 𝐺 is presented as 𝑟𝑐ℎ𝑚𝐷𝑛(𝐺), which is the smallest span of 

𝑟𝑐ℎ𝑚𝐷𝑛(𝑓) taken across every radio contra harmonic mean D-distance labeling of 𝐺. If 

𝑟𝑐ℎ𝑚𝐷𝑛(𝐺) = |𝑉(𝐺)| then 𝐺 is called radio contra harmonic mean D-distance graceful graph. 

Further, if 𝑢 and 𝑣 are vertices of connected graph 𝐺, the D-length of a connected 𝑢 − 𝑣 path 

𝑠 is defined as 𝑑𝐷(𝑢, 𝑣) = 𝑚𝑖𝑛{𝑙𝐷(𝑠)},  𝑙𝐷(𝑠) =  𝑙(𝑠) +  𝑑𝑒𝑔(𝑣) +  𝑑𝑒𝑔 (𝑢) +  𝛴 𝑑𝑒𝑔(𝑤), 

where the sum runs over all intermediate vertices 𝑤 in 𝑠 of  𝐺 and 𝑑𝑖𝑎𝑚𝐷(𝐺) =

max {𝑑𝐷(𝑢, 𝑣)}.  

3. Main Results 

Theorem 3.1. Every connected graph is radio contra harmonic mean D-distance graph. 

Proof. Let 𝐺 be a connected graph. Then for every distinct vertices 𝑢 and 𝑣 there exist 𝑢 − 𝑣 

path. Therefore for every distinct pair of vertices (𝑢, 𝑣) we can obtain D-distance as 𝑑𝐷(𝑢, 𝑣) =
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𝑚𝑖𝑛{𝑙𝐷(𝑠)},  𝑙𝐷(𝑠) =  𝑙(𝑠) +  𝑑𝑒𝑔(𝑣) +  𝑑𝑒𝑔 (𝑢) +  𝛴 𝑑𝑒𝑔(𝑤), where degree of all 

intermediate vertices 𝑤 in 𝑠 of 𝐺 are added together  and 𝑑𝑖𝑎𝑚𝐷(𝐺) = max {𝑑𝐷(𝑢, 𝑣)}. Thus 

𝐺 admits radio contra harmonic mean D-distance labeling. 

Hence 𝐺 is a contra harmonic mean D-distance graph. 

Theorem 3.2. For any connected graph 𝐺 with |𝑉(𝐺)| ≥ 2 and 𝑑𝑖𝑎𝑚(𝐺) < 3 then 

𝑟𝑐ℎ𝑚𝐷𝑛(𝐺) = |𝑉(𝐺)| if any one of the following hold 

(i) 𝐺 ≅ 𝐾|𝑉(𝐺)| 

(ii) 𝐺 is an acyclic graph. 

Proof. Let 𝐺 be a connected graph with |𝑉(𝐺)| ≥ 2 and 𝑑𝑖𝑎𝑚(𝐺) < 3.  

To prove 𝑟𝑐ℎ𝑚𝐷𝑛(𝐺) = |𝑉(𝐺)| 

Case (i): 𝐺 ≅ 𝐾|𝑉(𝐺)|, then 𝑑𝑖𝑎𝑚(𝐺) = 1. 

Let |𝑉(𝐺)| = 𝑛 such that 𝐺 be a complete graph 𝐾𝑛 with vertices 𝑣1, 𝑣2, … , 𝑣𝑛 and 

𝑑𝑖𝑎𝑚𝐷(𝐾𝑛) = 2𝑛 − 1. 

For 𝑛 ≥ 2, 𝑑𝑖𝑎𝑚𝐷(𝐾𝑛) = 2𝑛 − 1. Therefore equation (1) reduces to  

 𝑑𝐷(𝑢, 𝑣) + ⌈
(𝑓(𝑢))

2
+(𝑓(𝑣))

2

𝑓(𝑢)+𝑓(𝑣)
⌉ ≥ 2𝑛………………… (2) 

Define a function 𝑓: 𝑉(𝐾𝑛)  → 𝑍+ such that 𝑓(𝑣𝑖) = 𝑖, 1 ≤ 𝑖 ≤ 𝑛. Also for every distinct pair 

of vertices (𝑣𝑖 , 𝑣𝑗), 𝑑
𝐷(𝑣𝑖, 𝑣𝑗) = 2𝑛 − 1 for 1 ≤ 𝑖, 𝑗 ≤ 𝑛 , 𝑖 ≠ 𝑗 such that ⌈

(𝑖)2+(𝑗)2

𝑖+𝑗
⌉ ≥ 1. 

Clearly 𝑓 is a one to one mapping and every distinct pair of vertices and will hold (2) and the 

largest integer assigned to the vertex 𝑣𝑛 is 𝑛. Therefore 𝑟𝑐ℎ𝑚𝐷𝑛(𝐾𝑛) = 𝑛. 

Thus 𝑟𝑐ℎ𝑚𝐷𝑛(𝐺) = |𝑉(𝐺)|. 

Case (ii): 𝐺 is an acyclic graph 

Without loss of generality let 𝐺 be a graph with diameter 2 such that there exist a 𝑢 − 𝑣 path 

such that 𝑑𝑒𝑔 (𝑢) = 𝑑𝑒𝑔 (𝑣) = 1 and 𝑑(𝑢, 𝑣) = 2. Also the intermediate vertex of 𝑢 and 𝑣 is 

denoted by 𝑤. Define a function 𝑓: 𝑉(𝐺)  → 𝑍+ such that 𝑓(𝑢) = 1, 𝑓(𝑣) = 2 and 𝑓(𝑤) = 3.  

Subcase (i): 𝑑𝑒𝑔 (𝑤) = 2 
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Then 𝑑𝐷(𝑢, 𝑣) = 6 and also which is the 𝑑𝑖𝑎𝑚𝐷(𝐺) and RHS of inequality (1) reduces 

to 7. Therefore for the pair (𝑢, 𝑣) we get 6 + ⌈
(1)2+(2)2

1+2
⌉ ≥ 7 is obvious.  Also for the pair (𝑢, 𝑤)  

we get  4 + ⌈
(1)2+(3)2

1+3
⌉ ≥ 7 and similarly for the pair (𝑣, 𝑤), we get 4 + ⌈

(2)2+(3)2

2+3
⌉ ≥ 7 which 

satisfies the radio contra harmonic mean D-distance condition and 3 = |𝑉(𝐺)| is the largest 

label assigned to the vertex 𝑤. Hence 𝑟𝑐ℎ𝑚𝐷𝑛(𝐺) = |𝑉(𝐺)|. 

Subcase (ii): 𝑑𝑒𝑔 (𝑤) ≥ 2 

Then 𝑤 have adjacency with some vertices 𝑣𝑖, 1 ≤ 𝑖 ≤ 𝑛(say) other than 𝑢 and 𝑣 and which 

are disjoint with 𝑢 and 𝑣 since 𝐺 is acyclic and 𝑑𝑖𝑎𝑚(𝐺) = 2. Thus 𝑑𝑒𝑔 (𝑤) = 𝑛 + 2 and  

{𝑢, 𝑣, 𝑣𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑛} are the vertices with degree one. Now assign 𝑓(𝑣𝑖) = 3 + 𝑖, 1 ≤ 𝑖 ≤ 𝑛 

under the defined mapping 𝑓 and 𝑑𝑖𝑎𝑚𝐷(𝐺) = 𝑛 + 6, RHS of inequality (1) reduces to 𝑛 + 7. 

Therefore for the pair (𝑤, 𝑥), where 𝑥 may be either 𝑢 or 𝑣 or 𝑣𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑛 , then we get 

𝑛 + 4 + ⌈
(3)2+(𝑥)2

3+𝑥
⌉ ≥ 𝑛 + 7 is obvious. Also for the pair (𝑥, 𝑦), where 𝑥 may be either 𝑢 or 𝑣 

or 𝑣𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑛 , 𝑥 ≠ 𝑦 then  we get 𝑛 + 6 + ⌈
(𝑥)2+(𝑦)2

𝑥+𝑦
⌉ ≥ 𝑛 + 7 will hold. Here 𝑛 + 3 =

|𝑉(𝐺)| is the largest label assigned to the vertex 𝑣𝑛. Hence the proof. 

Theorem 3.3. If  𝑟𝑐ℎ𝑚𝐷𝑛(𝐺) = |𝑉(𝐺)| then 𝑟𝑐ℎ𝑚𝐷𝑛(𝐺) < 𝑟𝑐ℎ𝑚𝐷𝑛(𝐺′). 

Proof. Assume that 𝑟𝑐ℎ𝑚𝐷𝑛(𝐺) = |𝑉(𝐺)|.   

Let 𝑓: 𝑉(𝐺) → ℤ+ be the function defined at which the graph 𝐺 attains its least upper 

bound with respect to radio contra harmonic mean D-distance labeling. Let 𝑣 ∈ 𝑉 be the vertex 

which is to be duplicated and 𝑣′ is the resultant vertex obtained by duplicating the vertex 𝑣.  

Now |𝑉(𝐺′)| = |𝑉(𝐺)| + 1. 

Therefore 𝑟𝑐ℎ𝑚𝐷𝑛(𝐺′)  ≥ |𝑉(𝐺′)|  = |𝑉(𝐺)| + 1 

      > |𝑉(𝐺)| 

      =  𝑟𝑐ℎ𝑚𝐷𝑛(𝐺) 

Hence 𝑟𝑐ℎ𝑚𝐷𝑛(𝐺) < 𝑟𝑐ℎ𝑚𝐷𝑛(𝐺′) 

Corollary 3.4. The converse of the above theorem is not true. 

Result 3.5. If  𝑟𝑐ℎ𝑚𝐷𝑛(𝐺) = |𝑉(𝐺)| then 
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(i) 𝑟𝑐ℎ𝑚𝐷𝑛(𝐺) < 𝑟𝑐ℎ𝑚𝐷𝑛(𝐸𝐷(𝐺))  

(ii) 𝑟𝑐ℎ𝑚𝐷𝑛(𝐺) < 𝑟𝑐ℎ𝑚𝐷𝑛(𝐷𝐺) 

Theorem 3.6. If 𝐺 is a 𝑛 − 1 regular graph with 𝑛 vertices then 𝑟𝑐ℎ𝑚𝐷𝑛(𝐺′) =

2𝑟𝑐ℎ𝑚𝐷𝑛(𝐺) −1. 

Proof. Let 𝐺 be a 𝑛 − 1 regular graph with |𝑉(𝐺)| = 𝑛 and 𝑉(𝐺) = 𝑣1, 𝑣2, … , 𝑣𝑛. Let 𝑣1
′  be a 

vertex which exist due to the duplication of any vertex 𝑣1(𝑠𝑎𝑦) and 𝐺′ be the resultant graph. 

Then 𝑑𝑖𝑎𝑚(𝐺′) = 3𝑛.  Therefore equation (1) reduces to 

  𝑑𝐷(𝑢, 𝑣) + ⌈
(𝑓(𝑢))

2
+(𝑓(𝑣))

2

𝑓(𝑢)+𝑓(𝑣)
⌉ ≥ 3𝑛 + 1………………… (3) 

Define a function 𝑓: 𝑉(𝐺′) → 𝑍+ such that 𝑓(𝑣1
′) = 𝑛 − 1 and 𝑓(𝑣𝑖) = 𝑛 − 1 + 𝑖, 1 ≤ 𝑖 ≤ 𝑛. 

For the pair of vertices (𝑣𝑖 , 𝑣𝑗), 𝑑
𝐷(𝑣𝑖 , 𝑣𝑗) ≥ 2𝑛 for 1 ≤ 𝑖, 𝑗 ≤ 𝑛 , 𝑖 ≠ 𝑗, ⌈

(𝑛−1+𝑖)2+(𝑛−1+𝑗)2

2𝑛−2+𝑖+𝑗
⌉ ≥

3𝑛 + 1 − 𝑑𝐷(𝑣𝑖 , 𝑣𝑗). 

For the pair of vertices (𝑣𝑖, 𝑣𝑖
′), 𝑑𝐷(𝑣𝑛, 𝑣𝑛

′ ) = 2𝑛 for 1 ≤ 𝑖 ≤ 𝑛, ⌈
(𝑛−1+𝑖)2+(𝑛−1)2

2𝑛−2+𝑖
⌉ ≥ 𝑛 + 1. 

Clearly 𝑓 is a one to one mapping and every distinct pair of vertices and will hold (3) and the 

largest integer assigned is 2𝑛 − 1 to the vertex 𝑣𝑛 and 𝑟𝑐ℎ𝑚𝐷𝑛(𝐺′) = 2𝑛 − 1. By Theorem 

2.2, 𝑟𝑐ℎ𝑚𝐷𝑛(𝐺) = 𝑛.  Hence 𝑟𝑐ℎ𝑚𝐷𝑛(𝐺′) = 2𝑟𝑐ℎ𝑚𝐷𝑛(𝐺) − 1. 

Theorem 3.7. Let 𝐺 be a connected graph with 𝑛 vertices. If 𝑣 ∈ 𝑉(𝐺) then there exist 

𝑟𝑐ℎ𝑚𝐷𝑛(𝐴𝐷(𝑣𝐺))  if and only if deg(𝑣) < 𝑛 − 1. 

Proof. Let |𝑉(𝐺)| = 𝑛.  

Assume that deg(𝑣) < 𝑛 − 1. To prove 𝑟𝑐ℎ𝑚𝐷𝑛(𝐴𝐷(𝑣𝐺)) exist. 

Let 𝑣 ∈ 𝑉 be the vertex which is chosen for anti-duplication in a graph 𝐺 and 𝑣′ is the 

resultant vertex occurred by anti-duplicating the vertex 𝑣 and let the graph be 𝐴𝐷(𝑣𝐺). By our 

assumption, 1 ≤ deg (𝑣) ≤ 𝑛 − 2. Since |𝑉(𝐺)| = 𝑛, there is atleast one vertex which is not 

adjacent to 𝑣 in 𝐺. Then by the definition of anti-duplication of vertex, the graph still remains 

connected. 

By theorem 4.1, 𝑟𝑐ℎ𝑚𝐷𝑛(𝐴𝐷(𝑣𝐺))  exist. 

Conversely, assume that 𝑟𝑐ℎ𝑚𝐷𝑛(𝐴𝐷(𝑣𝐺)) exist. To prove deg(𝑣) < 𝑛 − 1. 
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Suppose that deg(𝑣) = 𝑛 − 1. Then 𝑣 is adjacent to every vertices in the graph 𝐺. By 

anti-duplication of vertex 𝑣 the resultant vertex is non adjacent to any vertex of 𝐺. Thus 𝑣′ is 

an isolated vertex. Then 𝐴𝐷(𝑣𝐺) is a graph with two components. Therefore, 𝐴𝐷(𝑣𝐺) is an 

disconnected graph and hence 𝑟𝑐ℎ𝑚𝐷𝑛(𝐴𝐷(𝑣𝐺)) will not exist which is contradiction to our 

assumption.  

Hence deg(𝑣) < 𝑛 − 1. 

Theorem 3.8. If 𝐺 is a graph with 𝑛 + 1 vertices and 𝑛 pendant edges then 

𝑟𝑐ℎ𝑚𝐷𝑛(𝐴𝐷(𝑣𝑛𝐺)) = 𝑟𝑐ℎ𝑚
𝐷𝑛(𝐺) + 𝑛. 

Proof. Let 𝐺 be a graph with 𝑛 + 1 vertices and 𝑛 pendant edges. Since there are 𝑛 pendant 

edges, there must be 𝑛 pendant vertices 𝑣1, 𝑣2, … , 𝑣𝑛 and let the vertex with degree 𝑛 be 𝑢. Let 

𝑣𝑛
′  be the new vertex by anti-duplication of the vertex 𝑣𝑛 of 𝐺 and the resultant graph is 

𝐴𝐷(𝑣𝑛𝐺) with 𝑑𝑖𝑎𝑚(𝐴𝐷(𝑣𝑛𝐺)) = 2𝑛 + 5. Therefore equation (1) reduces to 

  𝑑𝐷(𝑢, 𝑣) + ⌈
(𝑓(𝑢))

2
+(𝑓(𝑣))

2

𝑓(𝑢)+𝑓(𝑣)
⌉ ≥ 2𝑛 + 6………………… (4) 

Define a function 𝑓: 𝑉(𝐴𝐷(𝑣𝑛𝐺)) → 𝑍+ such that 𝑓(𝑢) = 2𝑛, 𝑓(𝑣𝑛
′ ) = 2𝑛 + 1 and 𝑓(𝑣𝑖) =

𝑛 − 1 + 𝑖, 1 ≤ 𝑖 ≤ 𝑛. 

For the pair of vertices (𝑣𝑖 , 𝑣𝑗), 𝑑
𝐷(𝑣𝑖 , 𝑣𝑗) ≥ 𝑛 + 5 for 1 ≤ 𝑖, 𝑗 ≤ 𝑛 , 𝑖 ≠ 𝑗, 

⌈
(𝑛−1+𝑖)2+(𝑛−1+𝑗)2

2𝑛−2+𝑖+𝑗
⌉ ≥ 2𝑛 + 6 − 𝑑𝐷(𝑣𝑖 , 𝑣𝑗). 

For the pair of vertices (𝑢, 𝑣𝑖), 𝑑
𝐷(𝑢, 𝑣𝑖) ≥ 𝑛 + 2 for 1 ≤ 𝑖, 𝑗 ≤ 𝑛 , 𝑖 ≠ 𝑗, ⌈

(2𝑛)2+(𝑛−1+𝑖)2

3𝑛−1+𝑖
⌉ ≥

2𝑛 + 6 − 𝑑𝐷(𝑣, 𝑣𝑖). 

For the pair of vertices (𝑣𝑖, 𝑣𝑛
′ ), 𝑑𝐷(𝑣𝑖, 𝑣𝑛

′ ) ≥ 𝑛 + 2 for 1 ≤ 𝑖, 𝑗 ≤ 𝑛 , ⌈
(𝑛−1+𝑖)2+(2𝑛+1)2

3𝑛+𝑖
⌉ ≥

2𝑛 + 6 − 𝑑𝐷(𝑣𝑖, 𝑣𝑛
′ ). 

For the pair of vertices (𝑢, 𝑣𝑛
′ ), 𝑑𝐷(𝑢, 𝑣𝑛

′ ) = 2𝑛 + 3, ⌈
(2𝑛)2+(2𝑛+1)2

4𝑛+1
⌉ ≥ 3. 

Clearly 𝑓 is a one to one mapping and every distinct pair of vertices will hold (4) and the largest 

integer assigned is 2𝑛 + 1 to the vertex 𝑣𝑛
′  and hence 𝑟𝑐ℎ𝑚𝐷𝑛(𝐴𝐷(𝑣𝑛𝐺)) = 2𝑛 + 1. By 

theorem 3.2, 𝑟𝑐ℎ𝑚𝐷𝑛(𝐺) = 𝑛 + 1.   

 Hence 𝑟𝑐ℎ𝑚𝐷𝑛(𝐴𝐷(𝑣𝑛𝐺)) = 𝑟𝑐ℎ𝑚
𝐷𝑛(𝐺) + 𝑛. 
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Theorem 3.9. For a connected graph 𝐺,  𝑟𝑐ℎ𝑚𝐷𝑛(𝐷𝐺) exist if and only if 𝐺 contains an odd 

cycle. 

Proof. Let 𝐺 be a connected graph.   

Assume that 𝑟𝑐ℎ𝑚𝐷𝑛(𝐷𝐺) exist. To prove 𝐺 contains an odd cycle. 

Suppose 𝐺 contains no odd cycle then by theorem 2.3 (ii), 𝐷𝐺 = 2𝐺. Thus 𝐷𝐺 is a 

disconnected graph with two components which contradicts the existence of 𝑟𝑐ℎ𝑚𝐷𝑛(𝐷𝐺). 

Hence 𝐺 contains an odd cycle. 

Conversely, assume that 𝐺 contains an odd cycle.  

To prove the existence of 𝑟𝑐ℎ𝑚𝐷𝑛(𝐷𝐺).  

Since 𝐺 contains an odd cycle, by theorem 2.3(i), 𝐷𝐺 is connected. By theorem 3.1, 𝐷𝐺 

is a radio contra harmonic mean D-distance graph. 

 Hence, 𝑟𝑐ℎ𝑚𝐷𝑛(𝐷𝐺) will exist. 

4. Conclusion 

In this study, we investigated the labeling of graphs with radio contra harmonic mean 

D-distance under different duplication parameters. The resulting graph's radio contra harmonic 

mean D-distance number is computed based on the criteria. These kinds of outcomes can be 

extended to triplicate parameters and applied to other radio mean labeling parameters. 
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Abstract 

           The connected domination polynomial of a graph 𝐺 of order 𝑛 is the generating 

function of the number of connected dominating sets of 𝐺 of any size. Let 𝐷𝑐(𝐺, 𝑖) be the family 

of connected dominating sets of a graph 𝐺 with cardinality 𝑖 and Let 𝑑𝑐(𝐺, 𝑖) = |𝐷𝑐(𝐺, 𝑖)|. Then 

the connected domination polynomial  𝐷𝑐(𝐺, 𝑥) of 𝐺 is defined as 𝐷𝑐(𝐺, 𝑥) = 

∑ 𝐷𝑐(𝐺, 𝑖)𝑥
𝑖  

|𝑉(𝐺)|
𝑖=𝛾𝑐(𝐺)

, where 𝛾𝑐(𝐺) is the connected domination number of 𝐺. In this paper, we 

study the connected domination polynomials of zero-divisor graphs of ring ℤ𝑛, where 𝑛 ∈

{2𝑝, 𝑝2, 𝑝𝑞} for distinct prime numbers 𝑝 and 𝑞, and 𝑝 > 𝑞 > 2. 

Keywords: Connected Domination Polynomial, Connected Domination set, Zero-divisor 

graph. 

2020 Mathematics Subject Classification (AMS): 05C69, 05C25.    

1. Introduction 

         The domination polynomial of a graph is introduced by Saeid Alikhani and Yee-hock 

Peng in the year 2009 [7]. While extending the concept of domination polynomial in view of 

connected dominating set, we came across with many interesting relations among the 

connected domination polynomials of different graphs, which is defined by Sampathkumar and 

H.B Wlikar in the year 1979 [8]. 

             Let 𝐺 =  (𝑉, 𝐸) be a simple graph. For any vertex 𝑣 ∈ 𝑉, the open neighbourhood of 

𝑣 is the set 𝑁(𝑣) = {𝑢 ∈ 𝑉 ∶ 𝑢𝑣 ∈ 𝐸} and the closed neighbourhood of 𝑣 is the set 

 𝑁[𝑣] = 𝑁(𝑣) ∪ {𝑣}. For a set 𝑆 ⊆ 𝑉, the open neighbourhood of 𝑆 is 𝑁(𝑆) =∪𝑣∈𝑆 𝑁(𝑣) and 

the closed neighbourhood of 𝑆 is 𝑁[𝑆] = 𝑁(𝑆) ∪ 𝑆. A set 𝑆 ⊆ 𝑉 is a dominating set of 𝐺, if 

mailto:bibisajustus26@gmail.com
mailto:2freedasam1969@gmail.com
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𝑁[𝑆] = 𝑉, or equivalently every vertex in 𝑉\𝑆 is adjacent to atleast one vertex in 𝑆. The 

domination number Υ(𝐺) is the minimum cardinality of a dominating set in 𝐺 [7]. 

              Let 𝐺 be a simple connected graph of order 𝑛. A connected domination set (cd-set) of 

𝐺 is a set 𝑆 of vertices of 𝐺 such that every vertex in 𝑉\𝑆 is adjacent to some vertex in 𝑆 and 

the induced subgraph < 𝑆 > is connected. The connected domination number 𝛾𝑐(𝐺) is the 

minimum cardinality of a connected dominating set in 𝐺 [8]. 

              Zero-divisor graph of a commutative ring was introduced in the work of Beck. Beck 

was interested in colouring of rings and the vertex set of graph consists of all elements of the 

ring in his definition. Later, the definition of zero-divisor graph of a commutative ring has been 

modified by Anderson and Livingston [4]. They defined the zero-divisor graph of a 

commutative ring on nonzero zero-divisor elements of the ring [2].  

              In recent years, the study of zero-divisor graphs has grown in various directions. 

Actually, it is the interplay between the ring theoretic properties of a ring 𝑅 and the graph 

theoretic properties of its zero-divisor graph [1,2]. There are many papers which studied some 

parameters and topological indices of the zero-divisor graphs. Recently, Gursoy, Ulker and 

Gursoy in [6] have studied the independent domination polynomials of some zero-divisor 

graphs of the rings. 

                This paper consists of four sections. In Section 2, we give some notions. In section 

3, we collect the basic definitions that are needed for the subsequent sections. In section 4, we 

investigate the connected domination polynomial of some zero-divisor graphs of the rings ℤ𝑛 

for 𝑝 > 𝑞 > 2 where 𝑝, 𝑞 are distinct prime numbers. 

2. Notation 

 𝐷𝑐(𝐺, 𝑥)          : Connected domination polynomial of a graph 𝐺 

 𝑑𝑐(𝐺, 𝑖)           : Number of connected dominating sets of 𝐺 of cardinality i 

 𝛾𝑐(𝐺)              : Connected domination number of 𝐺 

 𝑁[𝑣]                : Closed neighbourhood of the vertex 𝑣 of a graph 𝐺 

 𝑁(𝑣)                : Open neighbourhood of the vertex 𝑣 of a graph 𝐺 

 𝐷(𝐺, 𝑥)            : Domination polynomial of a graph 𝐺           

 cd-set               : Connected dominating set 

 cd- polynomial: Connected domination polynomial 
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3. Preliminaries   

Definition 3.1. [8] Let 𝐷𝑐(𝐺, 𝑖) be the family of connected dominating sets of a graph 𝐺 with 

cardinality 𝑖 and Let 𝑑𝑐(𝐺, 𝑖) = |𝐷𝑐(𝐺, 𝑖)|. Then the connected domination polynomial  𝐷𝑐(𝐺, 𝑥) 

of 𝐺 is defined as 𝐷𝑐(𝐺, 𝑥) = ∑ 𝑑𝑐(𝐺, 𝑖)𝑥
𝑖  

|𝑉(𝐺)|
𝑖=𝛾𝑐(𝐺)

, where 𝛾𝑐(𝐺) is the connected domination 

number of 𝐺. 

Definition 3.2. [2] Let ℤ𝑛 be the ring of integers modulo 𝑛. The zero-divisor graph 

Γ(ℤ𝑛) is the simple undirected graph without loops which has its vertex set coincides   

with the nonzero zero-divisors of ℤ𝑛 and two distinct vertices 𝑢 and 𝑣 in Γ(ℤ𝑛) are 

adjacent whenever 𝑢𝑣 =  0 in ℤ𝑛.  

Example 3.3. [6] For the graph Γ(ℤ75), we have |𝑉( Γ(ℤ75))| = 34 and 

|𝐸( Γ(ℤ75))| = 86. 

       An integer 𝑑 is called a proper divisor of 𝑛 if 1 < 𝑑 < 𝑛 and 𝑑|𝑛. Let 𝑑1, … , 𝑑𝑘 

be the distinct proper divisors of 𝑛. For 1 ≤ 𝑖 ≤ 𝑘, consider the following sets: 

                                 𝑉𝑑𝑖 = {𝑥𝜖ℤ𝑛 : gcd(𝑥, 𝑛) =  𝑑𝑖}. 

The sets 𝑉𝑑1 , … , 𝑉𝑑𝑘 are pairwise disjoint and we can partition the vertex set of Γ(ℤ𝑛) 

𝑉(Γ(ℤ𝑛)) =  ⋃𝑉𝑑𝑖

𝑘

𝑖=1

. 

The following lemma gives the cardinalities of each vertex subset of Γ(ℤ𝑛). 

Lemma 3.4. [2] Let 𝑛 be a positive integer with distinct divisors 𝑑1, 𝑑2, . . . , 𝑑𝑟. If  

𝑉𝑑𝑖 = {𝑥𝜖ℤ𝑛 : gcd(𝑥, 𝑛) =  𝑑𝑖} for = 1,2,… , 𝑟 , then |𝑉𝑑𝑖| = 𝜙(𝑛 𝑑𝑖⁄ ) where 𝜙 is the 

Euler’s Totient function. 

Lemma 3.5. [5] For  𝑖, 𝑗 ∈ {1,… , 𝑘}, a vertex of 𝑉𝑑𝑖 is adjacent to a vertex of  𝑉𝑑𝑗  in  

Γ(ℤ𝑛) if and only if 𝑛 divides 𝑑𝑖𝑑𝑗. 

Corollary 3.6. [5] 

i. For 𝑖 ∈ {1,… , 𝑘}, the induced subgraph Γ(𝑉𝑑𝑖  ) of Γ(ℤ𝑛) on the vertex set 

𝑉𝑑𝑖 is either the complete graph Κ𝜙(𝑛 𝑑𝑖⁄ ) or its complement graph Κ̅𝜙(𝑛 𝑑𝑖⁄ ). 

Indeed, Γ(𝑉𝑑𝑖  ) is Κ𝜙(𝑛 𝑑𝑖⁄ ) if and only if 𝑛 divides 𝑑𝑖
2. 
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ii. For  𝑖, 𝑗 ∈ {1,… , 𝑘}, with 𝑖 ≠ 𝑗  a vertex of 𝑉𝑑𝑖 is adjacent to either all or none 

of the vertices of  𝑉𝑑𝑗 in Γ(ℤ𝑛). 

4. Main results 

In this section, we study connected domination polynomial of zero-divisor 

graphs of rings ℤ𝑛, where 𝑛 ∈ {2𝑝, 𝑝2, 𝑝𝑞} for distinct prime numbers 𝑝 and 𝑞. 

Theorem 4.1. For prime 𝑝, 𝐷𝑐(Γ(ℤ𝑝2), 𝑥) = (1 + 𝑥)
𝜙(𝑝) − 1  

Proof. Given 𝑝 is a prime number, then integer 𝑝 is only proper divisor of 𝑝2. By 

corollary 3.6 Γ(ℤ𝑝2) is the complete graph Κ𝜙(𝑝), where 𝜙 is the Euler’s totient 

function. Let Κ𝑛 be the complete graph on 𝑛 vertices. 𝐷(Κ𝑛, 𝑥) = (1 + 𝑥)
𝑛-1, Also 

𝐷𝑐(Κ𝑛, 𝑥) = (1 + 𝑥)
𝑛-1 and 𝜙 = 𝑝 − 1, so 

𝐷𝑐(Γ(ℤ𝑝2), 𝑥) = (
𝑝 − 1
𝑝 − 1

)𝑥𝑝−1 + (
𝑝 − 1
𝑝 − 2

)𝑥𝑝−2 + (
𝑝 − 1
𝑝 − 3

)𝑥𝑝−3 +⋯+ (
𝑝 − 1
2

)𝑥2 +

                                   (
𝑝 − 1
1

)𝑥 

                        = ∑ (
𝑝 − 1
𝑖
)𝑥𝑖𝑝−1

𝑖=1  

                           = (1 + 𝑥)𝜙(𝑝) − 1  

Hence the result. 

Theorem 4.2. For prime 𝑝, 𝐷𝑐(Γ(ℤ2𝑝), 𝑥) = 𝑥(1 + 𝑥)
𝜙(𝑝) 

Proof. Given 𝑝 is a prime number. The vertex set of the graph can be partitioned into 

two distinct subsets as  

                            𝑉𝑝 = {𝑝} 

                            𝑉2 = {2𝑥: 𝑥 = 1,… , 𝑝 − 1} 

Since the integers 2 and p are the proper divisors of 2p. By corollary 3.6, Γ(ℤ2𝑝) is 

the star graph Κ1,𝜙(𝑝).  

𝐷𝑐(Γ(ℤ2𝑝), 𝑥) =(
𝑝 − 1
𝑝 − 1

)𝑥𝑝 + (
𝑝 − 1
𝑝 − 2

)𝑥𝑝−1 + (
𝑝 − 1
𝑝 − 3

)𝑥𝑝−2 +⋯+ (
𝑝 − 1
2

)𝑥3 +

                                   (
𝑝 − 1
1

)𝑥2+(𝑝 − 1
0

)𝑥 
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                        =𝑥 {(
𝑝 − 1
𝑝 − 1

)𝑥𝑝−1 + (
𝑝 − 1
𝑝 − 2

)𝑥𝑝−2 + (
𝑝 − 1
𝑝 − 3

)𝑥𝑝−3 +⋯+

                                (
𝑝 − 1
2

)𝑥2 + (
𝑝 − 1
1

)𝑥 + 1}                        

                         = 𝑥∑ (
𝑝 − 1
𝑖
) 𝑥𝑖𝑝−1

𝑖=0  

                         = 𝑥(1 + 𝑥)𝜙(𝑝) 

Hence the result. 

Theorem 4.3. If  𝑝 > 𝑞 > 2 are prime numbers, then, 𝐷𝑐(Γ(ℤ𝑝𝑞), 𝑥) = [(1 + 𝑥)𝑝−1 −

1]  [(1 + 𝑥)𝑞−1 − 1]  

Proof. Given 𝑝 > 𝑞 > 2 , where 𝑝 and 𝑞 are prime numbers. The vertex set of the graph can 

be partitioned into distinct subsets as, 

             𝑉𝑝 = {𝑝𝑥: 𝑥 = 1,… , 𝑞 − 1} and 

              𝑉𝑞 = {𝑞𝑥: 𝑥 = 1,… , 𝑝 − 1} 

Since the integers 𝑝 and 𝑞 are the proper divisors of 𝑝𝑞. Consequently, by corollary 3.6, 

Γ(ℤ𝑝𝑞) is the complete bipartite graph Κ𝑝−1,𝑞−1. 

since 𝜙(𝑝) > 𝜙(𝑞) > 1 so 𝛾𝑐 (Γ(ℤ𝑝𝑞)) = 2. 

           Any dominating set of size 𝑖 is a connected dominating set if there are connected 

between some of the vertices of the 𝑉𝑝 and 𝑉𝑞 subsets. 

          Dominating sets that are not related are the subsets  𝑉𝑝 and 𝑉𝑞, which have cardinality  

𝑞 − 1 and 𝑝 − 1, respectively     

For 𝑖 ≥ 2,  

          𝑑𝑐(Γ(ℤ𝑝𝑞), 𝑗) =  {
𝑑(Γ(ℤ𝑝𝑞), 𝑗) − 1        𝑖𝑓 𝑗 = 𝑞 − 1 𝑜𝑟 𝑝 − 1

𝑑(Γ(ℤ𝑝𝑞), 𝑗)             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                      
  

Since, 𝐷𝑐(𝐾𝑚,𝑛, 𝑥) = [(1 + 𝑥)𝑚 − 1][(1 + 𝑥)𝑛 − 1]  and 𝜙(𝑝) = 𝑝 − 1,𝜙(𝑞) = 𝑞 − 1  

𝐷𝑐(Γ(ℤ𝑝𝑞), 𝑥) = (𝑝−1
1
)(𝑞−1

1
)𝑥2 + (𝑝−1

1
)(𝑞−1

2
)𝑥3 + (𝑝−1

2
)(𝑞−1

1
)𝑥3 +⋯+

                                [(𝑝−1
1
) ( 𝑞−1

𝑝+𝑞−3
) +⋯+ ( 𝑝−1

𝑝+𝑞−3
) (𝑞−1

1
)]𝑥𝑝+𝑞−3 
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                           = (𝑝−1
1
)(𝑞−1

1
)𝑥2 + (𝑝−1

1
)(𝑞−1

2
)𝑥3 + (𝑝−1

2
)(𝑞−1

1
)𝑥3 +⋯+

                                [(𝑝−1
1
) ( 𝑞−1

𝑝−1+𝑞−1−1
) +⋯+ ( 𝑝−1

𝑝−1+𝑞−1−1
) (𝑞−1

1
)]𝑥𝑝−1+𝑞−1−1 

                           = [(𝑝−1
1
)𝑥 + (𝑝−1

2
)𝑥2 +⋯+ (𝑝−1

𝑝−1
)𝑥𝑝−1]   

 [(𝑞−1
1
)𝑥 + (𝑞−1

2
)𝑥2 +⋯+ (𝑞−1

𝑞−1
) 𝑥𝑞−1] 

                           = ∑ (
𝑝 − 1
𝑗
) 𝑥𝑗𝑝−1

𝑗=0  ∑ (
𝑞 − 1
𝑗
) 𝑥𝑗𝑞−1

𝑗=0  

                           = [(1 + 𝑥)𝑝−1 − 1][(1 + 𝑥)𝑞−1 − 1] 

Hence the result. 

5. Conclusion 

         In this paper, the connected domination polynomials of the zero-divisor graphs of rings 

ℤ𝑛, where 𝑛 ∈ {2𝑝, 𝑝2, 𝑝𝑞} for distinct prime numbers 𝑝 and 𝑞 has been derived by identifying 

its connected dominating sets. Further we can generalize connected domination polynomial of 

zero-divisor graphs of rings ℤ𝑛, where 𝑛 ∈ { 𝑝2𝑞, 𝑝𝑞𝑟, 𝑝𝛼} for distinct prime numbers 𝑝, 𝑞 and 

𝑟.  
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Abstract 

Let 𝐺 = (𝑉, 𝐸) be a graph. A subset 𝐷 of 𝑉(𝐺) is said to be a chromatic restrained dominating 

set (or crd-set) of 𝐺 if 𝐷 is a restrained dominating set of 𝐺 and χ(< 𝐷 >) = χ(𝐺). The 

minimum cardinality taken over all minimal chromatic restrained dominating sets is called the 

chromatic restrained domination number of 𝐺 and is denoted by γ𝑟
𝑐(𝐺). In this paper, the 

chromatic restrained domination number on the direct product of certain standard graphs were 

obtained. 

Keywords: Domination, Restrained Domination, Chromatic Number, Direct Product 

2020 Mathematics Subject Classification (AMS): 05C15, 05C69 

1. Introduction 

 All the graphs 𝐺 = (𝑉, 𝐸) = (𝑛,𝑚) considered here are simple, finite and undirected, 

with neither loops nor multiple edges. For 𝐷  ⊆ 𝑉, the subgraph induced by 𝐷 is denoted 

by 〈𝐷〉.  A 𝑘 −vertex coloring of a graph, or simply a 𝑘 −coloring, is an assignment of 

𝑘 −colors to its vertices. The coloring is proper if no two adjacent vertices are assigned the 

same color. A coloring in which 𝑘 − colors are used is a 𝑘 −coloring. A graph is 𝑘 −colorable 

if it has a proper 𝑘 −coloring. The minimum 𝑘 for which a graph 𝐺 is 𝑘 −colorable is called 

its chromatic number and denoted by χ(𝐺). Graph Theory terminologies which are not defined 

here can be seen in [2] and [7]. 

 A set 𝐷 ⊆ 𝑉 of vertices in a graph 𝐺 is called a dominating set if every vertex 𝑢 ∈ 𝑉 is 

either an element of 𝐷 or is adjacent to an element of 𝐷. The minimum cardinality taken over 

all minimal dominating sets is called the domination number of 𝐺 and is denoted by γ(𝐺). A 

set  𝐷 ⊆ 𝑉 is a restrained dominating set if every vertex in 𝑉 − 𝐷 is adjacent to a vertex in 𝐷 

mailto:divinelinr@gmail.com
mailto:angeljebitha@holycrossngl.edu.in


Proceedings of the International Conference on Algebraic Graph Theory,                                              
Graph Theory and Topology – 9th & 10th January 2025 

133 
 
ISBN: 978-93-48505-23-1 

and another vertex in 𝑉 − 𝐷 [4]. The minimal cardinality taken over all minimal restrained 

dominating sets is called the restrained domination number of 𝐺 and is denoted by γ𝑟(𝐺). A 

set 𝐷 is a γ𝑟 −set if 𝐷 is a restrained dominating set of cardinality γ𝑟(𝐺). 

        For graphs 𝐺 and 𝐻, the direct product 𝐺 × 𝐻 (also known as the tensor product, cross 

product, cardinal product, kronecker product) is the graph with vertex set 𝑉(𝐺) × 𝑉(𝐻) where 

two vertices (𝑥, 𝑦) and (𝑣, 𝑤) are adjacent if and only if 𝑥𝑣 ∈ 𝐸(𝐺) and 𝑦𝑤 ∈ 𝐸(𝐻) [3].  

 A set 𝐷 ⊆ 𝑉 is a chromatic preserving set or a cp-set if χ(< 𝐷 >) = χ(𝐺) and the 

minimum cardinality taken over all cp-set in 𝐺 is called the chromatic preserving number or 

cp-number of 𝐺,  denoted by cpn(𝐺) [5]. A subset 𝐷 of 𝑉 is said to be a dom-chromatic set (or 

dc-set) if 𝐷 is a dominating set and χ(< 𝐷 >) = χ(𝐺). The minimum cardinality taken over 

all minimal dom-chromatic sets in G is called the dom-chromatic number and is denoted by 

γ𝑐ℎ(𝐺) [6]. In this paper, the chromatic restrained domination number on the direct product of 

some standard graphs are obtained. 

2. Main Results 

 In this section, we obtained the chromatic restrained domination number for the direct 

product of some standard graphs. 

Definition 2.1. Let 𝐺 = (𝑉, 𝐸) be a graph. A subset 𝐷 of 𝑉 is said to be a chromatic restrained 

dominating set (or crd-set) if 𝐷 is a restrained dominating set and χ(< 𝐷 >) = χ(𝐺). The 

minimum cardinality taken over all minimal chromatic restrained dominating sets is called 

chromatic restrained domination number and is denoted by γr
c (G).  

Observation 2.2. 𝛾𝑟𝑐(𝐾2 × 𝐾𝑛) = {
4  𝑖𝑓  𝑛 = 2,3
3  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

.  

Theorem 2.3. For any 𝑚, 𝑛 ≥ 3, 𝛾𝑟
𝑐(𝐾𝑚 × 𝐾𝑛) = 𝑚𝑖𝑛{𝑚, 𝑛}.              

Proof.  Let 𝑉(𝐾𝑚) = {𝑢1, 𝑢2, 𝑢3, … , 𝑢𝑚} and 𝑉(𝐾𝑛) = {𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑛} with |𝑉(𝐾𝑚)| = 𝑚 

and |𝑉(𝐾𝑛)| = 𝑛. Then 𝑉(𝐾𝑚 × 𝐾𝑛) = {(𝑢𝑖, 𝑣𝑗)/1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛} with cardinality 𝑚𝑛. 

Each vertex in 𝐾𝑚 × 𝐾𝑛, say (𝑢1, 𝑣1) is adjacent to all the vertices except (𝑢1, 𝑣𝑗), 2 ≤ 𝑗 ≤ 𝑛 

and (𝑢𝑖 , 𝑣1), 2 ≤ 𝑖 ≤ 𝑚 and similar adjacency holds for every vertex of 𝐾𝑚 × 𝐾𝑛. Let 𝑚 ≤

𝑛. Then, for any 1 ≤ 𝑗 ≤ 𝑛, (𝑢1, 𝑣𝑗) can be colored with color 1, (𝑢2, 𝑣𝑗) can be colored with 

color 2,..., and (𝑢𝑚, 𝑣𝑗) can be colored with color 𝑚. Thus, 𝜒(𝐾𝑚 × 𝐾𝑛) = 𝑚. Let 𝐷 =

{(𝑢1, 𝑣1), (𝑢2, 𝑣2), (𝑢3, 𝑣3), . . . , (𝑢𝑚, 𝑣𝑚)}. Clearly, 𝐷 is a restrained dominating set of 𝐾𝑚 ×
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𝐾𝑛. Since, each vertex of 𝐷 is adjacent to all the other vertices of 𝐷, ⟨𝐷⟩ forms a complete 

graph on 𝑚 vertices and 𝜒(⟨𝐷⟩) = 𝑚 = 𝜒(𝐾𝑚 × 𝐾𝑛). This implies that, 𝐷 is a chromatic 

restrained dominating set of 𝐾𝑚 × 𝐾𝑛 with cardinality 𝑚. Therefore, 𝛾𝑟
𝑐(𝐾𝑚 × 𝐾𝑛) ≤ 𝑚. Since 

𝜒(𝐾𝑚 × 𝐾𝑛) = 𝑚, any chromatic restrained dominating set of 𝐾𝑚 × 𝐾𝑛 must contain a 

minimum of 𝑚 vertices and so, 𝛾𝑟
𝑐(𝐾𝑚 × 𝐾𝑛) ≥ 𝑚. Therefore, 𝛾𝑟

𝑐(𝐾𝑚 × 𝐾𝑛) = 𝑚. Similarly 

for 𝑛 ≤ 𝑚, 𝛾𝑟
𝑐(𝐾𝑚 × 𝐾𝑛) = 𝑛. Thus, 𝛾𝑟

𝑐(𝐾𝑚 × 𝐾𝑛) = 𝑚𝑖𝑛{𝑚, 𝑛}.      

Observation 2.4.  𝛾𝑟𝑐(𝐾𝑚 × 𝐾1,𝑛) = {
2(𝑛 + 1)    𝑖𝑓  𝑚 = 2
  𝑛 + 2        𝑖𝑓  𝑚 = 3

 .   

Theorem 2.5. For 𝑚 ≥ 4, 𝛾𝑟
𝑐(𝐾𝑚 × 𝐾1,𝑛) = 3.              

Proof.  Let 𝑉(𝐾𝑚) = {𝑢1, 𝑢2, 𝑢3, . . . , 𝑢𝑚} and 𝑉(𝐾1,𝑛) = {𝑣0, 𝑣1, 𝑣2, . . . , 𝑣𝑛} where 𝑣0 is the 

full degree vertex of 𝐾1,𝑛. Then, 𝑉(𝐾𝑚 × 𝐾1,𝑛) = {(𝑢𝑖, 𝑣𝑗)/1 ≤ 𝑖 ≤ 𝑚, 0 ≤ 𝑗 ≤ 𝑛} with 

cardinality (𝑛 + 1)𝑚. The vertex set of 𝐾𝑚 × 𝐾1,𝑛 can be partitioned into two partite sets 𝑉1, 𝑉2 

where 𝑉1 = {(𝑢𝑖, 𝑣0)/1 ≤ 𝑖 ≤ 𝑚} and 𝑉2 = 𝑉(𝐾𝑚 × 𝐾1,𝑛)\𝑉1. Also, no two vertices of 𝑉1 and 

no two vertices of 𝑉2 are adjacent. Thus, 𝜒(𝐾𝑚 × 𝐾1,𝑛) = 2. Furthermore, every vertex (𝑢𝑖, 𝑣0) 

in 𝑉1 is adjacent to all the vertices of 𝑉2 except (𝑢𝑖 , 𝑣𝑗),1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛. Also, each vertex 

(𝑢𝑖, 𝑣𝑗),1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛 of 𝑉2 is adjacent to all the vertices of 𝑉1 except the vertex with 

same 𝑖. Let 𝐷 = {(𝑢1, 𝑣0), (𝑢2, 𝑣0), (𝑢1, 𝑣1)}. Then 𝐷 is a restrained dominating set of 𝐾𝑚 ×

𝐾1,𝑛 and 𝛾𝑟(𝐾𝑚 × 𝐾1,𝑛) ≤ |𝐷| = 3. Since 𝐾𝑚 × 𝐾1,𝑛 is a bipartite graph, every restrained 

dominating set must contain a vertex from 𝑉1 and another vertex from 𝑉2. Let 𝑥 ∈ 𝑉1, 𝑦 ∈ 𝑉2 

and 𝑥𝑦 ∉ 𝐸(𝐾𝑚 × 𝐾1,𝑛). Then 𝑥 = (𝑢1, 𝑣0) and 𝑦 = (𝑢1, 𝑣𝑗) for any 𝑗 ≠ 0, and (𝑢1, 𝑣𝑗) for 

remaining 𝑗′𝑠 is not dominated by 𝑥 and 𝑦. Thus, choosing another vertex from 𝑉1 dominates 

all the remaining vertices which are not dominated. Suppose 𝑥𝑦 ∈ 𝐸(𝐾𝑚 × 𝐾1,𝑛). Then, 𝑥 =

(𝑢1, 𝑣0) and 𝑦 = (𝑢2, 𝑣1) dominates all the vertices except (𝑢2, 𝑣0) ∈ 𝑉1 and (𝑢1, 𝑣𝑗) ∈ 𝑉2. 

Thus 𝑥, 𝑦 and (𝑢2, 𝑣0) forms a restrained dominating set. From both the cases, 𝛾𝑟(𝐾𝑚 ×

𝐾1,𝑛) ≥ 3. Therefore, 𝛾𝑟(𝐾𝑚 × 𝐾1,𝑛) = 3. Since (𝑢2, 𝑣0)(𝑢1, 𝑣1) ∈ 𝐸(𝐾𝑚 × 𝐾1,𝑛), 𝜒(⟨𝐷⟩) =

2 = 𝜒(𝐾𝑚 × 𝐾1,𝑛). Therefore, 𝐷 is a chromatic restrained dominating set of 𝐾𝑚 × 𝐾1,𝑛 and 

𝛾𝑟
𝑐(𝐾𝑚 × 𝐾1,𝑛) = |𝐷| = 3.  

Observation 2.6. For any 𝑛 ≥ 3, 𝛾𝑟
𝑐(𝐾3 × 𝑃𝑛) =

{
 
 

 
   

2𝑛

3
+ 2    𝑖𝑓 𝑛 ≡ 0(𝑚𝑜𝑑 3)

2 ⌊
𝑛

3
⌋ + 2  𝑖𝑓 𝑛 ≡ 1(𝑚𝑜𝑑 3)

2 ⌈
𝑛

3
⌉ + 1  𝑖𝑓 𝑛 ≡ 2(𝑚𝑜𝑑 3)

.  
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Theorem 2.7. For any 𝑚 > 3 and 𝑛 ≥ 2,  𝛾𝑟
𝑐(𝐾𝑚 × 𝑃𝑛) =

{
 
 

 
  
2𝑛

3
+ 1     𝑖𝑓 𝑛 ≡ 0(𝑚𝑜𝑑 3)

2 ⌊
𝑛

3
⌋ + 2   𝑖𝑓 𝑛 ≡ 1(𝑚𝑜𝑑 3)

2 ⌈
𝑛

3
⌉ + 1   𝑖𝑓 𝑛 ≡ 2(𝑚𝑜𝑑 3)

 

Proof. Let 𝑉(𝐾𝑚) = {𝑢𝑖/1 ≤ 𝑖 ≤ 𝑚} and 𝑉(𝑃𝑛) = {𝑣𝑗/1 ≤ 𝑗 ≤ 𝑛}. Then 𝑉(𝐾𝑚 × 𝑃𝑛) =

{(𝑢𝑖, 𝑣𝑗)/1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛} and |𝑉(𝐾𝑚 × 𝑃𝑛)| = 𝑚𝑛. Now, the vertex set can be divided 

into two subsets 𝑉1, 𝑉2 where 𝑉1 = {(𝑢𝑖, 𝑣𝑗)/1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛 𝑎𝑛𝑑  𝑗  𝑖𝑠  𝑜𝑑𝑑 } and 𝑉2 =

{(𝑢𝑖, 𝑣𝑗)/1 ≤ 𝑖 ≤ 𝑚, 2 ≤ 𝑗 ≤ 𝑛 𝑎𝑛𝑑  𝑗  𝑖𝑠  𝑒𝑣𝑒𝑛 }. Also, 𝑉1 ∩ 𝑉2 = 𝛷. Furthermore, no two 

vertices of 𝑉1 and no two vertices of 𝑉2 are adjacent. Then, 𝜒(⟨𝑉1⟩) = 1 and 𝜒(⟨𝑉2⟩) = 1. This 

implies that, 𝜒(𝐾𝑚 × 𝑃𝑛) = 2. Moreover, {(𝑢1, 𝑣𝑗)/1 ≤ 𝑗 ≤ 𝑛} represents the first row of 

𝐾𝑚 × 𝑃𝑛 and {(𝑢𝑖, 𝑣1)/1 ≤ 𝑖 ≤ 𝑚} represents the first column of 𝐾𝑚 × 𝑃𝑛. Likewise, 𝐾𝑚 × 𝑃𝑛 

contains 𝑚 rows and 𝑛 columns. Now, let us consider the following three cases.   

Case (i): 𝑛 ≡ 0(𝑚𝑜𝑑 3)  

Let 𝐷1 = {(𝑢1, 𝑣1), (𝑢1, 𝑣2), (𝑢2, 𝑣4), (𝑢2, 𝑣5), (𝑢1, 𝑣7), (𝑢1, 𝑣8), … , (𝑢𝑘, 𝑣𝑛−2), (𝑢𝑘, 𝑣𝑛−1),

(𝑢𝑙, 𝑣𝑛−1)} where 𝑘 = 1, 𝑙 = 2 if 𝑛 is odd and 𝑘 = 2, 𝑙 = 1 if 𝑛 is even. Then, 𝐷1 is a 

dominating set of 𝐾𝑚 × 𝑃𝑛, since the vertices of 𝑉(𝐾𝑚 × 𝑃𝑛)\𝐷1 which belongs to the first row 

are dominated by a vertex of 𝐷1 belonging to second row, the vertices of 𝑉(𝐾𝑚 × 𝑃𝑛)\𝐷1 which 

belongs to the second row are adjacent to a vertex of 𝐷1 belonging to the first row and all the 

vertices in the remaining rows are adjacent to some vertex of 𝐷1. Since ⟨𝑉(𝐾𝑚 × 𝑃𝑛) − 𝐷1⟩ has 

no isolated vertices, 𝐷1 is a restrained dominating set of 𝐾𝑚 × 𝑃𝑛 and 𝛾𝑟(𝐾𝑚 × 𝑃𝑛) ≤ |𝐷1| =

2𝑛

3
+ 1. Since 𝛾(𝐾𝑚 × 𝑃𝑛) =

2𝑛

3
+ 1, 𝛾𝑟(𝐾𝑚 × 𝑃𝑛) ≥

2𝑛

3
+ 1. Therefore, 𝛾𝑟(𝐾𝑚 × 𝑃𝑛) =

2𝑛

3
+

1. Since at least two vertices of any minimum restrained dominating set of 𝐾𝑚 × 𝑃𝑛 is adjacent, 

𝜒(⟨𝐷1⟩) = 2 = 𝜒(𝐾𝑚 × 𝑃𝑛). Therefore, 𝐷1 is a chromatic restrained dominating set of 𝐾𝑚 ×

𝑃𝑛 and 𝛾𝑟
𝑐(𝐾𝑚 × 𝑃𝑛) = |𝐷1| =

2𝑛

3
+ 1.   

Case (ii): 𝑛 ≡ 1(𝑚𝑜𝑑 3)  

Let          𝐷2 = {(𝑢1, 𝑣1), (𝑢1, 𝑣2), (𝑢2, 𝑣4), (𝑢2, 𝑣5), (𝑢1, 𝑣7), (𝑢1, 𝑣8), … , (𝑢𝑘, 𝑣𝑛−3), (𝑢𝑘, 

𝑣𝑛−2), (𝑢𝑙, 𝑣𝑛−1), (𝑢𝑙, 𝑣𝑛)} where 𝑘 = 1, 𝑙 = 2 if 𝑛 is even and 𝑘 = 2, 𝑙 = 1 if 𝑛 is odd. Then, 

𝐷2 is a dominating set, since every vertex in 𝑉(𝐾𝑚 × 𝑃𝑛)\𝐷2 is adjacent to at least one vertex 

of 𝐷2. Also, every vertex of 𝑉(𝐾𝑚 × 𝑃𝑛)\𝐷2 is adjacent to at least one another vertex of 

𝑉(𝐾𝑚 × 𝑃𝑛)\𝐷2 and so 𝐷2 is a restrained dominating set. Thus, 𝛾𝑟(𝐾𝑚 × 𝑃𝑛) ≤ |𝐷2| = 2 ⌊
𝑛

3
⌋ +
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2. Since there exists no restrained dominating set with cardinality less than 2 ⌊
𝑛

3
⌋ + 2, 𝛾𝑟(𝐾𝑚 ×

𝑃𝑛) = 2 ⌊
𝑛

3
⌋ + 2. Also, (𝑢𝑘, 𝑣𝑛−2)(𝑢𝑙, 𝑣𝑛−1) ∈ 𝐸(𝐾𝑚 × 𝑃𝑛), 𝜒(⟨𝐷2⟩) = 2 = 𝜒(𝐾𝑚 × 𝑃𝑛). 

Therefore, 𝐷2 is a chromatic restrained dominating set of 𝐾𝑚 × 𝑃𝑛 and 𝛾𝑟
𝑐(𝐾𝑚 × 𝑃𝑛) = |𝐷2| =

2 ⌊
𝑛

3
⌋ + 2.   

Case (iii): 𝑛 ≡ 2(𝑚𝑜𝑑 3)  

Let 𝐷3 = {(𝑢1, 𝑣1), (𝑢1, 𝑣2), (𝑢2, 𝑣4), (𝑢2, 𝑣5), (𝑢1, 𝑣7), (𝑢1, 𝑣8), . . . , (𝑢𝑘 , 𝑣𝑛−1), (𝑢𝑘, 𝑣𝑛)} 

where 𝑘 = 1 if 𝑛 is even and 𝑘 = 2 if 𝑛 is odd where |𝐷3| = 2 ⌈
𝑛

3
⌉. Clearly, 𝐷3 is a restrained 

dominating set of 𝐾𝑚 × 𝑃𝑛 since every vertex of 𝑉(𝐾𝑚 × 𝑃𝑛)\𝐷3 is adjacent to at least one 

vertex of 𝐷3 and is adjacent to at least one other vertex of 𝑉(𝐾𝑚 × 𝑃𝑛)\𝐷3. Therefore, 𝛾𝑟(𝐾𝑚 ×

𝑃𝑛) ≤ |𝐷3| = 2 ⌈
𝑛

3
⌉. Since 𝛾(𝐾𝑚 × 𝑃𝑛) = 2 ⌈

𝑛

3
⌉, 𝛾𝑟(𝐾𝑚 × 𝑃𝑛) ≥ 2 ⌈

𝑛

3
⌉. Thus, 𝛾𝑟(𝐾𝑚 × 𝑃𝑛) =

2 ⌈
𝑛

3
⌉. Since any subgraph induced by a minimum restrained dominating set contains only 

isolated vertices, 𝜒(⟨𝐷3⟩) = 1 ≠ 𝜒(𝐾𝑚 × 𝑃𝑛). Therefore, 𝐷3 is not a chromatic restrained 

dominating set of 𝐾𝑚 × 𝑃𝑛. Consider 𝐷4 = 𝐷3 ∪ {𝑢𝑙 , 𝑣𝑛} where 𝑙 = 1 if 𝑘 = 2 and 𝑙 = 2 if 𝑘 =

1. Since (𝑢𝑘, 𝑣𝑛−1)(𝑢𝑙, 𝑣𝑛) ∈ 𝐸(𝐾𝑚 × 𝑃𝑛), 𝜒(⟨𝐷4⟩) = 2 = 𝜒(𝐾𝑚 × 𝑃𝑛). Also, 𝐷4 is a 

restrained dominating set of 𝐾𝑚 × 𝑃𝑛. Therefore, 𝐷4 is a chromatic restrained dominating set 

of 𝐾𝑚 × 𝑃𝑛 and 𝛾𝑟
𝑐(𝐾𝑚 × 𝑃𝑛) ≤ |𝐷4| = |𝐷3| + 1 = 2 ⌈

𝑛

3
⌉ + 1. Suppose, there exists a 

chromatic restrained dominating set 𝑆 such that |𝑆| < 2 ⌈
𝑛

3
⌉ + 1. Then |𝐷3| < |𝑆| < |𝐷4| =

|𝐷3| + 1, which is not possible. Therefore, 𝛾𝑟
𝑐(𝐾𝑚 × 𝑃𝑛) = 2 ⌈

𝑛

3
⌉ + 1, where 𝑛 ≡ 2(𝑚𝑜𝑑 3).  

Theorem 2.8. Let |𝑉(𝐾2 × 𝐶𝑚)| = 𝑛 and 𝑛 = 2𝑚. Then  

(i) if 𝑚 is odd, 𝛾𝑟
𝑐(𝐾2 × 𝐶𝑚) =

{
 
 

 
   ⌈

𝑛

3
⌉        𝑖𝑓 𝑛 ≡ 1(𝑚𝑜𝑑 3)

⌈
𝑛

3
⌉ + 1  𝑖𝑓 𝑛 ≡ 2(𝑚𝑜𝑑 3)

 
𝑛

3
+ 2    𝑖𝑓 𝑛 ≡ 0(𝑚𝑜𝑑 3)

 

(ii) if 𝑚 is even, 𝛾𝑟
𝑐(𝐾2 × 𝐶𝑚) =

{
 
 

 
     2 ⌈

𝑚

3
⌉           𝑖𝑓 𝑚 ≡ 1(𝑚𝑜𝑑 3)

2 (⌈
𝑚

3
⌉ + 1)   𝑖𝑓 𝑚 ≡ 2(𝑚𝑜𝑑 3)

  2 (
𝑚

3
+ 1)    𝑖𝑓 𝑚 ≡ 0(𝑚𝑜𝑑 3)

. 



Proceedings of the International Conference on Algebraic Graph Theory,                                              
Graph Theory and Topology – 9th & 10th January 2025 

137 
 
ISBN: 978-93-48505-23-1 

Proof.  Let 𝑉(𝐾2) = {𝑢1, 𝑢2} and 𝑉(𝐶𝑚) = {𝑣1, 𝑣2, 𝑣3, . . . , 𝑣𝑚}. Then 𝑉(𝐾2 × 𝐶𝑚) =

{(𝑢1, 𝑣𝑖), (𝑢2, 𝑣𝑖)/1 ≤ 𝑖 ≤ 𝑚} and |𝑉(𝐾2 × 𝐶𝑚)| = 2𝑚 where 𝑛 = 2𝑚. Now, the vertex set 

𝑉(𝐾2 × 𝐶𝑚) can be bipartitioned into disjoint subsets 𝑉1 = {(𝑢1, 𝑣𝑖}/1 ≤ 𝑖 ≤ 𝑚} and 𝑉2 =

{(𝑢2, 𝑣𝑖)/1 ≤ 𝑖 ≤ 𝑚}. Since, no two vertices of 𝑉1 and no two vertices of 𝑉2 are adjacent, 

𝜒(⟨𝑉1⟩) = 1 = 𝜒(⟨𝑉2⟩). Then, 𝜒(𝐾2 × 𝐶𝑚) = 2. Clearly, 𝐾2 × 𝐶𝑚 contains two rows and 𝑚 

columns.   

Case (i): 𝑚 is odd  

Then 𝐾2 × 𝐶𝑚 is a cycle on 2𝑚 vertices i.e,𝐶2𝑚 and  𝛾𝑟
𝑐(𝐾2 × 𝐶𝑚) =

{
 
 

 
   ⌈

𝑛

3
⌉        𝑖𝑓 𝑛 ≡ 1(𝑚𝑜𝑑 3)

⌈
𝑛

3
⌉ + 1  𝑖𝑓 𝑛 ≡ 2(𝑚𝑜𝑑 3)

 
𝑛

3
+ 2    𝑖𝑓 𝑛 ≡ 0(𝑚𝑜𝑑 3)

. 

Case (ii): 𝑚 is even  

Then 𝐾2 × 𝐶𝑚 is the union of two cycle graphs 𝐶𝑚. Thus, 𝛾𝑟
𝑐(𝐾2 × 𝐶𝑚) = 𝛾𝑟(𝐾2 × 𝐶𝑚) +

𝛾𝑟
𝑐(𝐾2 × 𝐶𝑚).   

Subcase (i): 𝑚 ≡ 1(𝑚𝑜𝑑 3)  

Then, 𝛾𝑟
𝑐(𝐶𝑚) = 𝛾𝑟(𝐶𝑚) = ⌈

𝑚

3
⌉. Therefore, 𝛾𝑟

𝑐(𝐾2 × 𝐶𝑚) = 2 ⌈
𝑚

3
⌉.   

Subcase (ii): 𝑚 ≡ 2(𝑚𝑜𝑑 3)  

Then 𝛾𝑟
𝑐(𝐶𝑚) = 𝛾𝑟(𝐶𝑚) = ⌈

𝑚

3
⌉ + 1. Therefore, 𝛾𝑟

𝑐(𝐾2 × 𝐶𝑚) = 2 (⌈
𝑚

3
⌉ + 1).   

Subcase (iii): 𝑚 ≡ 0(𝑚𝑜𝑑 3)  

Then 𝛾𝑟(𝐶𝑚) =
𝑚

3
 and 𝛾𝑟

𝑐(𝐶𝑚) =
𝑚

3
+ 2. Therefore, 𝛾𝑟

𝑐(𝐾2 × 𝐶𝑚) =
𝑚

3
+
𝑚

3
+ 2 = 2(

𝑚

3
+ 1).  

Theorem 2.9. γrc(P2 × Pn) = 2 ⌈
n−2

3
⌉ + 4.              

Proof.  Let the vertex set of 𝑃2 be 𝑉(𝑃2) = {𝑢1, 𝑢2} and the vertex set of 𝑃𝑛 be {𝑣1, 𝑣2, 𝑣3, …, 

𝑣𝑛}. Then, 𝑉(𝑃2 × 𝑃𝑛) = {(𝑢1, 𝑣1), (𝑢1, 𝑣2), (𝑢1, 𝑣3),… , (𝑢1, 𝑣𝑛), (𝑢2, 𝑣1), (𝑢2, 𝑣2),… , (𝑢2, 𝑣𝑛)} 

where cardinality of 𝑃2 × 𝑃𝑛 is 2𝑛. Clearly, there exists two disjoint partitions 𝑉1, 𝑉2 on the 

vertex set of 𝑃2 × 𝑃𝑛 where 𝑉1 = {(𝑢1, 𝑣1), (𝑢1, 𝑣2), (𝑢1, 𝑣3), … , (𝑢1, 𝑣𝑛)} and 𝑉2 =

{(𝑢2, 𝑣1), (𝑢2, 𝑣2), (𝑢2, 𝑣3), . . . , (𝑢2, 𝑣𝑛)}. Since 𝑉1 and 𝑉2 are independent, 𝜒(⟨𝑉1⟩) =
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𝜒(⟨𝑉2⟩) = 1. Then, 𝜒(𝑃2 × 𝑃𝑛) = 2 and 𝑃2 × 𝑃𝑛 is a bipartite graph containing 𝑛 columns. 

Now, 𝑃2 × 𝑃𝑛 is the disjoint union of two path graphs 𝑃1 and 𝑃2 where |𝑉(𝑃1)| = |𝑉(𝑃2)| = 𝑛 

and 𝛾𝑟
𝑐(𝑃2 × 𝑃𝑛) = 𝛾𝑟

𝑐(𝑃𝑛) + 𝛾𝑟(𝑃𝑛). Now, the following three cases can be considered.   

Case (i): 𝑛 ≡ 0(𝑚𝑜𝑑 3)  

Then 𝛾𝑟
𝑐(𝑃𝑛) = 𝛾𝑟(𝑃𝑛) =

𝑛

3
+ 2 and 𝛾𝑟

𝑐(𝑃2 × 𝑃𝑛) = (
𝑛

3
+ 2) + (

𝑛

3
+ 2) = 2 (

𝑛

3
) + 4. 

Therefore, 𝛾𝑟
𝑐(𝑃2 × 𝑃𝑛) = 2 ⌈

𝑛−2

3
⌉ + 4.   

Case(ii): 𝑛 ≡ 1(𝑚𝑜𝑑 3)  

Then 𝛾𝑟(𝑃𝑛) = ⌈
𝑛

3
⌉ and 𝛾𝑟

𝑐(𝑃𝑛) = ⌈
𝑛

3
⌉ + 2. Now, 𝛾𝑟

𝑐(𝑃2 × 𝑃𝑛) = ⌈
𝑛

3
⌉ + ⌈

𝑛

3
⌉ + 2 = 2 ⌈

𝑛

3
⌉ + 2. 

Therefore, 𝛾𝑟
𝑐(𝑃2 × 𝑃𝑛) = 2 ⌈

𝑛−2

3
⌉ + 4.   

Case (iii): 𝑛 ≡ 2(𝑚𝑜𝑑 3) 

Then 𝛾𝑟(𝑃𝑛) = 𝛾𝑟
𝑐(𝑃𝑛) = ⌈

𝑛

3
⌉ + 1 and 𝛾𝑟

𝑐(𝑃2 × 𝑃𝑛) = 2 ⌈
𝑛

3
⌉ + 2. Therefore, 𝛾𝑟

𝑐(𝑃2 × 𝑃𝑛) =

2 ⌈
𝑛−2

3
⌉ + 4.  

From all the cases, 𝛾𝑟
𝑐(𝑃2 × 𝑃𝑛) = 2 ⌈

𝑛−2

3
⌉ + 4.  

Theorem 2.10. Let 𝑛 ≥ 5. Then 𝛾𝑟
𝑐(𝑃4 × 𝑃𝑛) = {

𝑛 + 5  𝑖𝑓 𝑛 ≡ 1,3(𝑚𝑜𝑑 4)
𝑛 + 4  𝑖𝑓 𝑛 ≡ 0,2(𝑚𝑜𝑑 4)

.              

Proof.  Let 𝑉(𝑃4) = {𝑢1, 𝑢2, 𝑢3, 𝑢4} and 𝑉(𝑃𝑛) = {𝑣𝑖/1 ≤ 𝑖 ≤ 𝑛} where |𝑉(𝑃𝑛)| = 𝑛. Then 

𝑉(𝑃4 × 𝑃𝑛) = {(𝑢1, 𝑣𝑖), (𝑢2, 𝑣𝑖), (𝑢3, 𝑣𝑖), (𝑢4, 𝑣𝑖)/1 ≤ 𝑖 ≤ 𝑛} with cardinality 4𝑛. Now, the 

vertex set can be divided into four disjoint subsets 𝑉1, 𝑉2, 𝑉3, 𝑉4 where 𝑉1 = {(𝑢1, 𝑣𝑖)/1 ≤ 𝑖 ≤

𝑛}, 𝑉2 = {(𝑢2, 𝑣𝑖)/1 ≤ 𝑖 ≤ 𝑛}, 𝑉3 = {(𝑢3, 𝑣𝑖)/1 ≤ 𝑖 ≤ 𝑛} and 𝑉4 = {(𝑢4, 𝑣𝑖)/1 ≤ 𝑖 ≤ 𝑛} 

where the vertices of each subset represents a row. Clearly, 𝑉1, 𝑉2, 𝑉3 and 𝑉4 are independent 

and so, 𝜒(⟨𝑉𝑗⟩) = 1, 𝑗 = 1 to 4. Also, there exists adjacency between vertices of (i) 𝑉1, 𝑉2, (ii) 

𝑉2, 𝑉3 and (iii) 𝑉3, 𝑉4. Thus, 𝜒(𝑃4 × 𝑃𝑛) = 2. Moreover, 𝑃4 × 𝑃𝑛 contains 𝑛 columns 

{(uj, v1), (uj, v2), (uj, v3), . . . , (uj, vn)/1 ≤ j ≤ 4} where each j represents a column.   

Case (i): 𝑛 ≡ 0(𝑚𝑜𝑑 4) 

Let 𝐷1 = {(𝑢2, 𝑣4), (𝑢3, 𝑣4), (𝑢2, 𝑣5), (𝑢3, 𝑣5), (𝑢2, 𝑣8), (𝑢3, 𝑣8), (𝑢2, 𝑣9), (𝑢3, 𝑣9), …  , 

(𝑢2, 𝑣𝑛−4), (𝑢3, 𝑣𝑛−4), (𝑢2, 𝑣𝑛−3), (𝑢3, 𝑣𝑛−3) ∪ {(𝑢1, 𝑣1), (𝑢2, 𝑣1), (𝑢3, 𝑣1), (𝑢4, 𝑣1), (𝑢1, 𝑣𝑛), 
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(𝑢2, 𝑣𝑛), (𝑢3, 𝑣𝑛), (𝑢4, 𝑣𝑛)} and |𝐷1| = 4 (
𝑛−4

4
) + 8 = 𝑛 + 4. Clearly, 𝐷1 is a dominating set 

of 𝑃4 × 𝑃𝑛 where the vertices of 𝑉(𝑃4 × 𝑃𝑛)\𝐷1 which belongs to the first and third row are 

dominated by the elements of 𝐷1 belonging to second row, and the vertices of 𝑉(𝑃4 × 𝑃𝑛)\𝐷1 

belonging to the second and fourth row are dominated by the elements of 𝐷1 that belongs to 

third row. Also, for each vertex of 𝑉(𝑃4 × 𝑃𝑛)\𝐷1, there exists an adjacent vertex in 𝑉(𝑃4 ×

𝑃𝑛)\𝐷1 and so 𝐷1 is a restrained dominating set. Thus, 𝛾𝑟(𝑃4 × 𝑃𝑛) ≤ |𝐷1| = 𝑛 + 4. On 

removing any single vertex of 𝐷1, there exists at least one vertex in V(P4 × Pn)\D1 which is 

not adjacent to any vertex of D1 and any other minimum restrained dominating set is of 

cardinality 𝑛 + 4. Thus, 𝛾𝑟(𝑃4 × 𝑃𝑛) = 𝑛 + 4. Since ⟨𝐷1⟩ contains path on two vertices, 

𝜒(⟨𝐷1⟩) = 2 = 𝜒(𝑃4 × 𝑃𝑛). Therefore, 𝐷1 is a chromatic restrained dominating set of 𝑃4 × 𝑃𝑛 

and 𝛾𝑟
𝑐(𝑃4 × 𝑃𝑛) = 𝑛 + 4 where 𝑛 ≡ 0(𝑚𝑜𝑑 4).   

Case (ii): n ≡ 1(mod 4)  

 Let 𝐷2 = {(𝑢2, 𝑣4𝑗), (𝑢3, 𝑣4𝑗), (𝑢2, 𝑣4𝑗+1), (𝑢3, 𝑣4𝑗+1) /1 ≤ 𝑗 ≤ ⌊
𝑛

4
⌋}  ∪   {(𝑢1, 𝑣1),

(𝑢2, 𝑣1), (𝑢3 , 𝑣1), (𝑢4, 𝑣1), (𝑢1, 𝑣𝑛), (𝑢4, 𝑣𝑛)} where |𝐷2| = 4 (
𝑛−1

4
) + 6 = 𝑛 + 5. Clearly, 𝐷2 

is a dominating set, since for every vertex in 𝑉\𝐷2, there exists at least one adjacent vertex in 

𝐷2. Also, 𝐷2 is a restrained dominating set as ⟨𝑉(𝑃4 × 𝑃𝑛) − 𝐷2⟩ does not contains isolated 

vertices. Hence, 𝛾𝑟(𝑃4 × 𝑃𝑛) ≤ |𝐷2| = 𝑛 + 5. Since, there exists no restrained dominating sets 

of 𝑃4 × 𝑃𝑛 with cardinality less than 𝑛 + 5, 𝛾𝑟(𝑃4 × 𝑃𝑛) ≥ 𝑛 + 5. Thus, 𝛾𝑟(𝑃4 × 𝑃𝑛) = 𝑛 + 5. 

Since ⟨𝐷2⟩ contains path and isloated vertices, 𝜒(⟨𝐷2⟩) = 2. This implies that, 𝐷2 is a 

chromatic restrained dominaating set of 𝑃4 × 𝑃𝑛. Therefore, 𝛾𝑟
𝑐(𝑃4 × 𝑃𝑛) = |𝐷2| = 𝑛 + 5, 𝑛 ≡

1(𝑚𝑜𝑑 4).  

Case (iii): 𝑛 ≡ 2(𝑚𝑜𝑑 4)  

Let 𝐷3 = {(𝑢2, 𝑣4𝑗), (𝑢3, 𝑣4𝑗), (𝑢2, 𝑣4𝑗+1), (𝑢3, 𝑣4𝑗+1)/1 ≤ 𝑗 ≤
𝑛−2

4
}  ∪  {(𝑢1, 𝑣1), (𝑢2, 𝑣1),

(𝑢3, 𝑣1), (𝑢4, 𝑣1), (𝑢1, 𝑣𝑛), (𝑢4, 𝑣𝑛)} and 𝐷3 is of cardinality 4 (
𝑛−2

4
) + 6 = 𝑛 + 4. Clearly, 𝐷3 

is a restrained dominating set since every vertex in 𝑉(𝑃4 × 𝑃𝑛)\𝐷3 is adjacent to at least one 

vertex of 𝐷3 and is adjacent to at least one vertex of 𝑉(𝑃4 × 𝑃𝑛)\𝐷3. Then, 𝛾𝑟(𝑃4 × 𝑃𝑛) ≤

|𝐷3| = 𝑛 + 4. Suppose there exists a restrained dominating set 𝑆 such that |𝑆| < 𝑛 + 4. Since 

𝛾(𝑃4 × 𝑃𝑛) = 𝑛 + 2 [1], 𝑛 + 2 ≤ |𝑆| < 𝑛 + 4. But there does not exists a restrained 

dominating set with cardinality 𝑛 + 2 or 𝑛 + 3. Thus, 𝛾𝑟(𝑃4 × 𝑃𝑛) = 𝑛 + 4. Since 
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(𝑢2, 𝑣4)(𝑢3, 𝑣5) ∈ 𝐸(𝑃4 × 𝑃𝑛), 𝜒(⟨𝐷3⟩) = 2 = 𝜒(𝑃4 × 𝑃𝑛). Then, 𝐷3 is a chromatic restrained 

dominating set and 𝛾𝑟
𝑐(𝑃4 × 𝑃𝑛) = |𝐷3| = 𝑛 + 4.   

Case(iv): 𝑛 ≡ 3(𝑚𝑜𝑑 4)  

Let 𝐷4 = {(𝑢2, 𝑣4𝑗), (𝑢3, 𝑣4𝑗), (𝑢2, 𝑣4𝑗+1), (𝑢3, 𝑣4𝑗+1)/1 ≤ 𝑗 ≤
𝑛−3

4
} ∪ {(𝑢1, 𝑣1), (𝑢2, 𝑣1),

(𝑢3, 𝑣1), (𝑢4, 𝑣1), (𝑢1, 𝑣𝑛−1), (𝑢4, 𝑣𝑛−1), (𝑢1, 𝑣𝑛), (𝑢4, 𝑣𝑛)} and |𝐷4| = 4 (
𝑛−3

4
) + 8 = 𝑛 + 5. 

Then, 𝐷4 is a restrained dominating set of 𝑃4 × 𝑃𝑛, since ⟨𝑉(𝑃4 × 𝑃𝑛) − 𝐷4⟩ contains no 

isolated vertex. Thus, 𝛾𝑟(𝑃4 × 𝑃𝑛) ≤ |𝐷4| = 𝑛 + 5. But, there does not exists any restrained 

dominating set with cardinality less than 𝑛 + 5. Thus, 𝛾𝑟(𝑃4 × 𝑃𝑛) = 𝑛 + 5. Also, 𝜒(⟨𝐷4⟩) =

2 = 𝜒(𝑃4 × 𝑃𝑛). Therefore, 𝐷4 is a chromatic restrained dominating set of 𝑃4 × 𝑃𝑛 and 𝛾𝑟
𝑐(𝑃4 ×

𝑃𝑛) = |𝐷4| = 𝑛 + 5, where 𝑛 ≡ 3(𝑚𝑜𝑑 4).  

Theorem 2.11. For 𝑚, 𝑛 ≥ 2, 𝛾𝑟
𝑐(𝐾1,𝑚 × 𝐾1,𝑛) = 𝑚𝑛 + 3. 

Proof.  Let 𝑉(𝐾1,𝑚) = {𝑢0, 𝑢1, 𝑢2, . . . , 𝑢𝑚} and 𝑉(𝐾1,𝑛) = {𝑣0, 𝑣1, 𝑣2, . . . , 𝑣𝑚} where 𝑢0 and 𝑣0 

are the full degree vertices of 𝐾1,𝑚 and 𝐾1,𝑛. Then 𝑉(𝐾1,𝑚 × 𝐾1,𝑛) = {(𝑢𝑖, 𝑣𝑗),0 ≤ 𝑖 ≤ 𝑚, 0 ≤

𝑗 ≤ 𝑛} and |𝑉(𝐾1,𝑚 × 𝑉(𝐾1,𝑛)| = (𝑚 + 1)(𝑛 + 1). Now, the vertex set of 𝐾1,𝑚 × 𝐾1,𝑛 can be 

partitioned into three disjoint subsets 𝑉1, 𝑉2, 𝑉3 where 𝑉1 = {(𝑢0, 𝑣0), (𝑢𝑖, 𝑣𝑗)/1 ≤ 𝑖 ≤ 𝑚, 1 ≤

𝑗 ≤ 𝑛}, 𝑉2 = {(𝑢0, 𝑣𝑗)/1 ≤ 𝑗 ≤ 𝑛} and 𝑉3 = {(𝑢𝑖 , 𝑣0)/1 ≤ 𝑖 ≤ 𝑚}. Furthermore, vertices of 

𝑉1 forms a star graph 𝐾1,𝑚𝑛 and the vertices of 𝑉2 together with 𝑉3 forms a complete bipartite 

graph. Also, 𝑉1 ∩ (𝑉2 ∪ 𝑉3) =  ∅. Then 𝜒(𝐾1,𝑚 × 𝐾1,𝑛) = 2. Let 𝐷 = 𝑉1 ∪ {(𝑢0, 𝑣1), (𝑢1, 𝑣0)} 

where (𝑢0, 𝑣1) ∈ 𝑉2 and (𝑢1, 𝑣0) ∈ 𝑉3. Clearly, D is a restrained dominating set of 𝐾1,𝑚 × 𝐾1,𝑛. 

Then, 𝛾𝑟(𝐾1,𝑚 × 𝐾1,𝑛) ≤ |𝐷| = 𝑚𝑛 + 3. Since, any restrained dominating set of 𝐾1,𝑚 × 𝐾1,𝑛 

must contain all the vertices of 𝑉1, a vertex from 𝑉2 and a vertex from 𝑉3, 𝛾𝑟(𝐾1,𝑚 × 𝐾1,𝑛) ≥

𝑚𝑛 + 3. Therefore, 𝛾𝑟(𝐾1,𝑚 × 𝐾1,𝑛) = 𝑚𝑛 + 3. Also, 𝜒(⟨𝐷⟩) = 2 = 𝜒(𝐾1,𝑚 × 𝐾1,𝑛). 

Therefore, D is a chromatic restrained dominating set of 𝐾1,𝑚 × 𝐾1,𝑛 and so, 𝛾𝑟
𝑐(𝐾1,𝑚 × 𝐾1,𝑛) =

𝑚𝑛 + 3. 

Observation 2.12. For any 𝑛 > 3, 𝛾𝑟
𝑐(𝐾1,𝑚 × 𝑃𝑛) = {

2𝑚 + 𝑛 − 1  𝑖𝑓  𝑛 ≡ 0,1(𝑚𝑜𝑑 4)
2𝑚 + 𝑛 − 2  𝑖𝑓  𝑛 ≡ 2,3(𝑚𝑜𝑑 4)

.    

Observation 2.13.  (i) 𝛾𝑟𝑐(𝐾1,𝑚 × 𝑃2) = 2(𝑚 + 1) (ii) 𝛾𝑟
𝑐(𝐾1,𝑚 × 𝑃3) = 2𝑚 + 3.  
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3. Conclusion 

In this paper, we have determined the chromatic restrained domination number for the 

direct product of certain standard graphs. An encouraging direction for future research is to 

analyse the bounds on the direct product of graphs and characterise the extremal graphs that 

represents the upper and the lower bound of the chromatic restrained domination number in 

direct product of graphs.  
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Abstract 

In this paper, we find some properties of compressed gamma graph of zero-divisor 

graph and extended gamma graph of zero-divisor graph. Let ℤ𝑛 be a finite commutative ring. 

The compressed gamma graph is a graph with vertex set as the collection of all gamma sets of 

the compressed zero-divisor graph 𝛤𝐸(ℤ𝑛) and two distinct vertices 𝑟 and 𝑠 are adjacent if and 

only if |𝑟 ∩ 𝑠| = 𝛾(𝛤𝐸(ℤ𝑛)) − 1. This graph is denoted by 𝛾. 𝛤𝐸(ℤ𝑛). The extended gamma 

graph of zero-divisor graph is a graph with vertex set as the collection of all gamma sets of 

extended zero-divisor graph 𝐸𝛤(ℤ𝑛) and two (not necessarily distinct) vertices 𝑟 and 𝑠 are 

adjacent if and only if |𝑟 ∩ 𝑠| = 𝛾(𝐸𝛤(ℤ𝑛)) − 1. This graph is denoted by 𝛾. 𝐸(𝛤(ℤ𝑛)). 

Keywords: Zero-divisor graph, gamma graph, compressed gamma graph of zero-divisor 

graph, extended gamma graph of zero-divisor graph. 

2020 Mathematics Subject Classification (AMS): 05C25, 05C69, 05C10 

1. Introduction 

  Over the past 20 years, there has been a growing interest in studying algebraic 

structures that utilize graph characteristics, leading to a number of fascinating discoveries and 

questions. Let 𝑅 be a commutative ring with identity and 𝑍(𝑅)∗  be the set of all non-zero zero-

divisors of  R. D.F. Anderson and P.S. Livingston [6], associate a graph called zero-divisor 

graph 𝛤(𝑅) to 𝑅 with vertex set 𝑍(𝑅)∗  and for two distinct 𝑥, 𝑦 ∈  𝑍(𝑅)∗ , the vertices 𝑥 and 

𝑦 are adjacent if and only if 𝑥𝑦 = 0 in 𝑅. [11] A set 𝐷 ⊆ 𝑉 of vertices in a graph 𝐺 = (𝑉, 𝐸) 

is called a dominating set if for every vertex 𝑢 ∈ 𝑉 − 𝐷, there exists a vertex 𝑣 ∈ 𝐷 such that 

𝑣 is adjacent to 𝑢. A dominating set 𝐷 is minimal if no proper subset of 𝐷 is a dominating set. 

The domination number of a graph 𝐺, denoted by 𝛾(𝐺), is the minimum cardinality of a 

minimal dominating set of 𝐺. A dominating set 𝐷 in a graph 𝐺 with cardinality 𝛾 is called 𝛾 − 

mailto:1emebinsha@gmail.com
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set of  𝐺. There are so many domination parameters in the literature and one can refer [10] for 

more details. The relationship between ring-theoretic properties of 𝑅 and graph-theoretic 

properties of 𝛤(𝑅)  has been studied extensively. 

           For any elements 𝑟 and 𝑠 of  𝑅, define 𝑟 ∼ 𝑠 if and only if 𝑎𝑛𝑛𝑅(𝑟) = 𝑎𝑛𝑛𝑅(𝑠). Then 

∼ is an equivalence relation on 𝑅; for any 𝑟 ∈ 𝑅, let [𝑟]𝑅 = {𝑠 ∈| 𝑟 ∼ 𝑠}. For example, it is 

clear that [0]𝑅 = {0}, [1]𝑅 = 𝑅/𝑍(𝑅), and [𝑟]𝑅 ⊆ 𝑍(𝑅)/{0} for every 𝑟 ∈ 𝑅([0]𝑅 ∪ [1]𝑅). 

Furthermore, the operation on the equivalence classes given by [𝑟]𝑅[𝑠]𝑅 = [𝑟𝑠]𝑅 is well-

defined (i.e., ∼ is a congruence relation on 𝑅) and thus makes the set 𝑅𝐸 = {[𝑟]𝑅|𝑟 ∈ 𝑅} into 

a commutative monoid. Moreover, 𝑅𝐸 is a commutative Boolean monoid if 𝑅 is a reduced ring. 

The monoid 𝑅𝐸  has been studied in [ [1], [9], [2], [3], [4] ]. 

           [5]The relation on 𝑅 given by 𝑟 ∼ 𝑠 if and only if  𝑎𝑛𝑛𝑅(𝑟) = 𝑎𝑛𝑛𝑅(𝑠) is an 

equivalence relation. The compressed zero-divisor graph 𝛤𝐸(𝑅)  of R is the (undirected) graph 

with vertices the equivalence classes induced by ∼ other than [0]  and  [1], and distinct vertices 

𝑟 and 𝑠 are adjacent if and only if 𝑟𝑠 = 0.  Let 𝑅𝐸 be the set of equivalence classes for ∼ on  

𝑅. Then 𝑅𝐸 is a commutative monoid with multiplication [𝑟][𝑠] = [𝑟𝑠]. 

       The concept of a zero-divisor graph of a commutative ring 𝑅 was introduced by I. Beck in 

[7]. The compressed zero-divisor graph 𝛤𝐸(𝑅)  (using different notation) was first defined by 

S.B. Mulay in [13], where it was noted in passing that several graph-theoretic properties of 

𝛤(𝑅) remain valid for 𝛤𝐸(𝑅). The compressed zero-divisor graph 𝛤𝐸(𝑅)  has been explicitly 

studied in [ [2], [8], [14] ]. 

         [12]Let 𝑅 be a finite commutative ring with 1 ≠ 0. Then, the extended zero-divisor graph 

𝐸𝛤(𝑅) is defined as the graph with vertex set 𝑅 where two (not necessarily distinct) vertices 

𝑥, 𝑦 ∈ 𝑅 are adjacent if and only if 𝑥𝑦 = 0. In this paper, we find some properties of 

compressed gamma graph of zero-divisor graph and extended gamma graph of zero-diviosr 

graph. Let ℤ𝑛 be a finite commutative ring. The compressed gamma graph of zero-divisor 

graph is a graph with vertex set as the collection of all gamma sets of the compressed zero-

divisor graph 𝛤𝐸(ℤ𝑛)  and two distinct vertices 𝑟 and 𝑠 are adjacent if and only if |𝑟 ∩ 𝑠| =

𝛾(𝛤𝐸(ℤ𝑛)) − 1. This graph is denoted by 𝛾. 𝛤𝐸(ℤ𝑛). The extended gamma graph of zero-divisor 

graph is a graph with vertex set as the collection of all gamma sets of extended zero-divisor 

graph 𝐸𝛤(ℤ𝑛) and two (not necessarily distinct) vertices 𝑟 and 𝑠 are adjacent if and only if 

 |𝑟 ∩ 𝑠| = 𝛾(𝐸𝛤(ℤ𝑛)) − 1. This graph is denoted by 𝛾. 𝐸𝛤(ℤ𝑛) . 
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2. Compressed gamma graph of a Zero-divisor graph 

Definition 2.1. The Compressed gamma graph of a zero-divisor graph is a graph with vertex 

set as the collection of all gamma sets of the compressed zero-divisor graph 𝛤𝐸(ℤ𝑛)  and two 

distinct vertices 𝑟 and 𝑠 are adjacent if and only if |𝑟 ∩ 𝑠| = 𝛾(𝛤𝐸(ℤ𝑛)) − 1. This graph is 

denoted by 𝛾. 𝛤𝐸(ℤ𝑛). 

Example: For n=12 

𝑉(𝛤12) = {2, 3, 4, 6, 8, 9, 10} 

                    

𝑉(𝛤𝐸(ℤ12))  = {[2], [3], [4], [6]} 

                                  

𝑉(𝛾. 𝛤𝐸(ℤ12)). = {{[6], [4]}, {[6], [3]}, {[3], [2]}, {[2], [4]}} 
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Theorem 2.2. If  𝑛 = 𝑝1
𝑘1𝑝2

𝑘2 , 𝑘1, 𝑘2 > 1 where 𝑝1 < 𝑝2,   𝑝1, 𝑝2 are distinct primes, then the 

compressed gamma are graph of a zero-divisor graph 𝛾. 𝛤𝐸(ℤ𝑛) is 𝐾1. 

Proof. If 𝑛 = 𝑝1
𝑘1𝑝2

𝑘2 , 𝑘1, 𝑘2 > 1 where 𝑝1 < 𝑝2,   𝑝1, 𝑝2 are distinct primes then,  

{ [𝑝1
𝑘1 . 𝑝2

𝑘2−1], [𝑝1
𝑘1−1. 𝑝2

𝑘2] } be the only dominating set of  𝛤𝐸(ℤ𝑛). 

   Hence 𝛾. 𝛤𝐸(ℤ𝑛) = 𝐾1 

Theorem 2.3. If  𝑛 = 𝑝𝑞, 𝑝𝑘𝑞, 𝑝𝑞𝑘 where 𝑘 > 2, 𝑝 < 𝑞, 𝑝 and 𝑞 are distinct primes, then the 

compressed gamma graph of a zero-divisor graph  𝛾. 𝛤𝐸(ℤ𝑛) is 𝐾2. 

Proof. 

Case(i):  

        If  𝑛 = 𝑝𝑞 where 𝑝 < 𝑞, 𝑝 and 𝑞 are distinct primes, then the only dominating set of 

𝛤𝐸(ℤ𝑛) is {[𝑝], [𝑞]}.  

Hence  𝛾. 𝛤𝐸(ℤ𝑛) = 𝐾2. 

Case(ii):  

         If 𝑛 = 𝑝𝑘𝑞 where 𝑘 > 2, 𝑝 < 𝑞, 𝑝 and 𝑞 are distinct primes, then the only dominating 

set of 𝛤𝐸(ℤ𝑛) is {{[𝑝𝑘−1. 𝑞], [𝑞]}, {[𝑝𝑘−1. 𝑞], [𝑝𝑘]}} 

 Hence  𝛾. 𝛤𝐸(ℤ𝑛) = 𝐾2. 

Case(iii):  

         If 𝑛 = 𝑝𝑞𝑘 where 𝑘 > 2, 𝑝 < 𝑞, 𝑝 and 𝑞 are distinct primes, then the only dominating 

set of 𝛤𝐸(ℤ𝑛) is {{[𝑝𝑞𝑘−1], [𝑝]}, {[𝑝𝑞𝑘−1], [𝑞𝑘]}}. 

Hence  𝛾. 𝛤𝐸(ℤ𝑛) = 𝐾2. 

Theorem 2.4. If 𝑛 = 𝑝1
𝑘1𝑝2

𝑘2 , 𝑝𝑞, 𝑝𝑘𝑞, 𝑝𝑞𝑘 where 𝑘1, 𝑘2 > 1, 𝑘 > 2, 𝑝1 < 𝑝2, 𝑝 < 𝑞,

𝑝, 𝑞, 𝑝1 and 𝑝2 are distinct primes, then 𝛾. 𝛤𝐸(ℤ𝑛) is planar. 

Proof. 

Case(i): 
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          If 𝑛 = 𝑝1
𝑘1𝑝2

𝑘2 , 𝑘1, 𝑘2 > 1 where 𝑝1 < 𝑝2 are distinct primes, then 𝛾. 𝛤𝐸(ℤ𝑛) is 𝐾1. 

 Hence 𝛾. 𝛤𝐸(ℤ𝑛) is planar. 

Case(ii):  

          If  𝑛 = 𝑝𝑞, 𝑝𝑘𝑞, 𝑝𝑞𝑘 where 𝑘 > 2, 𝑝 < 𝑞, 𝑝 and 𝑞 are distinct primes, then 𝛾. 𝛤𝐸(ℤ𝑛) 

is 𝐾2. 

 Hence 𝛾. 𝛤𝐸(ℤ𝑛) is planar. 

Corollary 2.5. If 𝑛 = 𝑝𝑞, 𝑝𝑘𝑞, 𝑝𝑞𝑘 where 𝑘 > 2, 𝑝 < 𝑞, 𝑝 and 𝑞 are distinct primes, then 

𝑑𝑖𝑎𝑚(𝛾. 𝛤𝐸(ℤ𝑛)) is 1. 

3. Extended gamma graph of a Zero-divisor graph 

Definition 3.1. Let ℤ𝑛  be a finite commutative ring with 1 ≠ 0. The extended gamma graph 

of a zero-divisor graph is a graph with vertex set as the collection of all gamma sets of extended 

zero-divisor graph 𝐸𝛤(ℤ𝑛)  and two(not necessarily distinct) vertices 𝑟, 𝑠 are adjacent if and 

only if |𝑟 ∩ 𝑠| = 𝛾(𝐸𝛤(ℤ𝑛)) − 1. This graph is denoted by 𝛾. 𝐸𝛤(ℤ𝑛). 

Example: For n = 8 

𝑉(𝛤(ℤ8)) = {2, 4, 6} 

                                           

𝑉(𝐸𝛤(ℤ8)) = {0, 1, 2, 3, 4, 5, 6, 7 } 
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𝑉(𝛾. 𝐸𝛤(ℤ8)) = {{0}} 

 

Theorem 3.2. If 𝑛 = 𝑝1
𝑘1𝑝2

𝑘2 …𝑝𝑟
𝑘𝑟 where 𝑝1 < 𝑝2 < ⋯ < 𝑝𝑟 , 𝑘1, 𝑘2, … , 𝑘𝑟 are integers, 

𝑝1, 𝑝2, … , 𝑝𝑟 are distinct primes, then 𝛾. 𝐸𝛤(ℤ𝑛) is 𝐾1. 

Proof. In extended zero-divisor graph {0} act as a universal vertex. Then {{0}} is the only 

dominating set of  𝐸𝛤(ℤ𝑛). 

Hence  𝛾. 𝐸𝛤(ℤ𝑛) = 𝐾1. 

Corollary 3.3. If 𝑛 = 𝑝1
𝑘1𝑝2

𝑘2 …𝑝𝑟
𝑘𝑟 where 𝑝1 < 𝑝2 < ⋯ < 𝑝𝑟 , 𝑘1, 𝑘2, … , 𝑘𝑟 are integers, 

𝑝1, 𝑝2, … , 𝑝𝑟 are distinct primes, then 𝛾. 𝐸𝛤(ℤ𝑛) is planar. 

4. Conclusion 

In this paper, we have discussed about some properties of compressed gamma graph 

and extended gamma graph of a Zero-divisor graph. It is planned to explore different graph 

properties in future work regarding to this concept. 
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Abstract 

Zika virus is a mosquito-borne flavivirus that has emerged as a global health threat due 

to its potential for rapid spread and severe health complications. Understanding the dynamics 

of disease-free equilibrium (DFE) in the context of Zika virus transmission is crucial for 

devising effective control strategies. Graph theory, a mathematical framework for modeling 

relationships and networks, provides an innovative approach to study the transmission 

pathways of the virus. By representing the host-vector interactions and environmental factors 

as a directed graph, we examine the stability of the disease-free state through key graph 

parameters such as the basic reproduction number (𝑅0). Analytical results show that the DFE 

is stable when 𝑅0< 1, implying that the infection will die out in the long term. Conversely, if  

𝑅0 ≥ 1, the disease may persist or become endemic. 

Keywords: Zika virus, Mosquito biting rate, Basic reproduction number, Distance- weighted 

matrix, Vector transmission.  

2020 Mathematics Subject Classification (AMS): 05C20, 05C22, 05C85, 05C90, 47A10, 

00A71 

1. Introduction 

The Zika virus has emerged as a significant global health threat, primarily transmitted 

through the bites of infected Aedes aegypti mosquitoes. Additional modes of transmission, 

including sexual, perinatal and vertical transmission, have exacerbated its public health impact. 

Outbreaks have been reported worldwide, particularly in tropical and subtropical 

mailto:1renisa98pandian@gmail.com
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regions[7],[10]. The Zika virus was first identified from rhesus monkey in the Zika forest of 

Uganda in 1947 and from humans in Nigeria in 1954, but it was not spread in epidermic form 

among the human population until 2007. The first Zika outbreak among human occurred in 

Yap Island, Micronesia in 2007. Afterward, this disease highly spread among human in a 

different countries. Brazil is one of the most affected countries. The number of suspected cases 

in Brazil was estimated at 4,40,000 to 13,00,000 in 2015 [3],[13]. Anxiously, the increase of 

microcephaly incidence was unexpectedly observed in the outbreaks. Hence, the World Health 

Organization (WHO) decided to elevate the ZIKV epidemic status to the level of “a Public 

Health Emergency of International Concern (PHEIC)” on February 1, 2016. 

 Two species of mosquitoes, namely, Aedes aegypti and Aedes albopictus, were 

identified as the main vectors for ZIKV transmission [8],[6]. Aedes aegypti and Aedes 

albopictus seem to have different biological lifestyles, feeding preferences, and susceptibilities 

to ZIKV. Aedes aegypti extensively feeds on human blood whereas Aedes albopictus feeds on 

a more variety of host species. Both species are diurnal feeders providing high chance to expose 

and bite humans. Aedes aegypti basically breeds in manmade containers such as jars and old 

tires while Aedes albopictus may also extend the breeding sites to some other natural water 

holders, for examples, tree holes and coconut shells. The symptoms of Zika infection includes 

fever, headaches, rash, conjunctivitis and joint pain. Also the infection increases the chances of 

microcephaly, Guillain - Barre syndrome and other neurological disorder in new born babies 

from infected mothers. Zika remains a potential future epidemic threat, emphasizing the need 

for proactive surveillance, advanced research, and global collaboration to mitigate its impact. 

 Many mathematical models are constructed in Zika virus dissemination by various 

researchers in different countries. Banuelos. S. et. al presented a mathematical model to 

determine the effect of sexual transmission of the Zika Virus by using Wolbachia for vector 

control [2]. Agusto F. B. et. al analyzed a Zikv model that includes human vertical transmission, 

birth of babies with microcephaly and asymptomatic infected individuals [1]. Suparit et. al 

formulated a mathematical model for fitting the virus transmission in Bahia, Brazil during the 

2015-2016 outbreaks and investigating the impact of vector control strategies [9]. In this study 

the graphs are generated from the models and then the basic reproduction number (𝑅0) in 

disease free equilibrium are calculated using graph theory [4] which helps to investigate 

epidemiology in Zika Virus transmission.  
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In the field of epidemiology, understanding the transmission dynamics of infectious 

diseases is paramount for effective disease control and public health interventions. Central to 

this understanding is the concept of the basic reproduction number, denoted as 𝑅0 [5]. The basic 

reproduction number serves as a key metric in assessing the transmissibility of infectious 

diseases within population. The Basic Reproduction Number 𝑹𝟎, is defined as the number of 

new infections produced by one infected individual in a completely susceptible population. It 

is a function of the baseline parameters. If 𝑅0 < 1, each infected individual, on average, infects 

less than one other person. This indicates that the disease will likely die out in the population 

over time as the number of infected individual’s decreases. If 𝑅0 = 1, each infected individual, 

on average, infects exactly one other person. In this situation, the disease may persist in the 

population, but it will neither grow nor decline. This condition is often referred to as the disease 

being endemic. If 𝑅0 > 1, each infected individual, on average, infects more than one other 

person. This indicates that the disease is likely to spread within the population, leading to an 

epidemic or pandemic if not controlled.  

2. Graph Formulation  

The human population follows an SEIR model with compartments for Susceptible (Sh), 

Exposed (Eh), Infectious (Ih ), and Recovered (Rh) while the vector population follows an SEI 

model with compartments for Susceptible (Sv), Exposed (Ev) and Infectious (Iv). These seven 

compartments collectively form the vertices of a graph G=(V,E), where V represents the 

compartments and E represents edges denoting transitions between states. This graph-based 

representation captures the interactions and disease dynamics between human and vector 

populations. The graph, G = (V, E) where  

    V(G)={𝑆ℎ,𝐸ℎ,𝐼ℎ,𝑅ℎ,𝑆𝑣,𝐸𝑣,𝐼𝑣} 

              E(G)={𝑆ℎ𝐸ℎ, 𝐸ℎ𝐼ℎ, 𝐼ℎ𝑅ℎ, 𝐼𝑣𝑆ℎ, 𝐼ℎ𝑆𝑣, 𝑆𝑣𝐸𝑉, 𝐸𝑣𝐼𝑣}  

 

𝑺𝒉 𝑬𝒉 𝑰𝒉 𝑹𝒉 𝜆ℎ 𝑣ℎ 𝛾ℎ 

𝜆𝑣 𝑣𝑣 𝑬𝒗 𝑺𝒗 𝑰𝒗 
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Figure 1: Schematic of the Zika transmission graphical model. The arrow represents  

transitions between the compartments and also the interactions between humans and 

mosquitoes [11].  

 

Parameter Description 

𝜆ℎ The force from infection for humans 

𝜆𝑣 The force from infection for mosquitoes 

𝑣ℎ Human progression rate from exposed rate state 

to infectious state 

𝑣𝑣 Mosquito progression rate from exposed rate 

state to infectious state 

𝛽𝑣ℎ Probability of pathogen transmission from an 

infectious human to a susceptible mosquito 

𝛽ℎ𝑣 Probability of pathogen transmission from an 

infectious mosquito to a susceptible human 

𝛾ℎ Human recovery rate 

𝜎ℎ Maximum number of bites a human can sustain 

𝜎𝑣 Mosquito biting rate 

𝑁ℎ Human population size in Bahia, Brazil 

𝑁𝑣 Mosquito population size 

               Table 1: Description of all parameters used in this model 

The force from infection for humans (𝜆ℎ) and force from infection for mosquitoes (𝜆𝑣) 

are the rates at which infectious individuals infect others are calculated using the formula 

𝜆ℎ =
𝜎𝑣𝜎ℎ𝑁𝑣

𝜎𝑣𝑁𝑣 + 𝜎ℎ𝑁𝑣
𝛽ℎ𝑣

𝐼𝑣
𝑁𝑣
 ⋯⋯⋯(1) 

𝜆𝑣 =
𝜎𝑣𝜎ℎ𝑁𝑣

𝜎𝑣𝑁𝑣 + 𝜎ℎ𝑁𝑣
𝛽𝑣ℎ

𝐼ℎ
𝑁ℎ
 ⋯⋯⋯(2) 

3. Disease-Free Equilibrium 

A disease-free equilibrium (DFE) is the state of an epidemic model when there is no  

infection, and the infected population is zero [12]. 
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Theorem 3.1.The basic reproduction number at disease-free equilibrium (DFE) is  

𝑅0= (𝜆ℎ + 𝑣ℎ + 𝛽𝑣ℎ)(𝜆𝑣 + 𝑣𝑣 + 𝛽ℎ𝑣). 

Proof. In the DFE, 𝐸ℎ = 0, 𝐼ℎ = 0, 𝑅ℎ = 0 ,𝐼𝑣 = 0, 𝐸𝑣 = 0  

The matrix M(G)DFE = 

(

 
 
 
 

0 0 0 0 𝜆ℎ + 𝑣ℎ + 𝛽𝑣ℎ 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

𝜆𝑣 + 𝑣𝑣 + 𝛽ℎ𝑣 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0)

 
 
 
 

 

The characteristic equation of the above matrix is 

𝜆2 - (𝜆ℎ + 𝑣ℎ + 𝛽𝑣ℎ)(𝜆𝑣 + 𝑣𝑣 + 𝛽ℎ𝑣) = 0       ----------(3) 

Spectral radius of the above characteristic equation is the basic reproduction number 

and is given by   

𝑅0 = (𝜆ℎ + 𝑣ℎ + 𝛽𝑣ℎ)(𝜆𝑣 + 𝑣𝑣 + 𝛽ℎ𝑣) 

Hence Proved 

Theorem 3.2. If 
1

14
 ≤  𝑣ℎ  ≤  

1

3
 , 

1

12
 ≤  𝑣𝑣  ≤  

1

8
 and 0.1 ≤ 𝛽ℎ𝑣 , 𝛽𝑣ℎ  ≤ 0.77, then the basic 

reproduction number 𝑅0 < 1. 

Proof. Given: 
1

14
 ≤  𝑣ℎ  ≤  

1

3
 ,
1

12
 ≤  𝑣𝑣  ≤  

1

8
 , and 0.1 ≤  𝛽ℎ𝑣 , 𝛽𝑣ℎ  ≤ 0.77 

To prove: 𝑅0 < 1 

The Basic Reproduction Number, 𝑅0= (𝜆ℎ + 𝑣ℎ + 𝛽𝑣ℎ)(𝜆𝑣 + 𝑣𝑣 + 𝛽ℎ𝑣) 

The values of force from infections for humans (𝜆ℎ) and mosquitoes (𝜆𝑣) are 0.00000458 and 

0.000007 respectively. [Using (1) and (2)] 

Case (i): Let 𝑣ℎ = 
1

14
 ,  𝑣𝑣 = 

1

12
 and 𝛽ℎ𝑣 = 𝛽𝑣ℎ = 0.1 

Therefore 𝑅0 = (0.00000458 +
1

14
+ 0.1) (0.000007 + 

1

12
+ 0.1) 

          = (0.00000458 + 0.0714 + 0.1)(0.000007 +  0.0833 + 0.1) 
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                      = (0.1714058)(0.183340) 

           = 0.0314 < 1 

Case (ii): Let 𝑣ℎ = 
1

3
 ,  𝑣𝑣 = 

1

8
 and 𝛽ℎ𝑣 = 𝛽𝑣ℎ = 0.1 

Therefore 𝑅0 = (0.00000458 +
1

3
+ 0.1) (0.000007 + 

1

8
+ 0.1) 

          = (0.00000458 + 0.3333 + 0.1)(0.000007 +  0.125 + 0.1) 

          = (0.43330458)(0.225007) 

           = 0.0975 < 1 

Case (iii): Let 𝑣ℎ = 
1

14
 ,  𝑣𝑣 = 

1

12
 and 𝛽ℎ𝑣 = 𝛽𝑣ℎ = 0.77 

Therefore 𝑅0 = (0.00000458 +
1

14
+ 0.77) (0.000007 + 

1

12
+ 0.77) 

          = (0.00000458 + 0.0714 + 0.77)(0.000007 +  0.0833 + 0.77) 

                  = (0.8414058)(0.853307) 

                = 0.718 < 1 

Case (iv): Let 𝑣ℎ = 
1

3
 ,  𝑣𝑣 = 

1

8
 and 𝛽ℎ𝑣 = 𝛽𝑣ℎ = 0.77 

Therefore 𝑅0 = (0.00000458 +
1

3
+ 0.77) (0.000007 + 

1

8
+ 0.77) 

          = (0.00000458 + 0.3333 + 0.77)(0.000007 +  0.125 + 0.77) 

                  = (1.10330458)(0.895007) 

            = 0.9875 < 1 

Case (v): Let 𝑣ℎ = 
1

3
 ,  𝑣𝑣 = 

1

8
 , 𝛽ℎ𝑣 = 0.1 𝑎𝑛𝑑  𝛽𝑣ℎ = 0.77 

Therefore 𝑅0 = (0.00000458 +
1

3
+ 0.1) (0.000007 + 

1

8
+ 0.77) 

          = (0.00000458 + 0.3333 + 0.1)(0.000007 +  0.125 + 0.77) 

                  = (0.43330458)(0.895007) 

            = 0.3878 < 1 
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Similarly, 𝑅0 < 1 for all the given range of values in all possible ways. 

Remark 3.3. The basic reproduction number 𝑅0 ≥ 1 for all 
1

14
 ≤  𝑣ℎ  ≤  

1

3
 , 
1

12
 ≤  𝑣𝑣  ≤  

1

8
 and 

𝛽ℎ𝑣 , 𝛽𝑣ℎ > 0.77. 

4. Conclusion 

This study used graph theory to analyze the basic reproduction number (𝑅0) of the Zika 

virus and understand its spread through vector transmission. The basic reproduction number 

𝑅0 in disease-free equilibrium is calculated as 𝑅0= (𝜆ℎ + 𝑣ℎ + 𝛽𝑣ℎ)(𝜆𝑣 + 𝑣𝑣 + 𝛽ℎ𝑣) and 

analyzed with the range of parameters. This shows that the DFE is stable when 𝑅0< 1, implying 

that the infection will die out in the long term. Conversely, if 𝑅0 ≥ 1, the disease may persist 

or become endemic. The results showed how interactions between humans and vectors impact 

the disease's ability to spread. 
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Abstract 

                In this paper we discuss the condition that is antonym to the faithful of an N-group 

in near-rings. This condition is named as unfaithful set of Γ. We construct and proved the 

properties for the unfaithful set of Γ. Then we define unfaithful of Γ. We then discuss the 

properties of unfaithful of Γ with annihilator, faithful, nilpotent of near-rings and its N-group. 

Keywords: N-group, faithful, annihilator, nilpotent. 

2020 Mathematics Subject Classification (AMS): 16Y30 

1. Introduction 

             The concept of near-rings was introduced by Dickson [2] in 1905. Near-fields were the 

first near-ring founded. N-group is the analogue of the concept of a module in ring theory [3]. 

In this paper near-rings are the right near-rings and it is denoted by 𝑁 and 𝑁-groups are the left 

near-modules and the set is denoted by Γ. In this paper the near-rings and 𝑁-groups that we use 

are from Gunter Pilz’s “Near-Ring: The theory and its application” [3]. In this paper first we 

define the unfaithful set of Γ. The unfaithful set of Γ is the subset of 𝑁 which satisfies equality 

condition. In this paper we learn properties of the unfaithful set of Γ. Based on the unfaithful 

set of Γ we define k-unfaithful of Γ. The condition 𝑛𝑘𝛾 = 𝛾1, 𝑘 ≥ 2 𝑎𝑛𝑑 𝛾, 𝛾1 ∈ Γ 𝑎𝑛𝑑 𝑛 ∈ 𝑁 

in k-unfaithful is inspired from definition of (∆1: ∆2) [3]. Here we prove results of k-unfaithful 

with annihilator, nilpotent, faithful of near-rings and its 𝑁-group. 

2. Preliminaries 

Definition 2.1.[3] A near-ring is a non-empty set N together with two binary operations " + " 

and " ∙ " such that 

a) (N, +) is a group (not necessarily abelian) 

b) (N, ⋅) is a semigroup 

mailto:akinjsjohn@gmail.com
mailto:pramilapream@gmail.com


Proceedings of the International Conference on Algebraic Graph Theory,                                              
Graph Theory and Topology – 9th & 10th January 2025 

158 
 
ISBN: 978-93-48505-23-1 

c) ∀ 𝑛1, 𝑛2, 𝑛3 ∈N such that (𝑛1 + 𝑛2) ⋅ 𝑛3 = 𝑛1 ⋅ 𝑛3 + 𝑛2 ⋅ 𝑛3 (“right distributive law”). 

Class of all near-rings will be denoted by N.  

Definition 2.2. [3] Let (Γ,+) be a group with zero 0 and let 𝑁 ∈ N. Let 𝜇:𝑁 × Γ ⟶ Γ. (Γ, +) 

is called an N-group (near-module over 𝑁) if ∀𝛾 ∈ Γ  ∀𝑛, 𝑛′ ∈ 𝑁:  

1. (𝑛 + 𝑛′)𝛾 = 𝑛𝛾 + 𝑛′𝛾. 

2. (𝑛𝑛′)𝛾 = 𝑛(𝑛′𝛾). 

       We write 𝑁Γ for the N-group. 

Definition 2.3. [3] 

a) A subgroup M of a near-ring N with M.M⊆M is called a subnear-ring of N (M≤N). 

b) A subgroup ∆ of 𝑁Γ with 𝑁Δ ⊆ ∆ is said to be an N-subgroup of Γ (Δ ≤𝑁 Γ). 

Definition 2.4. [3] Let 𝑁 ∈ N. A normal subgroup 𝐼 of (𝑁,+) is called ideal of 𝑁 (𝐼 ⊴ 𝑁) if 

a) 𝐼𝑁 ⊆ 𝐼. 

b) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛, 𝑛′ ∈ 𝑁  𝑎𝑛𝑑 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ∈ 𝐼 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑛(𝑛′ + 𝑖) − 𝑛𝑛′ ∈ 𝐼. 

Normal subgroups R of (𝑁,+) with a) are called right ideals of 𝑁  (𝑅 ⊴𝑟  𝑁), while normal 

subgroups L of (𝑁,+)  with b) are said to be left ideals 𝑁  (𝐿 ⊴𝑙  𝑁). 

Definition 2.5. [3] Let ∆1, ∆2 be subsets of 𝑁Γ. (∆1: ∆2) = {𝑛 ∈ 𝑁| 𝑛∆2⊆ ∆1}. (0: ∆) is called 

the annihilator of ∆ and it is denoted by 𝑎𝑛𝑛(∆). 

Definition 2.6. [3] 𝑁Γ is called faithful if (0: Γ) = {0}. 

Definition 2.7. [4] An element 𝛾(≠ 0) ∈ Γ is a nilpotent element with index 𝑘 > 1 if there 

exist a proper ideal 𝐼 of 𝑁 such that 𝐼𝑘𝛾 = 0 𝑎𝑛𝑑 𝐼𝑘−1𝛾 ≠ 0. 

Definition 2.8. [1] An 𝑁-group Γ is rigid if for all 𝛾 ∈ Γ, 𝑛 ∈ 𝑁 and a positive integer k, 𝑛𝑘𝛾 =

0 implies that 𝑛𝛾 = 0. 

Definition 2.9. [3] 𝑛 ∈ 𝑁 is called nilpotent if there exist 𝑘 ∈ ℕ such that 𝑛𝑘 = 0. 

3. Main Results 

Definition 3.1. Let Γ be an N-group of 𝑁. For all ∈  Γ 𝑎𝑛𝑑 0 ≠ 𝑛 ∈ 𝑁 , the set {𝑛 ∈ 𝑁/   𝑛γ =

𝛾1,   𝑓𝑜𝑟 𝑎𝑛𝑦 𝛾1 ∈ Γ} = 𝑁/{0} is called the unfaithful set of Γ. 
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Remarks 3.2. 

 The unfaithful set of Γ is contained in 𝑁. 

 If 𝛤 = 𝑁 then the unfaithful set of Γ contained in Γ. 

 If 𝛤 = 𝑁 then the unfaithful set of Γ is not an 𝑁-subgroup of Γ. 

For, additive identity element does not in the set. 

 If Γ = 𝑁 and Γ is faithful, then unfaithful set of Γ contained in Γ. 

 The unfaithful set of Γ does not form an additive group. 

For, additive identity element does not in the set. 

 The unfaithful set of Γ is not a near-ring. 

 The unfaithful set of Γ is a subset of 𝑁 but neither a subgroup nor a sub near-ring of 

𝑁. 

Theorem 3.3. If Γ is an 𝑁-group of 𝑁 then the non-zero annihilator of Γ is contained in the 

unfaithful set of Γ. 

Proof. Let Γ be an 𝑁-group of 𝑁. 

   To prove, non-zero annihilator of Γ contained in unfaithful set of Γ. 

             Let take an element n(say) in the non-zero annihilator of Γ 

                                                                          since 𝑎𝑛𝑛(Γ) = (0: Γ) = {𝑛 ∈ 𝑁/ 𝑛𝛾 = 0} 

             ⇒ 𝑛𝛾 = 0 

             ⇒ 𝑒𝑖𝑡ℎ𝑒𝑟 𝑛 = 0 𝑜𝑟 𝛾 = 0 

   Since 𝑛 ≠ 0, 

                        𝛾 must be zero 

                       ⇒ 0 =  𝛾 ∈ Γ 

  We have 𝑛𝛾 = 0 

                       ⇒ 𝑛𝛾 = 𝛾 

                       ⇒ 𝑛 ∈ {𝑛 ∈ 𝑁/ 𝑛𝛾 = 𝛾} 

    therefore, n belongs to the unfaithful set of Γ 

    Hence non-zero annihilator of Γ contained in unfaithful set of Γ. 
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Theorem 3.4. Every element of the unfaithful set of Γ need not be an element of annihilator 

of Γ. 

Proof. Let 𝑛 be an arbitrary element in the unfaithful set of Γ. 

      𝑓𝑜𝑟 𝑎𝑙𝑙 𝛾 ∈ Γ 𝑎𝑛𝑑 𝑛 ≠ 0, 𝑛𝛾 = 𝛾1 𝑓𝑜𝑟 𝑎𝑛𝑦 𝛾1 ∈ Γ 

  Suppose 𝛾1 = 0 

                   Now, 𝑛𝛾 = 0 

                            ⇒ 𝑛 ∈ 𝑎𝑛𝑛(Γ) 

  Suppose 𝛾1 ≠ 0 

                  Now, 𝑛𝛾 = 𝛾1        𝑓𝑜𝑟 𝑎𝑛𝑦 𝑛𝑜𝑛 𝑧𝑒𝑟𝑜 𝛾1 ∈ Γ 

                           ⇒ 𝑛 ∉ 𝑎𝑛𝑛(Γ) 

Hence every element of the unfaithful set of Γ need not be an element of annihilator of Γ. 

Definition 3.5. An N-group Γ of near-ring N is called k-unfaithful if 𝑓𝑜𝑟 𝑎𝑙𝑙 𝛾 ∈ Γ 

 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡 𝑛𝑘 ≠ 0 where 𝑘 ≥ 2 such that {𝑛 ∈ 𝑁/   𝑛𝑘γ = 𝛾1, 𝑓𝑜𝑟 𝑎𝑛𝑦 𝛾1 ∈ Γ} = 𝑁/{0}. 

Remark 3.6. 

 If 𝑘 < 2, then the definition is similar to (∆1: ∆2). 

 If 𝛾 = 𝑛1, where 𝑛1 is the identity element of 𝑁 under multiplication, then 𝛾1 = 𝑛
𝑘. 

Remark 3.7. If Γ = 𝑁 is k-unfaithful then the unfaithful set of Γ  contained in k-unfaithful. 

Theorem 3.8. If the N-group Γ of N is k-unfaithful then N does not have a nilpotent element. 

Proof. Let Γ be an k-unfaithful N-group of near-ring N  

Suppose N has a nilpotent element 

       Let 𝑛1 ∈ 𝑁 be the nilpotent element 

           ⇒ 𝑛1
𝑘 = 0  𝑓𝑜𝑟 𝑘 ∈ 𝑍+ 

           which is a contradiction. 

   Hence N does not have nilpotent elements. 
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Theorem 3.9. If 𝑁 has a nilpotent element then every 𝑁-group Γ of 𝑁 is not k-unfaithful. 

Proof. Let Γ be an 𝑁-group of 𝑁 

     Given 𝑁 has a nilpotent element 

      Let 𝑛 ∈ 𝑁 be a nilpotent element 

        𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 𝑛𝑘 = 0  𝑓𝑜𝑟 𝑘 ∈ 𝑍+ 

  By the definition of k-unfaithful, {𝑛 ∈ 𝑁/   𝑛𝑘γ = 𝛾1, 𝑓𝑜𝑟 𝑎𝑛𝑦 𝛾1 ∈ Γ} ≠ 𝑁/{0} 

           Hence Γ is not k-faithful. 

Theorem 3.10. If an element 0 ≠ 𝛾 ∈ Γ is nilpotent. Then Γ is not k-unfaithful. 

Proof. Let 0 ≠ 𝛾 be a nilpotent element of Γ 

Then there exists a proper ideal 𝐼 of 𝑁 such that 𝐼𝑘𝛾 = 0 𝑎𝑛𝑑 𝐼𝑘−1𝛾 ≠ 0. [4] 

If 𝑁 has nilpotent element 𝑛(say)  

                                                     then 𝑛𝑘 = 0 

  By definition of k-unfaithful, {𝑛 ∈ 𝑁/   𝑛𝑘γ = 𝛾1, 𝑓𝑜𝑟 𝑎𝑛𝑦 𝛾1 ∈ Γ} ≠ 𝑁/{0} 

  Γ need not be k-unfaithful. 

Remark 3.11. If Γ does not have nilpotent element then Γ need not k-unfaithful. 

                  For, suppose near-ring 𝑁 of Γ has a nilpotent element. 

Theorem 3.12. If Γ is a faithful module of 𝑁 where 𝑁 has no nilpotent element then Γ is k-

unfaithful. 

Proof. Let Γ be a faithful 𝑁-group of 𝑁 where 𝑁 has no nilpotent element 

              ⇒ (0: Γ) = {0} 

              ⇒ {𝑛 /𝑛𝛾 = 0} = {0} 

              ⇒ 𝑛 = 0 

              ⇒ 0 ≠ 𝑛 ∉ (0: Γ) 

              𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 𝑛𝛾 ≠ 0 
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              ⇒ 𝑛𝛾 = 𝛾1,          𝑓𝑜𝑟 𝑎𝑛𝑦 0 ≠ 𝛾1 ∈ Γ 

    Since 𝑁 has no nilpotent element, 𝑛𝑘 ≠ 0 

             𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 𝑛𝑘𝛾 = 𝛾1, 𝑓𝑜𝑟 𝑎𝑛𝑦 0 ≠ 𝛾1 ∈ Γ 

     Γ is k-unfaithful. 

Theorem 3.13. If Γ is k-unfaithful then it need not be faithful. 

Proof. Let Γ be k-faithful 

  𝑓𝑜𝑟 𝑎𝑙𝑙 𝛾 ∈ Γ 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡 𝑛𝑘 ≠ 0 where 𝑘 ≥ 2 such that 

{𝑛 ∈ 𝑁/   𝑛𝑘γ = 𝛾1, 𝑓𝑜𝑟 𝑎𝑛𝑦 𝛾1 ∈ Γ} = 𝑁/{0} 

                   ⇒ 𝑛𝑘𝛾 = 𝛾1,          𝑓𝑜𝑟 𝑎𝑛𝑦 𝛾1 ∈ Γ 

             Suppose 𝛾1 = 0 

                   ⇒ 𝑛𝑘𝛾 = 0 

                   ⇒ 𝑛𝑘 = 0 𝑜𝑟 𝛾 = 0 

                   𝑛𝑘 ≠ 0               since Γ is k-unfaithful 

                   𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒  𝛾 = 0 𝑎𝑛𝑑 𝑛𝑘 ≠ 0 ⇒ 𝑛 ≠ 0  

                   ⇒ 𝑛𝛾 = 0,𝑤ℎ𝑒𝑟𝑒 𝛾 = 0 𝑎𝑛𝑑 𝑛 ≠ 0 

           Suppose 𝛾1 = 0 𝑎𝑛𝑑 𝛾 ≠ 0 

                  Now, 𝑛𝑘𝛾 = 0 

                  𝑛𝑘 = 0 

                  Which is contradiction 

          Hence Γ need not be faithful. 

Theorem 3.14. If Γ is an 𝑁-group of 𝑁 then every element of 𝑎𝑛𝑛(Γ) does not belongs to k-

unfaithful of Γ. 

Proof. Suppose every element of annihilator of Γ belongs to k-unfaithful of Γ. 

                  Let 𝑛 ∈ 𝑎𝑛𝑛(Γ) 
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                   𝑛𝛾 = 0    𝑓𝑜𝑟 𝑎𝑙𝑙 𝛾 ∈ Γ 

                  𝑛 = 0  𝑜𝑟 𝛾 = 0 

Since every element of annihilator of Γ belongs to k-unfaithful of Γ, 

                 𝑛𝑘 ≠ 0 ⇒ 𝑛 ≠ 0 , 𝑘 ≥ 2 

                  𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 𝛾 = 0 

                 Hence 𝑛𝛾 = 0,    In particular 𝛾 = 0 

        Which is a contradiction 

      Every element of annihilator of Γ does not belongs to k-unfaithful of Γ.  

Theorem 3.15. If Γ is rigid then it need not be k-unfaithful. 

Proof. Let Γ be a rigid  

    𝑓𝑜𝑟 𝑎𝑙𝑙 𝛾 ∈ Γ, 𝑛 ∈ 𝑁 𝑎𝑛𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑘, 𝑛𝑘𝛾 = 0 ⇒ 𝑛𝛾 = 0  [1] 

               𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 𝑒𝑖𝑡ℎ𝑒𝑟 𝑛 = 0 𝑜𝑟 𝛾 = 0 

       𝑖𝑓 𝑛 = 0 𝑎𝑛𝑑 𝛾 ≠ 0 ⇒ 𝑛𝑘 = 0 

       𝑖𝑓 𝛾 = 0 𝑎𝑛𝑑 𝑛 ≠ 0 

        Case (i)  𝑛𝑘 ≠ 0 

                       𝑛𝑘0 = 𝛾 

        Case (ii) 𝑛𝑘 = 0 

        {𝑛 ∈ 𝑁/   𝑛𝑘γ = 𝛾1, 𝑓𝑜𝑟 𝑎𝑛𝑦 𝛾1 ∈ Γ} ≠ 𝑁/{0} 

    Hence Γ need not be k-unfaithful. 

4. Conclusion 

         The unfaithful set of Γ and k-unfaithful of Γ are defined and their properties are 

constructed and results are proved.  
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Abstract 

Let 𝑅 be a commutative ring with non-zero identity. The gamma graph of γ-sets in the 

zero-divisor graph, 𝛤(𝑅) is the graph, 𝛾. (𝛤(𝑅)) with vertex set 𝐷 as the collection of all 

𝛾 −sets of the zero-divisor graph, 𝛤(𝑅) and two distinct vertices 𝐷1 and 𝐷2 are adjacent if and 

only if |𝐷1 ∩ 𝐷2| = 𝛾(𝛤(𝑅)) − 1, where 𝛾(𝛤(𝑅)) denotes the cardinality of 𝛾 −set. In this 

paper, we investigate gamma graph of zero-divisor graph of ℤ𝑝 × ℤ𝑞, where 𝑝 and 𝑞 are 

distinct primes and classify the graphs which are planar and toroidal. 

Keywords: graph embedding, gamma graph, zero-divisor graph, planar graph 

2020 AMS Classification: 05C10, 05C60, 05C69, 13A70 

1. Introduction 

 In order to study the interplay between the algebraic structure of the given object and 

the graph theoretic properties of the graph to which it corresponds, many different graphs have 

been assigned to rings.  Beck (1998) introduced a graph whose vertices are the elements of the 

ring 𝑅 and two distinct vertices 𝑥 and 𝑦 are adjacent if and only if 𝑥𝑦=0.  During 1999, 

Anderson and Livingston slightly modified this idea, considering only the non-zero zero-

divisors of ring as vertices of the graph with the same adjacency condition and they named the 

graph as zero-divisor graph, which is denoted by 𝛤(𝑅).  A set 𝑆 ⊆ 𝑉 of vertices in a graph 𝐺 

is called a dominating set, if every vertex 𝑣 ∈ 𝑉 is either an element of 𝑆 or is adjacent to an 

element of 𝑆.  A dominating set 𝑆 is minimal, if no proper subset of 𝑆 is a dominating set.  

The domination number 𝛾(𝐺) of a graph 𝐺 is the minimum cardinality of a dominating set in 

𝐺.  In a graph 𝐺, a dominating set of cardinality 𝛾(𝐺) is called a γ −set.  Let 𝐷 be the collection 

of all 𝛾 −sets in 𝐺.  The gamma graph of 𝐺, denoted by 𝛾. 𝐺, is the graph with vertex set 𝐷 and 

mailto:jenifercs30102000@gmail.com
mailto:nidhamaths@gmail.com
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any two vertices 𝐷1 and 𝐷2 are adjacent if |𝐷1 ∩ 𝐷2| = 𝛾(𝐺) − 1.  Let 𝑆𝑘  denote the sphere 

with 𝑘 handles, where 𝑘 is a non-negative integer, that is, 𝑆𝑘  is an oriented surface of genus 𝑘.  

The genus of a graph denoted by 𝑔(𝐺), is the smallest integer n such that the graph can be 

embedded in 𝑆𝑛.  Intuitively, 𝐺 is embedded in a surface if it can be drawn in the surface so 

that its edges intersect only at their common vertices.  A genus 0 graph is called a planar graph 

and a genus 1 graph is called a toroidal graph.  If 𝐻 is a subgraph of a graph 𝐺, then 𝑔(𝐻)  ≤

 𝑔(𝐺).  Throughout this paper, 𝐺 denotes the zero-divisor graph of 𝑅 and 𝛾. 𝐺 denotes the 

corresponding gamma graph. 

2. Preliminaries 

Lemma 2.1. [4] 𝑔(𝐾𝑛)  =  ⌈
(𝑛−3)(𝑛−4)

12
⌉ if 𝑛 ≥  3.  In particular, 𝑔(𝐾𝑛) = 1 if 𝑛 =  5, 6, 7. 

Lemma 2.2. [4] 𝑔(𝐾𝑚,𝑛) = ⌈
(𝑚−2)(𝑛−2)

4
⌉ if 𝑚, 𝑛 ≥  2.  In particular, 𝑔(𝐾4,4 ) = 𝑔(𝐾3,𝑛) = 1 

if n =  3, 4, 5, 6.  Also 𝑔(𝐾5,4)  =  𝑔(𝐾6,4)  =  𝑔(𝐾𝑚,3)  =  2 if 𝑚 =  7, 8, 9, 10. 

Lemma 2.3. [7] If 𝐺 is a finite connected graph with 𝑛 vertices and 𝑚 edges; then, 

𝑛–𝑚 + 𝑓 = 2 − 2𝑔 , where the graph is embedded upon a surface 𝑆𝑘with genus 𝑘 and 𝑓 is 

the number of faces created when 𝐺 is embedded on 𝑆𝑘. 

Lemma 2.4. [7] If 𝐺 is a triangle-free graph with 𝑛 vertices and 𝑚 edges, then                   

𝑔(𝐺) ≥ ⌈
𝑚

4
−
𝑛

2
+ 1⌉. 

Lemma 2.5. [6] Let 𝐺 be a connected graph with 𝑛 ≥ 3 vertices, 𝑞 edges and genus 𝑔.   Then 

(𝐺) ≥ ⌈
𝑞

6
−
𝑛

2
+ 1⌉. 

3. Genus of 𝜸. (𝜞(ℤ𝑝 × ℤ𝑞  )) 

Theorem 3.1. If 𝑅 = ℤ𝑝 × ℤ𝑞 , where 𝑝 and 𝑞 are distinct prime numbers and 𝑝, 𝑞 > 3, then 

𝛾. 𝐺 is a regular graph with (𝑝 − 1)(𝑞 − 1) vertices of degree 𝑝 +  𝑞 –  4. 

Proof.  Consider 𝑉(𝐺) = {(1,0), (2,0), … , (𝑝 − 1,0), (0,1), (0,2),… , (0, 𝑞 − 1)}.       Let  𝑋 =

{(1,0), (2,0), … , (𝑝 − 1,0)} ⊆ 𝑉(𝐺) and 𝑌 = {(0,1), (0,2),… , (0, 𝑞 − 1)} ⊆ 𝑉(𝐺).  Clearly, 𝑋 

and 𝑌 forms a bipartition of 𝑉(𝐺) and hence 𝐺 ≅ 𝐾𝑝−1,𝑞−1 
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 Now, 𝑁((𝑖, 0))  =  {(0, 𝑗)|𝑗 = 1, 2, … , 𝑞 − 1}, for every 𝑖 = 1, 2, … , 𝑝 − 1.  Thus 

𝑉(𝛾. 𝐺) = {𝛾𝑖𝑗|𝛾𝑖𝑗 = {(𝑖, 0), (0, 𝑗)}, where 𝑖 =  1, 2, … , 𝑝 − 1 and 𝑗 = 1, 2, … , 𝑞 − 1} and 

𝑁( 𝛾𝑖𝑗) = {𝛾𝑖𝑚, 𝛾𝑛𝑗|𝑚 = 1, 2, … , 𝑗 − 1, 𝑗 + 1,… , 𝑞 − 1;  𝑛 = 1, 2, … , 𝑖 − 1, 𝑖 + 1,… , 𝑝 − 1} 

 Hence |𝑉(𝛾. 𝐺)| = (𝑝 − 1)(𝑞 − 1) and 𝑑( 𝛾𝑖𝑗) = 𝑞– 2 + 𝑝– 2 = 𝑝 + 𝑞– 4 , for every 

𝑖 and 𝑗. 

Theorem 3.2. Let  = ℤ𝑝 × ℤ𝑞, where 𝑝 and 𝑞 are distinct prime numbers.  Then 𝑔(𝐺)  =  0 if 

and only if 𝑅 is isomorphic to ℤ2 × ℤ𝑞 , ℤ3 × ℤ𝑞.  Also 𝑔(𝛾. 𝐺)  =  0 if and only if 𝑅 is 

isomorphic to ℤ2 × ℤ𝑞. 

Proof. Assume 𝑔(𝐺) = 0.  Let 𝑅𝑖 = ℤ𝑝𝑖 ×  ℤ𝑞𝑖, where 𝑝𝑖 and 𝑞𝑖 are distinct prime numbers 

and 𝐺𝑖 be the corresponding zero-divisor graphs, where 𝑖 = 1, 2 

Claim: If 𝑝1 < 𝑝2 and 𝑞1 < 𝑞2 then G1 is a subgraph of G2 

 Now, 𝑉(𝐺1)  =  {(1,0), (2,0),… , (𝑝1 − 1,0), (0,1), (0,2),… , (0, 𝑞1 − 1)} and 𝑉(𝐺2) =

{(1,0), (2,0), … , (𝑝1, 0), (𝑝1 + 1,0), … , (𝑝2 − 1,0), (0,1), (0,2),… , (0, 𝑞1), (0, 𝑞1 +

1),… , (0, 𝑞2 − 1)}.  Clearly, 𝑉(𝐺1)  ⊆  𝑉(𝐺2).  Let 𝑋𝑖 = {(0,1), (0,2),… , (0, 𝑞𝑖 − 1)} and 

𝑌𝑖  =  {(1,0), (2,0),… , (𝑝𝑖 − 1,0)}.  Note that, In the graph 𝐺𝑖  every vertex in 𝑋𝑖 is adjacent to 

every vertex in 𝑌𝑖  and no two vertices in 𝑋𝑖  are adjacent and hence for 𝑌𝑖.  Thus                 𝐺𝑖 ≅ 

𝐾𝑝𝑖 − 1, 𝑞𝑖 − 1.  Since 𝑝1 < 𝑝2, 𝑝1 − 1 < 𝑝2 −1  and hence 𝑞1 − 1 < 𝑞2 − 1.  Thus 𝐺1 is a 

subgraph of 𝐺2. 

Claim: 𝑝 ≤  3 or 𝑞 ≤  3 

 Suppose not, then 𝑝 > 3 and 𝑞 > 3.  Then zero-divisor graph 𝐺′ of ℤ5 × ℤ7 must be a 

subgraph of 𝐺.  Hence by lemma 2.4, 𝑔(𝐺) ≥ 𝑔(𝐺′) ≥ ⌈
35

4
−
12

2
+ 1⌉ > 0, which is a 

contradiction.  Hence either 𝑝 ≤ 3 or 𝑞 ≤ 3.   

 Thus 𝑅 is isomorphic to ℤ2 × ℤ𝑞  or  ℤ3 × ℤ𝑞 . 

Conversely, Suppose 𝑅 is isomorphic to ℤ2 × ℤ𝑞  or  ℤ3 × ℤ𝑞 then 𝐺 is isomorphic to 𝐾1,𝑞−1 or 

𝐾2,𝑞−1and it is clear that both graphs are planar.  Thus 𝑔(𝐺) = 0 

Now, Assume 𝑔(𝛾. 𝐺) = 0.  Let 𝐺1and 𝐺2be the zero-divisor graphs of ℤ3 × ℤ5 and 

ℤ3 × ℤ𝑞 respectively. 
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Claim: 𝛾. 𝐺1 is a subgraph of 𝛾. 𝐺2 

𝑉(𝛾. 𝐺1) = { {(1,0), (2,0)}, 𝛾𝑖𝑗|𝛾𝑖𝑗 = {(𝑖, 0), (0, 𝑗)}, where 𝑖 =  1, 2 and 𝑗 =  1, 2, 3, 4} and 

(𝛾. 𝐺2) = { {(1,0), (2,0)}, 𝛾𝑖𝑗|𝛾𝑖𝑗 = {(𝑖, 0), (0, 𝑗)}, where 𝑖 = 1, 2 and 𝑗 = 1, 2, 3, … , 𝑞 − 1}.  

Clearly, 𝑉(𝛾. 𝐺1) ⊆ 𝑉(𝛾. 𝐺2) and the graph induced by 𝑉(𝛾. 𝐺1) is a subgraph of the graph 

induced by 𝑉(𝛾. 𝐺2).  Thus 𝛾. 𝐺1 is a subgraph of 𝛾. 𝐺2. 

 Let 𝐺1′ and 𝐺2′ be the zero-divisor graphs of ℤ5 × ℤ7 and ℤ𝑝 × ℤ𝑞 , 𝑝 ≥ 5 and 𝑞 ≥ 7 

Claim: 𝛾. 𝐺1′ is a subgraph of 𝛾. 𝐺2′ 

 𝑉(𝛾. 𝐺1′) = { 𝛾𝑖𝑗|𝛾𝑖𝑗 = {(𝑖, 0), (0, 𝑗)}, where 𝑖 =  1, 2, 3, 4 and 𝑗 =  1, 2, 3, 4, 5, 6} and 

(𝛾. 𝐺2′) = { 𝛾𝑖𝑗|𝛾𝑖𝑗 = {(𝑖, 0), (0, 𝑗)}, where 𝑖 =  1, 2, … , 𝑝 − 1 and 𝑗 =  1, 2, … , 𝑞 − 1}.   Since 

𝑉(𝛾. 𝐺1′) ⊆ 𝑉(𝛾. 𝐺2′), 𝛾. 𝐺1′ is a subgraph of 𝛾. 𝐺2
′ . 

Claim: Either p = 2 or q = 2 

 Suppose not, then p > 2 and q > 2. Suppose 𝑝 = 3 and 𝑞 = 5, 𝑅 = ℤ3 × ℤ5 by lemma 

2.5, 𝑔(𝛾. 𝐺2) ≥ 𝑔(𝛾. 𝐺1) ≥ ⌈
24

6
−

9

2
+ 1⌉ > 0, which is a contradiction to 𝑔(𝛾. 𝐺) = 0.  

Suppose 𝑝 = 5 and = 7, 𝑅 = ℤ5 × ℤ7,  by lemma 2.5,                                               𝑔(𝛾. 𝐺2′) ≥

𝑔(𝛾. 𝐺1′) ≥ ⌈
96

6
−
24

2
+ 1⌉ > 0, which is a contradiction to 𝑔(𝛾. 𝐺) = 0.  Hence either p = 2 or 

q = 2.  

 Thus 𝑅 ≅  ℤ2 × ℤ𝑞  

Conversely, Suppose 𝑅 ≅  ℤ2 × ℤ𝑞  

 𝛾. 𝐺 ∶ 

 

              Figure 1 

Theorem 3.3. If  = ℤ𝑝 × ℤ𝑞, 𝑝 < 𝑞, where 𝑝 and 𝑞 are distinct prime numbers then there is 

no 𝛾. 𝐺 with 𝑔(𝛾. 𝐺) = 1  

Proof. By theorem 3.2, 𝑅 cannot be ℤ2 × ℤ𝑞  (𝑞 > 2).   If 𝑅 = ℤ3 × ℤ7, then by lemma 2.5,               

𝑔(𝛾. 𝐺) ≥ ⌈
48

6
−
13

2
+ 1⌉ > 1.  From the proof of theorem 3.2, 𝑅 cannot be ℤ3 × ℤ𝑞 (𝑞 ≥ 7) 

v  
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and ℤ5 × ℤ𝑞 (𝑞 > 5).   Hence it is enough to check whether 𝑔(𝛾. 𝐺) of 𝑅 = ℤ3 × ℤ5 is 1 or 

not. 

Suppose 𝑅 = ℤ3 × ℤ5 

 𝛾. 𝐺: 

    

           Figure 2 

Consider the faces of 𝛾. 𝐺 in 𝑆1 

     

                                                                   Figure 3 
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            Figure 4 

Clearly, vertex 𝑢 cannot be inserted in any faces so that  𝑁(𝑎) = {𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ, 𝑖} without 

crossing while embedding it in 𝑆1.  Therefore,  𝑔(𝛾. 𝐺) ≠ 1.   

Hence the proof. 

Theorem 3.4. If 𝑅 = ℤ2 × ℤ2 × …× ℤ2 (𝑘 times), 𝑘 ≥ 4, then 𝛾. 𝐺 is 𝐾1,𝑘  and so 𝑔(𝛾. 𝐺) =

0 

Proof.  Consider the following vertices of G,  

𝑣𝑖 = (1,1,1, … ,0[𝑖 𝑡ℎ],1, … ,1), 𝑏𝑖 = (0,0, … ,0,1[𝑖 𝑡ℎ], 0, . . ,0),  

 𝑢𝑖𝑗 = (1,1, … ,1,0[𝑖 𝑡ℎ], 1, … ,0[𝑗 𝑡ℎ], 1, … ,1} 

𝑤𝑖𝑗 = {(0,0, … ,0,1[𝑖 𝑡ℎ], 0, . . ,0,1[𝑗 𝑡ℎ], … ,0), where 𝑖, 𝑗 = 1,2, … , 𝑘 

Clearly, 𝑁(𝑣𝑖) = {𝑏𝑖}, where 𝑖 = 1,2, . . , 𝑘                                                                     

 𝑁(𝑏1) = {(0, 𝑎12, 𝑎13, … , 𝑎1𝑘)|𝑎1𝑗 ∈ ℤ2, 𝑗 = 2,3, … , 𝑘 and 𝑎1𝑗 cannot be zero 

simultaneously}, 𝑁(𝑏2) = {(𝑎21,0, 𝑎23, … , 𝑎2𝑘)|𝑎2𝑗 ∈ ℤ2, 𝑗 = 1,3, … , 𝑘 and 𝑎2𝑗 cannot be 

zero simultaneously}, … , 𝑁(𝑏𝑘) = {(𝑎𝑘1,𝑎𝑘2, … , 𝑎𝑘(𝑘−1), 0)|𝑎𝑘𝑗 ∈ ℤ2, 𝑗 = 1,2, … , 𝑘 − 1 and 

𝑎𝑘𝑗 cannot be zero simultaneously}, 𝑁(𝑢𝑖𝑗) = {𝑤𝑖𝑗, 𝑏𝑖 , 𝑏𝑗}.  Thus {𝑏1, 𝑏2, … , 𝑏𝑘} is a 𝛾 −set. 
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Claim: Both 𝑣𝑖, 𝑣𝑗(𝑖 ≠ 𝑗) cannot be in any 𝛾 −set 

 Suppose not, then there exists a 𝛾 −set (say) 𝛾′ such that 𝑣𝑖, 𝑣𝑗  ∈ 𝛾
′, where 𝑖 ≠ 𝑗.  

Without Loss of Generality, Let 𝛾′ = {𝑣1, 𝑣2, 𝑏3… , 𝑏𝑘}.  Now, 𝑁(𝑢12) = {𝑤12, 𝑏1, 𝑏2} and it is 

clear that 𝛾′ is not even a dominating set, which is a contradiction.  Hence our claim. 

 Thus the 𝛾 −sets are 𝛾0 = {𝑏1, 𝑏2, … . , 𝑏𝑘}, 𝛾1 = {𝑣1, 𝑏2, … . , 𝑏𝑘}, 𝛾2 = {𝑏1, 𝑣2, … . , 𝑏𝑘}, 

…, 𝛾𝑘 = {𝑏1, 𝑏2, … . , 𝑏𝑘−1, 𝑣𝑘}.  Clearly, 𝑁(𝛾0) = {𝛾1, 𝛾2, … , 𝛾𝑘} and 𝑁(𝛾𝑖) = {𝛾0}, where 𝑖 =

1,2, . . , 𝑘 

 Hence 𝛾. 𝐺 is nothing but 𝐾1,𝑘, which is planar.  Thus 𝑔(𝛾. 𝐺) = 0  

4. Conclusion  

 Through this paper, we have analysed gamma graph of zero-divisor graph of the ring 

ℤ𝑝 × ℤ𝑞.  Also, we have dealt with its embedding nature and found for those rings the gamma 

graph of zero-divisor graph is planar and toroidal. 
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Abstract 

Let 𝐺 = (𝑉, 𝐸) be a simple graph. A set 𝐷 ⊆ 𝑉(𝐺) is a total outer-connected 

dominating set of 𝐺 if 𝐷 is total dominating, and the induced subgraph 𝐺[𝑉(𝐺) − 𝐷] is a 

connected graph. Let 𝑃𝑛 be the path and 𝐷̃𝑡𝑐(𝑃𝑛, 𝑖) denote the family of all total outer- connected 

dominating sets of 𝑃𝑛 with cardinality 𝑖. Let 𝑑̃𝑡𝑐(𝑃𝑛, 𝑖) = |𝐷̃𝑡𝑐(𝑃𝑛, 𝑖)|. In this paper, we obtain 

recursive formula for 𝑑̃𝑡𝑐(𝑃𝑛, 𝑖). Using this recursive formula, we construct the polynomial, 

𝐷̃𝑡𝑐(𝑃𝑛, 𝑥) = ∑ 𝑑̃𝑡𝑐(𝑃𝑛, 𝑖)𝑥
𝑖𝑛

𝑖=1  which we call total outer- connected domination polynomial of 

𝑃𝑛 and obtain some properties of this polynomial. 

Keywords: Domination, Total outer- connected domination, Total outer- connected 

domination number, Total outer- connected dominating set, Total outer- connected 

domination polynomial. 

2020 Mathematics Subject Classification (AMS): 05C69 

1. Introduction 

By a graph 𝐺 = (𝑉, 𝐸), we mean a finite, undirected graph with neither loops nor 

multiple edges. The order |𝑉| and the size |𝐸| of 𝐺 are denoted by 𝑛 and 𝑚 respectively. For 

any vertex 𝑣 ∈ 𝑉(𝐺), the open neighbourhood of 𝑣 is the set 𝑁𝐺(𝑣) = {𝑢 ∈ 𝑉(𝐺)/𝑢𝑣 ∈ 𝐸(𝐺) 

and the closed neighbourhood of 𝑣 is the set 𝑁𝐺[𝑣] = 𝑁(𝑣) ∪ {𝑣}. For a set 𝑆 ⊆ 𝑉, the open 

neighbourhood of 𝑆 is 𝑁(𝑆) =∪𝑣∈𝑆 𝑁(𝑣) and the closed neighbourhood of 𝑆 is 𝑁[𝑆] = 𝑁(𝑆) ∪

𝑆. 

mailto:lalgipson@yahoo.com
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A dominating set of 𝐺 is a set 𝐷 ⊆ 𝑉(𝐺) such that 𝑁𝐺[𝑉] ∩ 𝐷 ≠ ∅, for all 𝑣 ∈ 𝑉(𝐺). 

The domination number of 𝐺 is the minimum cardinality of a dominating set of 𝐺 and it is 

denoted by 𝛾(𝐺). Similarly, a total dominating set of 𝐺 is a set 𝐷 ⊆ 𝑉(𝐺) such that for each 

𝑣 ∈ 𝑉(𝐺), 𝑁𝐺(𝑣) ∩ 𝐷 ≠ ∅. The total domination number 𝛾𝑡(𝐺) of 𝐺 is the minimum 

cardinality of a total dominating set of 𝐺.  

The concept total outer connected dominating set is introduced by J. Cyman. A path is 

a connected graph in which end vertices have degree 1 and the remaining vertices have degree 

2 and is denoted by 𝑃𝑛 [1]. 

Definition 1.1. Let 𝐺 be a simple connected graph. A set 𝐷 ⊆ 𝑉(𝐺) is a total outer connected 

dominating set of 𝐺 if D is total dominating, and the induced subgraph 𝐺[𝑉(𝐺) − 𝐷] is a 

connected graph. The total outer connected domination number of 𝐺, denoted by 𝛾̃𝑡𝑐(𝐺), is 

the minimum cardinality of a total outer connected dominating set of 𝐺. 

Definition 1.2. Let G be a simple connected graph. Let 𝐷̃𝑡𝑐(𝐺, 𝑖) denote the family of all total 

outer connected dominating set of 𝐺 with cardinality 𝑖 and let 𝑑̃𝑡𝑐(𝐺, 𝑖) = |𝐷̃𝑡𝑐(𝐺, 𝑖)|. Then 

the total outer connected domination polynomial 𝐷̃𝑡𝑐(𝐺, 𝑥) of 𝐺 is defined as 𝐷̃𝑡𝑐(𝐺, 𝑖) =

∑ 𝑑̃𝑡𝑐(𝐺, 𝑖)
|𝑉(𝐺)|
𝑖=𝛾̃𝑡𝑐(𝐺)

𝑥𝑖, where 𝛾̃𝑡𝑐(𝐺) is the total outer connected domination number of 𝐺. 

 In the next section we study total outer connected dominating sets and total outer 

connected domination polynomial of 𝑃𝑛, which is needed for the study of total outer connected 

domination polynomial of complete bipartite graph 𝑃𝑛. 

2. Total outer connected dominating sets and total outer connected 

domination polynomial of 𝑷𝒏 

Lemma 2.1. For every 𝑛 ∈ 𝑁, 𝛾̃𝑡𝑐(𝑃𝑛) = {

𝑛,       𝑖𝑓    𝑛 = 1,2
𝑛 − 1, 𝑖𝑓     𝑛 = 3,4,5
𝑛 − 2,     𝑖𝑓        𝑛 ≥ 6

   

𝑛
𝑖⁄  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 1               

2 0 1              

3 0 2 1             

4 0 0 2 1            
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5 0 0 0 3 1           

6 0 0 0 1 4 1          

7 0 0 0 0 2 5 1         

8 0 0 0 0 0 3 6 1        

9 0 0 0 0 0 0 4 7 1       

10 0 0 0 0 0 0 0 5 8 1      

11 0 0 0 0 0 0 0 0 6 9 1     

12 0 0 0 0 0 0 0 0 0 7 10 1    

13 0 0 0 0 0 0 0 0 0 0 8 11 1   

14 0 0 0 0 0 0 0 0 0 0 0 9 12 1  

15 0 0 0 0 0 0 0 0 0 0 0 0 10 13 1 

 

Table 1: 𝑑(𝑃𝑛, 15) 

3. Total outer connected dominaton polynomial of 𝑷𝒏. 

Definition 3.1. Let 𝐷̃𝑡𝑐(𝑃𝑛, 𝑖) be the family of dominating sets of Path 𝑃𝑛 with cardinality 𝑖 

and let 𝑑(𝑃𝑛, 𝑖) = |𝐷̃𝑡𝑐(𝑃𝑛, 𝑖)|. Then the domination polynomial 𝐷̃𝑡𝑐(𝑃𝑛, 𝑥) of 𝑃𝑛 is defined as 

𝐷̃𝑡𝑐(𝑃𝑛, 𝑥) = ∑ 𝑑(𝑃𝑛, 𝑖)𝑥
𝑖𝑛

𝑖=𝛾̃𝑡𝑐(𝑃𝑛)
 

Lemma 3.2. 

(𝑖) For every 𝑛 > 4,  𝐷̃𝑡𝑐(𝑃𝑛, 𝑥) = 𝑥𝑛 + (𝑛 − 2)𝑥𝑛−1 + (𝑛 − 5)𝑥𝑛−2 

(𝑖𝑖) For every 𝑛 ≥ 6, 𝐷̃𝑡𝑐(𝑃𝑛, 𝑥) = 𝑥[𝐷̃𝑡𝑐(𝑃𝑛−1, 𝑥)] + 𝑥
𝑛−3[𝐷̃𝑡𝑐(𝑃2, 𝑥) + 𝐷̃𝑡𝑐(𝑃3, 𝑥)], 

where 𝐷̃𝑡𝑐(𝑃2, 𝑥) = 𝑥
2, 𝐷̃𝑡𝑐(𝑃3, 𝑥) = 𝑥3 + 2𝑥2 

Theorem 3.2. The following properties hold for coefficients of 𝐷̃𝑡𝑐(𝑃𝑛, 𝑥): 

(i) For every 𝑛 > 4, 𝑑̃𝑡𝑐(𝑃𝑛, 𝑛 − 1) = (𝑃𝑛−1, 𝑛 − 2) + (𝑃𝑛−1, 𝑛 − 1) 

(ii) For every 𝑛 ≥ 6, 𝑑̃𝑡𝑐(𝑃𝑛, 𝑛 − 2) = 𝑛 − 5 

(iii)  For every 𝑛 ∈ 𝑁, 𝑑̃𝑡𝑐(𝑃𝑛, 𝑛) = 1 

(iv) For every 𝑛 ≥ 4, 𝑑̃𝑡𝑐(𝑃𝑛, 𝑛 − 1) = 𝑛 − 2 
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(v) For every 𝑛 ≥ 6, 𝑑̃𝑡𝑐(𝑃𝑛, 𝑛 − 2) + 𝑑̃𝑡𝑐(𝑃𝑛, 𝑛 − 1) + 𝑑̃𝑡𝑐(𝑃𝑛, 𝑛) =

[𝑑̃𝑡𝑐(𝑃𝑛−1, 𝑛 − 3) + 𝑑̃𝑡𝑐(𝑃𝑛−1, 𝑛 − 2) + 𝑑̃𝑡𝑐(𝑃𝑛−1, 𝑛 − 1)] + 2  

(vi) For every 𝑛 ≥ 6, 𝑑̃𝑡𝑐(𝑃𝑛+1, 𝑛 − 1) + 𝑑̃𝑡𝑐(𝑃𝑛, 𝑛 − 1) + 𝑑̃𝑡𝑐(𝑃𝑛−2, 𝑛 − 1) =

[𝑑̃𝑡𝑐(𝑃𝑛, 𝑛 − 2) + 𝑑̃𝑡𝑐(𝑃𝑛−1, 𝑛 − 2) + 𝑑̃𝑡𝑐(𝑃𝑛−2, 𝑛 − 2)] + 2  

Proof. The proof follows from the table 2.1 

4. Conclusion 

 This paper discusses and analyses the total outer connected dominating sets of path and 

total outer connected domination polynomial of path. Using recursive formula, we constructed 

the polynomial  𝐷̃𝑡𝑐(𝑃𝑛, 𝑥) = ∑ 𝑑(𝑃𝑛, 𝑖)𝑥
𝑖𝑛

𝑖=𝛾̃𝑡𝑐(𝑃𝑛)
, which we call total outer connected 

domination polynomial of 𝑃𝑛 and obtain some properties of the polynomial. 
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Abstract 

A bijective function 𝑓: 𝑉(𝐺) → {1,2, … , ∣ 𝑉(𝐺) ∣} is considered a restricted Zumkeller 

labeling of the graph 𝐺 if the induced function 𝑓∗: 𝐸(𝐺) → 𝑁, defined as 𝑓∗(𝑥𝑦) = 𝑓(𝑥)𝑓(𝑦) 

for all 𝑥𝑦 ∈ 𝐸(𝐺), yields Zumkeller numbers. Similarly, a bijective function                    

𝑓: 𝐸(𝐺) → {1,2, … , ∣ 𝐸(𝐺) ∣} is termed a restricted edge Zumkeller labeling of the graph 𝐺 if 

the induced function 𝑓∗: 𝑉(𝐺) → 𝑁, defined as 𝑓∗(𝑣) = ∏ 𝑓𝑢∈𝑁(𝑣) (𝑢𝑣)for all 𝑣 ∈ 𝑉(𝐺) 

(where 𝑁(𝑣) represents the neighborhood of 𝑣), assigns Zumkeller numbers to all vertices in 

𝑉(𝐺). 

Keywords: Graph labeling; Zumkeller Numbers; Zumkeller labeling; Edge Zumkeller 

labelling 

2020 Mathematics Subject Classification (AMS): 05C78 

1. Introduction 

Graph labeling represents an engaging and evolving domain within graph theory, involving 

the assignment of values, typically integers, to edges or vertices, adhering to specific 

mathematical criteria. Originating in the mid-sixties, Alex Rosa [1] formally introduced this 

concept. Gallian's comprehensive work [4] continuously gathers and revises previous labeling 

schemes across various established graph families. 

A positive integer 𝑛 is termed perfect if it equals the sum of all its proper positive divisors, 

denoted by 𝜎(𝑛) = 2𝑛, where 𝜎(𝑛) represents the sum of positive divisors. This property has 

fascinated mathematicians for centuries due to its elusive nature and unique properties. In 2003, 

the Encyclopaedia of Integer Sequences [8] delved into the concept of Zumkeller numbers, 

mailto:1lintavijin@gmail.com
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offering a broader perspective on perfect numbers. Initiated by R. H. Zumkeller, Zumkeller 

numbers represent a fascinating extension of perfect numbers. These are positive integers 

wherein the sum of their positive factors can be elegantly partitioned into two distinct sets of 

equal sums, adding a layer of complexity and intrigue to the study of number theory. The formal 

introduction of Zumkeller numbers was attributed to Clark et al. [3], sparking further 

exploration and analysis in subsequent studies, as documented in [7,9]. In 2013, Balamurugan 

et al. introduced the notion of Zumkeller labeling [2], a concept deeply rooted in graph theory. 

Zumkeller labeling is defined as an injective function 𝑓: 𝑉(𝐺) → 𝑁, where 𝑉(𝐺) represents the 

vertices of a graph 𝐺, such that the induced function 𝑓∗: 𝐸(𝐺) → 𝑁, defined by 𝑓∗(𝑥𝑦) =

𝑓(𝑥)𝑓(𝑦), yields a Zumkeller number for all 𝑥𝑦 ∈ 𝐸(𝐺), 𝑥, 𝑦 ∈ 𝑉(𝐺). Furthermore, the 

concept of edge-Zumkeller labeling was introduced by Linta K Wilson and Bebincy V M[6], 

defining it as an injective function 𝑓: 𝐸(𝐺) → 𝑁, where 𝐸(𝐺) represents the edges of a graph 

G. In this labeling scheme, the induced function 𝑓∗: 𝑉(𝐺) → 𝑁, defined by                           

𝑓∗(𝑣) = ∏ 𝑓𝑢∈𝑁(𝑢) (𝑢𝑣)assigns a Zumkeller number for all 𝑣 ∈ 𝑉(𝐺) (where N(v) represent 

neighborhood of v). This elegant connection between number theory and graph theory adds a 

new dimension to the study of both fields.  

In 2019, Joshua and Wong [5] pioneered the concept of restricted super totient labeling of 

graphs. Here, a super totient labeling of 𝐺 is deemed "restricted" if the range of 𝑓 is confined 

to the set {1,2,...,∣V(G)∣}. Drawing inspiration from restricted super totient labeling, we further 

developed the concept of restricted Zumkeller labeling of graphs, building upon the foundation 

of Zumkeller labeling. Additionally, we introduced the notion of restricted edge Zumkeller 

labeling of graphs, leveraging the framework of edge Zumkeller labeling.  
 

2. Preliminaries 
 

Definition 2.1.  A positive integer n  is said to be a Zumkeller number if the positive divisors 

of n can be partitioned into two disjoint subset of equal sum.  

 Properties of Zumkeller Numbers 

● If the prime factorization of even Zumkeller number 𝑛 is 2𝑘𝑝1
𝑘1𝑝2

𝑘2…𝑝𝑚
𝑘𝑚 . Then atleast 

one of 𝑘𝑖 must be an odd number. 

● If 𝑛 is a Zumkeller number and 𝑝 is a prime with (𝑛, 𝑝) = 1, then 𝑛𝑝𝑙 is Zumkeller for 

any positive integer 𝑙. 
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● For any prime 𝑝 ≠ 2 and positive integer 𝑘 with  𝑝 ≤ 2𝑘+1 − 1, the number 2𝑘𝑝 is a 

Zumkeller number. 

● Let 𝑛 = 2𝛼𝑝𝛽 be a positive  integer. Then  𝑛 is a Zumkeller  number if and  only  if  

𝑝 ≤ 2𝑘+1 − 1 and 𝛽 is an odd number. 

3. Restricted zumkeller labelling of graphs 
 

Definition 3.1. Let 𝐺 = (𝑉(𝐺), 𝐸(𝐺)) be a simple connected graph. An bijective function                                        

f: V(G) → { 1,2, . . . , |V(G)|}  is said to be restricted Zumkeller labeling of the graph G, if the 

induced function f ∗: E(G) → N  defined as f ∗(xy) = f(x)f(y) Zumkeller number for all xy ∈

E(G),  x, y ∈ V(G). A graph that admits restricted Zumkeller labeling is called a restricted 

Zumkeller graph, denoted as RZG. 

Example 3.2. 

 

Figure 1. 𝑃6 is a restricted Zumkeller Graph 

Theorem 3.3. For 𝑛 ≥  3, every spanning subgraph of a restricted Zumkeller graph is a 

restricted Zumkeller graph. 

Proof. Let 𝐺 be a restricted Zumkeller graph. As we remove edges from 𝐺 to get 𝐻, the 

restriction of 𝑓 to 𝐻 is a restricted Zumkeller labeling for 𝐻. That is, 𝐻 is a restricted Zumkeller 

graph. 

Theorem 3.4. Let 𝐻 be a spanning subgraph of a simple connected graph 𝐺. If H is not RZG 

then G is not 𝑅𝑍𝐺.  

Proof. Suppose G be a simple connected graph and H is a spanning sub graph of G. H is not 

RZG, then there exist at least one edge labled with non Zumkeller number. That edge also in 

G. Thus, G is also not RZG. 

Remark 3.5. Let H be induced sub graph of simple connected graph G. If H is not RZG then 

G is need not be RZG. 

Example 3.6. For illustration consider the graph 𝐺 = 𝐶4⨀𝐾1 is RZG by given labeling. But  

𝐻 = 𝐶4 is not RZG. 



Proceedings of the International Conference on Algebraic Graph Theory,                                              
Graph Theory and Topology – 9th & 10th January 2025 

180 
 
ISBN: 978-93-48505-23-1 

 

Figure 2. 𝐶4⨀𝐾1 is a restricted Zumkeller Graph 

Theorem 3.7. Let n be a positive integer. Then, the complete graph 𝐾𝑛 is a restricted Zumkeller 

graph if and only if n=1. 

Proof. In the case n=1 is trivial. Further, the case 𝑛 ≥  2 follows from the fact that the vertices 

labeled as 1 and 2 must be adjacent, but the induced edge label 2 is not a Zumkeller number. 

Theorem 3.8. Let G be a connected graph. Then G is restricted Zumkeller graph if         

|𝑉(𝐺)| ≥ 6.    

Proof. Since G is connected, the degree of each vertex of G is ≥ 1. Let 𝑣0 be the vertex labeled 

as 1. Then 2, 3, 4 and 5 are can not be labeled for adjacent vertices of 𝑣0 because 2, 3, 4 and 5 

are not Zumkeller numbers. That is the first possibility of adjacent vertex of 𝑣0 be 6. By the 

definition of restricted Zumkeller labeling it easily follows that |𝑉(𝐺)| ≥ 6, when G is 

connected.   

Theorem3.9. The complete bipartite graph 𝐾𝑚𝑛 is not  restricted Zumkeller Graph for any 

positive integers m and n.    

Proof. Consider Complete bipartite graph 𝐾𝑚𝑛 with 𝑚 + 𝑛 ≥ 6. We divide the numbers 

1,2,3..., 𝑚 + 𝑛 in to 2 distinct sets A and B with size m and n. If 1 ∈ 𝐴, then the set B contains 

only Zumkeller numbers. Suppose 2𝑝𝑙 ∈  𝐵 where 1 is an odd number. The number p belongs 

to A or B. If 𝑝 ∈ 𝐴, then we get edge label as 2𝑝𝑙+1 which is not a Zumkeller number. Also if 

𝑝 ∈ 𝐵 then we get an edge label as p, which is not a Zumkeller number. Both case we get 

contradition. Thus, the complete bipartite graph 𝐾𝑚𝑛 is not  restricted Zumkeller Graph. 

Corollary 3.10. For any 𝑛 ≥ 1, star graph 𝐾1𝑛 can not admits restricted Zumkeller labeling. 

Theorem 3.11.  For any positive integer n, the wheel graph 𝑊𝑛 is not RZG. 

Proof. The star graph 𝐾1,𝑛−1 is the spanning sub graph of wheel graph 𝑊𝑛. Using Theorem 3.4. 

and corollary 3.10. we get the result. 

Theorem 3.12. For any positive integer n, the fan graph 𝐹𝑛 is not RZG. 

Proof. The star graph 𝐾1,𝑛−1 is the spanning sub graph of fan graph 𝐹𝑛. Using Theorem 3.4. 

and corollary 3.10. we get the result. 

Theorem 3.13. For any positive integer n, the friendship graph 𝐹𝑟𝑛 is not RZG.    
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Proof. The wheel graph 𝑊𝑛 is the spanning sub graph of friendship graph 𝐹𝑛. Using Theorem 

3.4. and Theorem 3.12 we get the result. 

Theorem 3.14. For any 𝑛 ≥ 2, bistar graph 𝐵𝑛,𝑛 admits restricted Zumkeller labeling.     

Proof.  The vertex set of 𝐵𝑛,𝑛 is 𝑉(𝐵𝑛,𝑛) =  {𝑣𝑖 , 𝑢𝑖: 0 ≤ 𝑖 ≤ 𝑛} and the edge set of 𝐵𝑛,𝑛 is 

𝐸(𝐵𝑛,𝑛) = { 𝑣0𝑢0, 𝑣0𝑣𝑖 , 𝑢0𝑢𝑖: 1 ≤ 𝑖 ≤ 𝑛}. 

Define the bijective function 𝑓: 𝑉(𝐺) → { 1,2, . . . , |𝑉(𝐺)|}as follows. Fix 𝑓(𝑣0) = 6, 𝑓(𝑢0) be 

the largest number of the form 2𝑘 where k is a positive integer, f(𝑣𝑖)=1 or the number of the 

form 2𝑘 (where k is positive integer) or 𝑝2𝑗 (where j is positive integer and p is  prime 

number 𝑛 ≥ 3) and its multiples and  𝑓(𝑢𝑖) = 3
2𝑗−1 (where 𝑗 is positive integer) and its 

multiples. Leftover  vertices take remaining numbers randomly. Now we calculate the induced 

edge labels.  

𝑓∗(𝑣𝑜𝑢𝑜) = 𝑓(𝑣𝑜). 𝑓(𝑢𝑜) = 6.2^𝑘 = 2^{𝑘 + 1}.3 is a Zumkeller number.  

𝑓∗(𝑣𝑜𝑣𝑖) = 𝑓(𝑣𝑜). 𝑓(𝑣𝑖) = {6.1 = 6                            6. 2𝑘 = 2𝑘+1. 3              𝑚. 𝑝2𝑗. 6 =

𝑚. 2.3. 𝑝2𝑗         (where m is   positive integer.) 

𝑓∗(𝑢𝑜𝑢𝑖) = 𝑓(𝑣𝑜). 𝑓(𝑢𝑖) = 2
𝑘 . 𝑛. 32𝑗+1           (where n is   positive integer.) 

 Now we consider remaining vertices. For the case of 𝑣𝑖, Clearly 3 is not a divisor of these 

labels, 𝑓∗(𝑣𝑜𝑣𝑖) = 𝑓(𝑣𝑜). 𝑓(𝑣𝑖) = 2.3. 𝑓(𝑣𝑖), which are Zumkeller numbers. In the case of 𝑢𝑖, 

there is an odd prime (𝑛 ≥ 3) have odd power is a factor then 𝑓∗(𝑢𝑜𝑢𝑖) = 2
𝑘 . 𝑓(𝑢𝑖), which are 

Zumkeller numbers. Clearly all edges labeled as Zumkeller numbers. Thus, bistar graph 𝐵𝑛,𝑛 

admits restricted Zumkeller labeling. 

Example 3.15. 

 

Figure 3. 𝐵11,11 is a restricted Zumkeller Graph   
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Theorem 3.16. For any 𝑛 ≥ 5, jellyfish graph 𝐽𝑛,𝑛 admits restricted Zumkeller labeling.    

Proof. The vertex set of  𝐽𝑛,𝑛 is 𝑉(𝐽𝑛,𝑛) = {𝑢, 𝑣, , 𝑤, 𝑥} ∪ {𝑣𝑖 , 𝑢𝑖: 1 ≤ 𝑖 ≤ 𝑛} and the edge set 

of 𝐽𝑛,𝑛 is 𝐸(𝐽𝑛,𝑛) = {𝑣𝑣𝑖, 𝑢𝑢𝑖: 1 ≤ 𝑖 ≤ 𝑛} ∪ {𝑣𝑤,𝑤𝑢, 𝑢𝑥, 𝑥𝑣, 𝑤𝑥} 

Define the bijective function 𝑓: 𝑉(𝐺) → { 1,2, . . . , |𝑉(𝐺)|} as follows. Fix 𝑓(𝑣) = 6, 𝑓(𝑤) =

10, 𝑓(𝑥) = 14 and 𝑓(𝑢) be the largest number of the form 2𝑘 where k is a positive integer. 

The remaining vertices are labeled same as in  𝐵𝑛+1,𝑛+1. 

Now we calculate the induced edge labels.  

𝑓∗(𝑣𝑤) = 𝑓(𝑣). 𝑓(𝑤) = 6.10 = 22. 3.5, which is Zumkeller number.    

𝑓∗(𝑤𝑢) = 𝑓(𝑤). 𝑓(𝑢) = 10.2^{𝑘} = 2𝑘+1. 5, which is Zumkeller number. 

𝑓∗(𝑢𝑥) = 𝑓(𝑢). 𝑓(𝑥) = 2^{𝑘}.14 = 2𝑘+1. 7, which is Zumkeller number. 

𝑓∗(𝑣𝑥) = 𝑓(𝑣). 𝑓(𝑥) = 6.14 = 22. 3.7, which is Zumkeller number. 

𝑓∗(𝑤𝑥) = 𝑓(𝑤). 𝑓(𝑥) = 10.14 = 22. 5.7, which is Zumkeller number. 

Using same argument in Theorem 3.14., we can show that all edge labels are Zumkeller 

numbers. Thus, the graph  𝐽𝑛,𝑛 admits restricted Zumkeller labeling. 

Example 3.17. 

 

Figure 4. 𝐽7,7 is a restricted Zumkeller Graph 
 

Theorem 3.18. For any 𝑛 ≥ 1, the corona  𝑃3⊙𝐾𝑛 admits restricted Zumkeller labeling. 

Proof: The vertex set of 𝑃3⊙𝐾𝑛 is 𝑉 (𝑃3⊙𝐾𝑛) = {𝑣𝑖 , 𝑢𝑖 , 𝑤𝑖: 0 ≤ 𝑖 ≤ 𝑛} and the edge set of 

𝑃3⊙𝐾𝑛 is 𝐸(𝑃3⊙𝐾𝑛) = { 𝑢0𝑣0, 𝑣0𝑤0, 𝑢0𝑢𝑖 , 𝑣0𝑣𝑖 , 𝑤0𝑤𝑖: 1 ≤ 𝑖 ≤ 𝑛}. 

Define the bijective function 𝑓: 𝑉(𝐺) → { 1,2, . . . , |𝑉(𝐺)|} as follows. Fix f(𝑢0)=3, f(𝑣0)= the 

largest number of the form 2𝑘 (where k is a positive integer),  𝑓(𝑤0) = 6, 𝑓(𝑢𝑖) =the number 

of the form 2𝑗 (where j is positive integer), 𝑓(𝑣𝑖) = 32𝑗−1(where j is positive integer) and its 

multiples  and  𝑓(𝑤𝑖) = 1 or 𝑝2𝑗 (where j is positive integer and p is  prime number 𝑛 ≥ 3) 

and its multiples . Next we label 𝑢𝑖 with leftover even numbers. 
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 Also, left over odd numbers of the form 𝑚. 32𝑗 − 2 or 𝑛. 32𝑗 − 1 labeled as 𝑣𝑖 and  𝑚. 32𝑗 − 2 

or 𝑛. 32𝑗 − 1  labeled as 𝑤𝑖. 

 Now we calculate the induced edge labels.  

𝑓∗(𝑢0𝑣0) = 𝑓(𝑢0). 𝑓(𝑣0) = 3. 2
𝑘 = 2𝑘. 3 

𝑓∗(𝑣0𝑤0) = 𝑓(𝑣0). 𝑓(𝑤0) = 2
𝑘 . 6 = 2𝑘+1. 3 

𝑓∗(𝑢0𝑢𝑖) = 𝑓(𝑢0). 𝑓(𝑢𝑖) = 3. 2𝑗 = 2𝑗 . 3 

𝑓∗(𝑣0𝑣𝑖) = 𝑓(𝑣0). 𝑓(𝑣𝑖) = 2
𝑘 . 𝑚. 32𝑗−1 

𝑓∗(𝑤0𝑤𝑖) = 𝑓(𝑤0. 𝑓(𝑤𝑖) = {6.1 = 6                          6. 𝑛. 32𝑗 = 2. 𝑛. 32𝑗+1  

Next we go through remaining even numbers that is 𝑓(𝑢𝑖) = 2.𝑚, then                             

𝑓∗(𝑢0𝑢𝑖) = 𝑓(𝑢0). 𝑓(𝑢𝑖) = 3.2.𝑚, which are Zumkeller numbers. Finally we go through 

remaining odd numbers. First we consider  𝑓(𝑣𝑖) = 𝑚. 32𝑗 − 1 or 𝑛. 32𝑗 − 2, the edge labels  

are 𝑓∗(𝑣0𝑣𝑖) = 𝑓(𝑣0). 𝑓(𝑣𝑖) = 2𝑘. 𝑚. 32𝑗 − 1  or 2𝑘. 𝑛. 32𝑗 − 2, is Zumkeller numbers 

because m and n contain  at least one odd prime other than 3. Next we consider                     

𝑓(𝑤𝑖) = 𝑚. 3
2𝑗 − 2 or 𝑛. 32𝑗 − 1 the edge entries are 𝑓∗(𝑤0𝑤𝑖) = 6.𝑚. 32𝑗−1 − 1 or 

6.𝑚. 32𝑗−1 − 2, is Zumkeller numbers because 3 is not a factor of m. 

Here we show that all edge labels are Zumkeller number. Thus, the graph the corona  𝑃3⊙𝐾𝑛 

admits restricted Zumkeller labeling. 

Example 3.19. 

 

Figure 5. 𝑃3⊙𝐾7 is a restricted Zumkeller Graph 
 

 

4. Restricted edge Zumkeller labeling of the graphs 
 

Definition 4.1. Let 𝐺 = (𝑉(𝐺), 𝐸(𝐺)) be a graph. A bijective function                                 

𝑓: 𝐸(𝐺) → { 1,2, . . . , |𝐸(𝐺)|}  is said to be restricted edge Zumkeller labeling of the graph G if 

the induced function 𝑓∗: 𝑉(𝐺) → 𝑁  defined as 𝑓∗(𝑣) = ∏ 𝑓𝑢∈𝑁(𝑢) (𝑢𝑣)assigns a Zumkeller 
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number for all 𝑣 ∈ 𝑉(𝐺) (where N(v) represent neighborhood of v). A graph that admits 

restricted edge Zumkeller labeling is called a restricted edge Zumkeller graph. 

 

Example 4.2. 

 

Figure 6. Peterson graph is a restricted edge Zumkeller Graph 
 

Theorem 4.3.  Any graph G with isolated vertex is not a restricted edge Zumkeller graph.     

Proof. It easly follows from the definition of restricted edge Zumkeller graph.      

Remark 4.4. Let G be restricted edge Zumkeller graph. Then sub graph of G need not be 

restricted edge Zumkeller graph.    

Example 4.5. For this graph removing the chord edge we get cycle 𝐶7 is not restricted edge 

Zumkeller graph 

 

Figure 7 

Remark 4.6. Let H be sub graph of simple connected graph G. If H  is REZG then G is need 

not be REZG. 

Theorem 4.7.  Let G be a simple graph with p pendent vertices. Then G is REZG if cardinality 

of  Zumkeller number ≤ |𝐸(𝐺)| is atleast p.     
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Proof. By the definition of restricted edge Zumkeller labeling of graph all pendent vertices 

labeled by Zumkeller numbers and the function is bijective this is only possible   when 

cardinality of Zumkeller number ≤ |𝐸(𝐺)|  is atleast p.    

Corollary 4.8. For any 𝑛 ≥  1, star graph 𝐾1,𝑛 can not admits restricted edge Zumkeller 

labeling.     

Proof.  For star graph 𝐾1,𝑛 has n pendent vertices and n edges. Using theorem 4.7 we get the 

result.    

Corollary4.9. For any 𝑛 ≥  3, helm graph 𝐻𝑛 can not admits restricted edge Zumkeller 

labeling.     

Proof. It is easily from theorem 4.7.     

Theorem 4.10.  Let G be a simple graph. Then G is restricted edge Zumkeller graph if   

|𝐸(𝐺)|  ≥  6.     

Proof.  Suppose |𝐸(𝐺)|  ≥  5. If G contain pendent vertices, then G is not restricted Zumkeller 

graph. That is every vertices have degree ≥  2. The only possible labels of incident edges in 

vertices  are 1.2.3, 1.3.4, 1.4.5, 2.3, 4.3 and 4.5. If we draw with these as vertices we get parallel 

edge in graph. Thus, G is restricted edge Zumkeller graph if |𝐸(𝐺)|  ≥  6. 

Theorem 4.11. The path 𝑃𝑛 cannot be 𝑅𝐸𝑍𝐺 if 𝑛 ≥  35.     

Proof.  The graph 𝑃𝑛 be a path has vertex set 𝑉(𝑃𝑛) = {𝑣𝑖: 1 ≤ 𝑖 ≤ 𝑛} and edge set         𝐸(𝑃𝑛) =

{𝑣𝑖𝑣𝑖+1: 1 ≤ 𝑖 ≤ 𝑛 − 1}. We know that path graph has two pendent vertices namely 𝑣1 and 𝑣𝑛. 

Thus, 𝑃𝑛 is not 𝑅𝐸𝑍𝐺 if 𝑛 < 12. For any n there is ⌈𝑛
2
⌉ odd numbers and ⌊𝑛

2
⌋ even numbers. Both 

end vertices are Zumkeller numbers. Also 945=3^3.5.7 is the least odd Zumkeller number. 

Then the possibility of 2 odd numbers put adjacent in restricted edge Zumkeller labeling is 

27.35. Thus, the path 𝑃𝑛 is 𝑅𝐸𝑍𝐺 if 𝑛 ≥  35.     

Theorem 4.12. For 𝑛 ≥  3, the wheel graph 𝑊𝑛 is 𝑅𝐸𝑍𝐺.     

Proof. The graph 𝑊𝑛 has vertex set 𝑉(𝑊𝑛) = {𝑣𝑖: 0 ≤ 𝑖 ≤ 𝑛} and edge set                        𝐸(𝑊𝑛) =

{𝑣0𝑣𝑖 , 𝑣𝑖𝑣𝑖+1: 1 ≤ 𝑖 ≤ 𝑛}.  

Define an bijective function 𝑓: 𝐸(𝐺) → { 1,2, . . . , |𝐸(𝐺)|} as follows 

𝑓(𝑣0𝑣𝑖) = 2𝑖                   0 ≤ 𝑖 ≤ 𝑛 

𝑓(𝑣1𝑣2) = 3 

𝑓(𝑣2𝑣3) = 1 

𝑓(𝑣𝑖𝑣𝑖+1) = 2𝑖 + 1       3 ≤ 𝑖 ≤ 𝑛 

Then by the definition of f we obtain the induced function  𝑓∗ as follows: 
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𝑓∗(𝑣0) =∏2𝑖 = 2𝑛. 𝑛! 

𝑓∗(𝑣1) = 2.3.1 = 6 

𝑓∗(𝑣2) = 1.4.5 = 20$ 

𝑓∗(𝑣𝑖) = (2𝑖 − 1).2𝑖. (2𝑖 + 1) = 2𝑖(4𝑖2 − 1) 

Using properties of Zumkeller numbers we get all vertex labels are Zumkeller numbers.   

Thus, the wheel graph 𝑊𝑛 admits restricted edge Zumkeller labeling. 

Example 4.13. 

 

Figure 8. 𝑊7 is a restricted edge Zumkeller Graph 

5. Conclusion 

This study introduces and explores the concept of restricted Zumkeller labeling for both 

vertices and edges of a graph. The restricted vertex Zumkeller labeling assigns a bijective 

function to the vertices, ensuring that the induced edge labeling satisfies the Zumkeller number 

conditions. Similarly, the restricted edge Zumkeller labeling defines a bijective function for 

edges that leads to Zumkeller numbers for all vertices in the graph when considering their 

neighborhoods. These new labeling approaches contribute to the broader understanding of 

graph labeling theory and may offer potential applications in network design and optimization. 
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Abstract 

Let 𝐺 be a graph with 𝑝 vertices and 𝑞 edges. Define a bijection 𝑓: 𝑉 (𝐺) → {1, 8, ……, 

 𝑝(3𝑝 − 2)} by 𝑓 (𝑣𝑖) = 𝑖(3𝑖 − 2) for every 𝑖 from 1 to 𝑝 and define a 1 − 1 mapping 

𝑓 𝑜𝑝𝑔𝑙
∗ : 𝐸(𝐺) → set of natural number 𝑁 such that 𝑓 ∗(𝑢𝑣) = |𝑓 (𝑢) − 𝑓 (𝑣)| for all edges 

(𝑢𝑣) ∈ 𝐸(𝐺). The induced function 𝑓 is said to be octagonal prime graceful labeling if the 

𝑔𝑐𝑖𝑛 of each vertex of degree atleast 2 is one. 

Keywords: Graceful labeling, Prime graceful labeling, Octagonal graceful labeling, 

Octagonal prime graceful labeling,  

2020 Mathematics Subject Classification (AMS): 05C78  

1. Introduction 

 Numbers of the form 𝑂𝑛 = 𝑛(3𝑛 − 2) for all  𝑛 ≥ 1 are called octagonal numbers. 

Octagonal graceful labeling on some graphs is studied by S. Mahendran and it is defined as 

follows: Let 𝑓 ∶ 𝑉 (𝐺) → {0, 1, 2, . . . , 𝑀𝑞} where 𝑀𝑞 is the 𝑞𝑡ℎ octagonal number be an 

injective function. Define the function 𝑓 ∗ ∶ 𝐸(𝐺) → {1, 8, . . . , 𝑀𝑞} such that 𝑓 ∗(𝑢𝑣) =

|𝑓 (𝑢) − 𝑓 (𝑣)| for all edges 𝑢𝑣 ∈ 𝐸(𝐺). If 𝑓 ∗(𝐸(𝐺)) is a sequence of distinct consecutive 

octagonal numbers {𝑀1, 𝑀2, . . . , 𝑀𝑞}, then the function 𝑓 is said to be octagonal graceful 

labeling [7] and the graph which admits such a labeling is called a octagonal graceful graph. In 

this paper we discussed the octagonal prime graceful labeling of some graphs with illustrations. 

2. Preliminaries 

Definition 2.1. [2] The Jelly fish graph 𝐽(𝑚, 𝑛) is obtained from a 4 − cycle 𝑣1, 𝑣2, 𝑣3, 𝑣4 by 
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joining 𝑣1 and 𝑣3 with an edge and appending 𝑚 pendent edges to 𝑣2 and 𝑛 pendent edge to 

𝑣4. 

Definition 2.2. [8] A double fan graph 𝐹2,𝑛 is defined as the graph join  𝐾2̅̅ ̅ + 𝑃𝑛  where 𝐾2̅̅ ̅ is 

the empty graph on two vertices and 𝑃𝑛  be a path of length 𝑛. 

Definition 2.3. The joint sum of two graphs 𝐺1 and 𝐺2 is the graph obtained by joining a vertex 

of 𝐺1 with a vertex of 𝐺2  by an edge. 

Definition 2.4. Let the graph 𝐺1 and 𝐺1 have disjoint vertex sets 𝑉1 and 𝑉2 and edge sets 𝐸1 and  

𝐸2 respectively. Then their union 𝐺 = 𝐺1 ∪ 𝐺1  is a graph with vertex set  𝑉 = 𝑉1 ∪ 𝑉2 and 

edge set 𝐸 = 𝐸1 ∪ 𝐸2. Clearly, 𝐺1 ∪ 𝐺1 has  𝑝1 + 𝑝2  vertices and 𝑞1 + 𝑞2   edges. 

3. Main results 

3.1. Octagonal Prime Graceful Labeling of Some Special Graphs 

Theorem 3.1.1. The Jelly fish graph 𝐽(𝑚, 𝑛) [2] is an octagonal prime graceful for 𝑚, 𝑛 ≥  1. 

Proof. Let 𝐽(𝑚, 𝑛) be the Jelly fish graph with 𝑚 + 𝑛 + 4 vertices and 𝑚 + 𝑛 + 5 edges. 

Without loss of generality let us assume 𝑛 ≥ 𝑚. 

Let 𝑉(𝐺) and 𝐸(𝐺) be the vertex and edge set respectively. 

Then 𝑉(𝐺) = 𝑉1 ∪ 𝑉2 ∪ 𝑉3 

                       =  {𝑥, 𝑦, 𝑢, 𝑣}  ∪ {𝑢𝑖 ∶ 1 ≤  𝑖 ≤  𝑚}  ∪ {𝑣𝑗 ∶ 1 ≤  𝑗 ≤  𝑛} and 

          𝐸(𝐺)  =  𝐸1 ∪ 𝐸2 ∪ 𝐸3 

                     =  {𝑥𝑢, 𝑢𝑦, 𝑦𝑣, 𝑣𝑥, 𝑥𝑦}  ∪ {𝑢𝑢𝑖 ∶ 1 ≤  𝑖 ≤  𝑚}  ∪ {𝑣𝑗 ∶ 1 ≤  𝑗 ≤  𝑛} 

Define 𝑓 ∶ 𝑉 (𝐺) → {1, 8, . . . , 𝑝(3𝑝 −  2)} by 

𝑓 (𝑢) = 𝑂1, 𝑓 (𝑣) = 𝑂2, 𝑓 (𝑥) =  𝑂3, 𝑓 (𝑦) = 𝑂4 

  𝑓 (𝑢𝑖 −𝑚) = 𝑖(3𝑖 −  2), 𝑓𝑜𝑟 5 ≤  𝑖 ≤  2𝑚 

𝑓 (𝑣𝑖 − 2𝑚) = 𝑖(3𝑖 −  2), 𝑓𝑜𝑟 2𝑚 +  1 ≤  𝑖 ≤  3𝑛 

The edge labels are given by 

𝑓 𝑜𝑝𝑔𝑙
∗ (𝑥𝑣) = 𝑓 (𝑥) − 𝑓 (𝑣) 
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𝑓 𝑜𝑝𝑔𝑙
∗ (𝑥𝑢) = 𝑓 (𝑥) − 𝑓 (𝑢) 

𝑓 𝑜𝑝𝑔𝑙
∗ (𝑦𝑢) = 𝑓 (𝑦) − 𝑓 (𝑢) 

𝑓 𝑜𝑝𝑔𝑙
∗ (𝑦𝑣) = 𝑓 (𝑦) − 𝑓 (𝑣) 

𝑓 𝑜𝑝𝑔𝑙
∗ (𝑢𝑖 − 3𝑢) = 3𝑖

2  +  4𝑖, 𝑓𝑜𝑟 4 ≤  𝑖 ≤  2𝑚 −  1 

𝑓 𝑜𝑝𝑔𝑙
∗ (𝑣𝑖𝑣) = 𝑓 (𝑣𝑖)  −  𝑓 (𝑣), 𝑓𝑜𝑟 1 ≤  𝑖 ≤  𝑛 

Clearly 𝑓 𝑜𝑝𝑔𝑙
∗  is an injection and 𝑓 induces the function 𝑓 𝑜𝑝𝑔𝑙

∗  on 𝐸(𝐺) such that 

𝑓 𝑜𝑝𝑔𝑙
∗  (𝑢𝑣) = |𝑓 (𝑢) − 𝑓 (𝑣)|. 

Also the 𝑔𝑐𝑖𝑛 of each vertex of degree greater than one is 1. Therefore 𝑓 admits 

octagonal prime graceful labeling. 

Hence the Jelly fish 𝐽(𝑚, 𝑛) is an octagonal prime graceful graph. 

Example 3.1.2. Octagonal prime graceful labeling of graph Jelly fish 𝐽(4, 4) is shown below. 

 

 

 

Figure 1: Octagonal prime graceful labeling of Jelly fish 𝐽(4, 4) 

Theorem 3.1.3. The double fan graph 𝐹2,𝑛 [8] is an octagonal prime graceful graph. 

Proof. Let 𝐹2,𝑛 be a double fan graph. 

Then 𝐹2,𝑛 has 𝑝 = 𝑛 + 2 and 𝑞 = 3𝑛 − 1 number of vertices and edges respectively. 

(𝑖𝑒) 𝑝 = |𝑉 (𝐹2,𝑛)| = 𝑛 + 2 and 𝑞 =  |𝐸(𝐹2,𝑛)| = 3𝑛 − 1 
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Let 𝑉 (𝐹2,𝑛) = {𝑣, 𝑢, 𝑣𝑖 ∶ 1 ≤  𝑖 ≤  𝑛} and 

𝐸(𝐹2,𝑛) = {𝑢𝑣𝑖 , 𝑣𝑣𝑖 ∶ 1 ≤  𝑖 ≤  𝑛}  ∪ {𝑣𝑖𝑣𝑖+1 ∶ 1 ≤  𝑖 ≤  𝑛 −  1} 

Define a function 𝑓 ∶ 𝑉 (𝐹2,𝑛) → {1, 8, . . . , 𝑝(3𝑝 −  2)} by 

𝑓 (𝑣𝑖) = 3𝑖
2 − 2𝑖, 𝑓𝑜𝑟 1 ≤  𝑖 ≤  𝑛 

𝑓 (𝑢) = 𝑂𝑛+1  𝑎𝑛𝑑 𝑓 (𝑣) = 𝑂𝑛+2 

The edges of 𝐹2,𝑛 are labeled in such a way that 

𝑓 𝑜𝑝𝑔𝑙
∗ (𝑣𝑖𝑣𝑖+1) = 6𝑖 + 1, 𝑓𝑜𝑟 1 ≤  𝑖 ≤  𝑛 −  1 

𝑓 𝑜𝑝𝑔𝑙
∗ (𝑢𝑣𝑖) = 𝑓 (𝑢) − 𝑂𝑖, 𝑓𝑜𝑟 1 ≤  𝑖 ≤  𝑛 

𝑓 𝑜𝑝𝑔𝑙
∗ (𝑣𝑣𝑖) = 𝑓 (𝑣) − 𝑂𝑖, 𝑓𝑜𝑟 1 ≤  𝑖 ≤  𝑛 

Clearly 𝑓 𝑜𝑝𝑔𝑙
∗  is an injection and 𝑓 induces the function 𝑓 𝑜𝑝𝑔𝑙

∗  on 𝐸(𝐹2,𝑛) such that 

𝑓 𝑜𝑝𝑔𝑙
∗ (𝑢𝑣) = |𝑓 (𝑢) − 𝑓 (𝑣)|. 

Also the 𝑔𝑐𝑖𝑛 of 𝑢 = gcd of edges incident on 𝑢 

⇒  𝑔𝑐𝑑 {𝑢𝑣𝑖/1 ≤  𝑖 ≤  𝑛} = 1 

gcin of 𝑣 = gcd of edges incident on 𝑣 

⇒  𝑔𝑐𝑑 {𝑣𝑣𝑖/1 ≤  𝑖 ≤  𝑛} = 1 

gcin of 𝑣𝑖 = gcd of edges incident on 𝑣𝑖 

                = 1 

Hence the 𝑔𝑐𝑖𝑛 of each vertex of degree atleast 2 is one. 

Therefore 𝑓 admits octagonal prime graceful labeling. 

Hence the double fan 𝐹2,𝑛 is an octagonal prime graceful graph. 
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Example 3.1.4. Octagonal prime graceful labeling of graph 𝐹2,7 is shown below. 

 

Figure 2: Octagonal prime graceful labeling of 𝐹2,7 

Theorem 3.1.5. The graph (𝑃2 ∪𝑚𝐾1) + 𝑁2 [2] is an octagonal prime graceful graph for 

 𝑚 ≤  4. 

Proof. Let 𝐺 = (𝑃2 ∪𝑚𝐾1) + 𝑁2 

Then 𝐺 has 𝑚 + 4 vertices and 2𝑚 + 5 edges respectively. 

Let 𝑥, 𝑦, 𝑢, 𝑣 and 𝑣1, 𝑣2, . . . , 𝑣𝑚 be the vertices of 𝐺. 

Let 𝑉 (𝐺) = 𝑉1 ∪ 𝑉2 ∪ 𝑉3 

                  = {𝑥, 𝑦}  ∪ {𝑢, 𝑣}  ∪ {𝑣𝑖 ∶ 1 ≤  𝑖 ≤  𝑚} and 

       𝐸(𝐺) = 𝐸1 ∪ 𝐸2 ∪ 𝐸3 

                 = {𝑥, 𝑦}  ∪ {𝑥𝑢, 𝑥𝑣, 𝑦𝑢, 𝑦𝑣}  ∪ {𝑢𝑣𝑖 ∶ 1 ≤  𝑖 ≤  𝑚}  ∪ {𝑣𝑣𝑖 ∶ 1 ≤  𝑖 ≤  𝑚} 

Define a function 𝑓 ∶ 𝑉 (𝐺) → {1, 8, . . . , 𝑝(3𝑝 − 2)} by 

𝑓 (𝑢) = 𝑂1, 𝑓 (𝑣) = 𝑂2, 𝑓 (𝑥) = 𝑂3, 𝑓 (𝑦) = 𝑂4 

𝑓 (𝑣𝑖) = 𝑂𝑖+𝑚 𝑓𝑜𝑟 1 ≤  𝑖 ≤  𝑚 

The edge labels are given by 

𝑓 𝑜𝑝𝑔𝑙
∗ (𝑥𝑢) = 𝑓 (𝑥) − 𝑓 (𝑢) 

𝑓 𝑜𝑝𝑔𝑙
∗ (𝑥𝑣) = 𝑓 (𝑥) − 𝑓 (𝑣) 
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𝑓 𝑜𝑝𝑔𝑙
∗ (𝑦𝑢) = 𝑓 (𝑦) − 𝑓 (𝑢) 

𝑓 𝑜𝑝𝑔𝑙
∗ (𝑦𝑣) = 𝑓 (𝑦) − 𝑓 (𝑣) 

𝑓 𝑜𝑝𝑔𝑙
∗ (𝑣𝑖𝑢) = 𝑓 (𝑣𝑖) − 𝑓 (𝑢) 

𝑓 𝑜𝑝𝑔𝑙
∗ (𝑣𝑖𝑣) = 𝑓 (𝑣𝑖) − 𝑓 (𝑣) 

Clearly 𝑓 𝑜𝑝𝑔𝑙
∗  is an injection and 𝑓 induces the function 𝑓 𝑜𝑝𝑔𝑙

∗  on 𝐸(𝐺) such that 

𝑓 𝑜𝑝𝑔𝑙
∗ (𝑢𝑣) = |𝑓 (𝑢) − 𝑓 (𝑣)|. 

Also the 𝑔𝑐𝑖𝑛 of each vertex of degree atleast 2 is one. 

Therefore 𝑓 admits octagonal prime graceful labeling. 

Hence the graph (𝑃2 ∪ 𝑚𝐾1) + 𝑁2 is an octagonal prime graceful graph for 𝑚 ≤  4. 

Example 3.1.6. The octagonal prime graceful labeling of (𝑃2 ∪ 4𝐾1) + 𝑁2 is shown below. 

 

 

Figure 3: Octagonal prime graceful labeling of (𝑃2 ∪ 4𝐾1) + 𝑁2 

 

Remark 3.1.7. The graph (𝑃2 ∪ 𝑚𝐾1) + 𝑁2 [2] is octagonal graceful but does not admits an 

octagonal prime graceful labeling for  𝑚 ≥  5. 

Proof. The graph (𝑃2 ∪𝑚𝐾1) + 𝑁2 is octagonal graceful but not octagonal prime graceful 

graph for 𝑚 ≥  5.  

This is shown below by a figure (𝑃2 ∪ 5𝐾1) + 𝑁2 
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Figure 4: (𝑃2 ∪ 5𝐾1) + 𝑁2 

Here gcin of vertex 𝑣5 = 𝑔𝑐𝑑 {224, 217} ≠ 1 

4. Application 

Graph theory finds its application in various fields such as coding theory, radar, 

astronomy, security designs, missile guidance, communication networks, X-ray 

crystallography, and database management [3]. Nowadays, it is widely used in the medical 

field also. The application of graph theory has not yet found its way into dental application 

which could help the dentist to plan the treatment easily. Suitable labeling is applied on a graph 

to represent the given sample in a simple way. When graph theory is used to depict the dental 

arch, it, in turn, gives a visual idea which would be easier to analyze than the standard formulas. 

The geometrical representation of graph structure provides a powerful aid for visualizing and 

understanding dental arch form. The octagonal prime graceful labeling of graph serves as 

models whether the patient has spacing or crowding. The variations can be used to predict if 

arch expansion is needed as a part of the treatment for correcting the malocclusion [5]. 

Determination of the need for arch expansion in orthodontics using graph labeling and graceful 

labeling of dental arch and the application of different types of graph labeling in dental arch 

structure have been studied by P. Lalitha, M. Gayathri, L. Tamilselvi, A. V. Arun[4]. 

5. Conclusion 

In this paper we discussed the octagonal prime graceful labeling of some special graphs 

and the octagonal prime graceful labeling of join of two graphs. Also we have discussed the 
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application of octagonal prime graceful labeling in the field of dentistry. A possible direction 

of future research is to investigate the octagonal prime graceful labeling of other graphs. 
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Abstract 

Let 𝐺 = (𝑉, 𝐸) be a simple graph. A connected dominating set 𝑆 of 𝑉(𝐺) is a secure 

connected dominating set of 𝐺 if for each 𝑢 ∈ 𝑉(𝐺)\𝑆, there exists 𝑣 ∈ 𝑆 such that 𝑢𝑣 ∈ 𝐸(𝐺) 

and the set (𝑆\{𝑣}) ∪ {𝑢} is a connected dominating set of 𝐺. The minimum cardinality of a 

secure connected dominating set of 𝐺, denoted by 𝛾𝑠𝑐(𝐺), is called the secure connected 

domination number of 𝐺. Let 𝐾2,𝑛 be the complete bipartite graph and let 𝐷𝑠𝑐(𝐾2,𝑛, 𝑖) denote 

the family of all secure connected dominating sets of 𝐾2,𝑛 with cardinality 𝑖. Let 𝑑𝑠𝑐(𝐾2,𝑛, 𝑖) =

|𝐷𝑠𝑐(𝐾2,𝑛, 𝑖)|. In this paper, we obtain recursive formula for 𝑑𝑠𝑐(𝐾2,𝑛, 𝑖). Using this recursive 

formula, we construct the polynomial, 𝐷𝑠𝑐(𝐾2,𝑛, 𝑥) = ∑ 𝑑𝑠𝑐(𝐾2,𝑛, 𝑖)𝑥
𝑖𝑛+2

𝑖=𝛾𝑠𝑐(𝐾2,𝑛)
 which we call 

secure connected domination polynomial of 𝐾2,𝑛 and obtain some properties of this 

polynomial. 

Keywords: Domination, Connected Domination, Secure Connected Domination Number, 

Secure Connected Dominating Set, Secure Connected Domination Polynomial. 

2020 Mathematical Subject Classification (AMS): 05C69 

1. Introduction 

Let 𝐺 =  (𝑉, 𝐸) be a graph with no self loops and no parallel edges. The order and size 

of the graph is denoted by |𝑉(𝐺)| and |𝐸(𝐺)| respectively. For any vertex 𝑣 ∈  𝑉, the open 

neighborhood of 𝑣 is the set 𝑁(𝑣)  =  {𝑢 ∈  𝑉: 𝑢𝑣 ∈  𝐸} and the closed neighborhood of 𝑣 is 

the set 𝑁[𝑣]  =  𝑁(𝑣)  ∪ {𝑣}. For a set 𝑆 ⊆  𝑉, the open neighbourhood of 𝑆 is 𝑁(𝑆)  =

 ⋃ 𝑁(𝑣)𝑣 ∈𝑆  and the closed neighborhood of 𝑆 is 𝑁[𝑆]  =  𝑁(𝑆)  ∪  𝑆. A set 𝑆 ⊆  𝑉 is a 

dominating set of 𝐺, if 𝑁[𝑆]  =  𝑉, or equivalently, every vertex in 𝑉 −  𝑆 is adjacent to atleast 

one vertex in 𝑆. The dominating set 𝑆 is said to be a connected dominating set if the subgraph 

mailto:jefrysp44@gmail.com
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〈𝑆〉 induced by 𝑆 is connected in 𝐺. A connected dominating set 𝑆 of 𝑉(𝐺) is a secure connected 

dominating set of 𝐺 if for each 𝑢 ∈  𝑉(𝐺) \ 𝑆, there exists 𝑣 ∈  𝑆 such that 𝑢𝑣 ∈  𝐸(𝐺) and 

the set (𝑆\{𝑣})  ∪ {𝑢} is a connected dominating set of 𝐺. The minimum cardinality of a secure 

connected dominating set of 𝐺, denoted by 𝛾𝑠𝑐(𝐺), is called the secure connected domination 

number of 𝐺. The study of secure connected domination in graphs was initiated by Amerkhan 

G. Cabaro, Sergio S. Canoy, Jr. and Imelda S. Aniversario[1]. Let 𝐾2,𝑛 be the complete bipartite 

graph with 𝑛 + 2 vertices. Let 𝐷𝑠𝑐(𝐾2,𝑛, 𝑖) denote the family of all secure connected 

dominating sets of 𝐾2,𝑛 with cardinality 𝑖 and let 𝑑𝑠𝑐(𝐾2,𝑛, 𝑖)= │𝐷𝑠𝑐(𝐾2,𝑛, 𝑖) |. The polynomial, 

𝐷𝑠𝑐(𝐾2,𝑛, 𝑥) = ∑ 𝑑𝑠𝑐(𝐾2,𝑛, 𝑖)𝑥
𝑖𝑛+2

𝑖=𝛾𝑠𝑐(𝐾2,𝑛)
 which we call secure connected domination 

polynomial of 𝐾2,𝑛. 

2. Secure connected dominating sets of 𝑲𝟐,𝒏 

Theorem 2.1. 𝛾𝑠𝑐(𝐾2,𝑛) = 3, 𝑛 ∈ ℕ. 

Proof. Let 𝐾2,𝑛, 𝑛 ≥ 1 be the complete bipartite graph with 𝑛 + 2 vertices and 2𝑛 edges. 

     By the definition of secure connected dominating sets, every secure connected dominating 

of 𝐾2,𝑛 must contain atleast three vertices, that is., the minimum cardinality is 3. 

     Therefore, 𝛾𝑠𝑐(𝐾2,𝑛) = 3, 𝑛 ∈ ℕ. 

Theorem 2.2. For all 𝑛 ∈ ℤ+, 𝐷𝑠𝑐(𝐾2,𝑛, 𝑖) = ∅ if and only if 𝑖 > 𝑛 + 2 or 𝑖 < 3. 

Proof. Since the minimum cardinality of the secure connected dominating set of 𝐾2,𝑛 is 3, there 

cannot exists a set with cardinality less than this minimum cardinality. 

     Hence, 𝐷𝑠𝑐(𝐾2,𝑛, 𝑖) = ∅ if 𝑖 < 3. 

     Also, since 𝐾2,𝑛 contains 𝑛 + 2 vertices, there cannot exist a secure connected dominating 

set with cardinality greater than the number of vertices of the graph. 

     Hence, 𝐷𝑠𝑐(𝐾2,𝑛, 𝑖) = ∅ , if 𝑖 > 𝑛 + 2. 

Theorem 2.3. Let 𝐾2,𝑛 be the complete bipartite graph with 𝑛 + 2 vertices, then 

          𝑑𝑠𝑐(𝐾2,𝑛, 𝑖) = {

𝑛,   𝑖𝑓 𝑖 = 3, 𝑛 ≥ 3

( 𝑛
𝑖−2
),    𝑖𝑓 3 < 𝑖 ≤ 𝑛

(𝑛+2
𝑖
),           𝑖𝑓 𝑖 > 𝑛

. 

Proof. Let 𝐾2,𝑛, 𝑛 ≥ 1 be the complete bipartite graph with 𝑛 + 2 vertices. Let 𝑣1, 𝑣2  ∈ 𝑉 be 

the vertices with degree 𝑛 and 𝑣3, 𝑣4, … , 𝑣𝑛+2 be the remaining vertices. 

     For the construction of secure connected dominating sets, the set must contain 𝑣1 and 𝑣2 if 

3 ≤ 𝑖 ≤ 𝑛. 
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     If 𝑣1 ∉ 𝐷𝑠𝑐(𝐾2,𝑛, 𝑖) or 𝑣2 ∉ 𝐷𝑠𝑐(𝐾2,𝑛, 𝑖) or {𝑣1, 𝑣2 ∉ 𝐷𝑠𝑐(𝐾2,𝑛, 𝑖), then the resultant set will 

never be a secure connected dominating set. 

     Now, for 𝑖 = 3, 𝐾2,𝑛 contains ‘𝑛’ number of subsets which includes 𝑣1 and  𝑣2. 

     Therefore, 𝑑𝑠𝑐(𝐾2,𝑛, 𝑖) = 𝑛 if 𝑖 = 3. 

     For 3 < 𝑖 ≤ 𝑛, 𝐾2,𝑛 contains ( 𝑛
𝑖−2
) number of subsets which includes 𝑣1 and  𝑣2. 

     Therefore, 𝑑𝑠𝑐(𝐾2,𝑛, 𝑖) = (
𝑛
𝑖−2
), if 3 < 𝑖 ≤ 𝑛. 

     For 𝑖 > 𝑛, 𝐾2,𝑛 contains (𝑛+2
𝑖
) number of sets, that are all secure connected dominating sets. 

     Therefore, 𝑑𝑠𝑐(𝐾2,𝑛, 𝑖) = (
𝑛+2
𝑖
) , if 𝑖 > 𝑛. 

     Hence, the proof. 

Remark 2.4. 

(i) 𝑑𝑠𝑐(𝐾2,𝑛, 𝑖) = 𝑑𝑠𝑐(𝐾2,𝑛−1, 𝑖) + 1 for all 𝑛 > 2 and 𝑖 = 3. 

(ii) 𝑑𝑠𝑐(𝐾2,𝑛, 𝑖) = 𝑑𝑠𝑐(𝐾2,𝑛−1, 𝑖) + 𝑑𝑠𝑐(𝐾2,𝑛−1, 𝑖 − 1), for 3 < 𝑖 < 𝑛 and 𝑖 = 𝑛. 

(iii)𝑑𝑠𝑐(𝐾2,𝑛, 𝑖) = [𝑑𝑠𝑐(𝐾2,𝑛−1, 𝑖) + 𝑑𝑠𝑐(𝐾2,𝑛−1, 𝑖 − 1)] − 2, for 𝑖 = 𝑛. 

Proof. 

(i) From the table, it is obviously  

               𝑑𝑠𝑐(𝐾2,𝑛, 𝑖) = 𝑑𝑠𝑐(𝐾2,𝑛−1, 𝑖) + 1 for all 𝑛 > 2 and 𝑖 = 3. 

(ii) From the table, for 3 < 𝑖 < 𝑛 and 𝑖 > 𝑛 

         (𝑛−1
𝑖−1
) + (𝑛−1

𝑖
) = (𝑛

𝑖
) 

     ⇒ 𝑑𝑠𝑐(𝐾2,𝑛−1, 𝑖 − 1) + 𝑑𝑠𝑐(𝐾2,𝑛−1, 𝑖) = 𝑑𝑠𝑐(𝐾2,𝑛, 𝑖). 

(iii)Also from the table, for 𝑖 = 𝑛 

         [(𝑛−1
𝑖−1
) + (𝑛−1

𝑖
)] − 2 = (𝑛

𝑖
) 

     ⇒ [𝑑𝑠𝑐(𝐾2,𝑛−1, 𝑖 − 1) + 𝑑𝑠𝑐(𝐾2,𝑛−1, 𝑖)] − 2 = 𝑑𝑠𝑐(𝐾2,𝑛, 𝑖). 

 

i 1 2 3 4 5 6 7 8 9 10 11 12 13 

2,n              

2,1 0 0 1           

2,2 0 0 4 1          

2,3 0 0 3 5 1         

2,4 0 0 4 6 6 1        

2,5 0  0 5 10 10 7 1       
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2,6 0 0 6 15 20 15 8 1      

2,7 0 0 7 21 35 35 21 9 1     

2,8 0 0 8 28 56 70 56 28 10 1    

2,9 0 0 9 36 84 126 126 84 36 11 1   

2,10 0 0 10 45 120 210 252 210 120 45 12 1  

2,11 0 0 11 55 165 330 462 462 330 165 55 13 1 

      

   Table 1 𝑑𝑠𝑐(𝐾2,𝑛, 𝑖), the number of secure connected dominating sets with cardinality i 

3. Secure connected domination polynomial of 𝑲𝟐,𝒏 

Definition 3.1. Let 𝐷𝑠𝑐(𝐾2,𝑛, 𝑖) denote the family of all secure connected dominating sets of 

𝐾2,𝑛 with cardinality 𝑖 and let 𝑑𝑠𝑐(𝐾2,𝑛, 𝑖)= │𝐷𝑠𝑐(𝐾2,𝑛, 𝑖) |. Then the secure connected 

domination polynomial 𝐷𝑠𝑐(𝐾2,𝑛, 𝑥) of 𝐾2,𝑛 is defined as, 𝐷𝑠𝑐(𝐾2,𝑛, 𝑥) =

∑ 𝑑𝑠𝑐(𝐾2,𝑛, 𝑖)
𝑛+2
𝑖=𝛾𝑠𝑐(𝐾2,𝑛)

, where 𝛾𝑠𝑐(𝐾2,𝑛) is the secure connected domination number of 𝐾2,𝑛. 

Theorem 3.2. 𝐷𝑠𝑐(𝐾2,𝑛, 𝑥) = [(1 + x)𝐷𝑠𝑐(𝐾2,𝑛−1, 𝑥)] − 2𝑥
𝑛 + 𝑥3, with the initial value 

𝐷𝑠𝑐(𝐾2,2, 𝑥) = 𝑥4 + 4𝑥3. 

Proof. We have, 𝐷𝑠𝑐(𝐾2,𝑛, 𝑥) = ∑ 𝑑𝑠𝑐(𝐾2,𝑛, 𝑖)𝑥
𝑖𝑛+2

𝑖=3  

               = 𝑑𝑠𝑐(𝐾2,𝑛, 3)𝑥
3 + ∑ 𝑑𝑠𝑐(𝐾2,𝑛, 𝑖)𝑥

𝑖𝑛+2
𝑖=4  

               = 𝑛𝑥3 + ∑ 𝑑𝑠𝑐(𝐾2,𝑛, 𝑖)𝑥
𝑖 + ∑ 𝑑𝑠𝑐(𝐾2,𝑛, 𝑖)𝑥

𝑖
𝑖=𝑛

𝑛−1,𝑛+1,𝑛+2
𝑖=4  

               = 𝑛𝑥3 + ∑ [𝑑𝑠𝑐(𝐾2,𝑛−1, 𝑖) + 𝑑𝑠𝑐(𝐾2,𝑛−1, 𝑖 − 1)]𝑥
𝑖 +𝑛−1,𝑛+1,𝑛+2

𝑖=4

                                                               ∑ {[𝑑𝑠𝑐(𝐾2,𝑛−1, 𝑖) + 𝑑𝑠𝑐(𝐾2,𝑛−1, 𝑖 − 1)] − 2}𝑥
𝑖

𝑖=𝑛   

                = 𝑛𝑥3 + ∑ [𝑑𝑠𝑐(𝐾2,𝑛−1, 𝑖) + 𝑑𝑠𝑐(𝐾2,𝑛−1, 𝑖 − 1)]𝑥
𝑖 +𝑛−1,𝑛+1,𝑛+2

𝑖=4

                                                                  𝑑𝑠𝑐(𝐾2,𝑛−1, 𝑛)𝑥
𝑛 + 𝑑𝑠𝑐(𝐾2,𝑛−1, 𝑛 − 1)𝑥

𝑛 − 2𝑥𝑛 

                = 𝑛𝑥3 + ∑ [𝑑𝑠𝑐(𝐾2,𝑛−1, 𝑖) + 𝑑𝑠𝑐(𝐾2,𝑛−1, 𝑖 − 1)]𝑥
𝑖 − 2𝑥𝑛𝑛+2

𝑖=4  

    = 𝑛𝑥3 + ∑ 𝑑𝑠𝑐(𝐾2,𝑛−1, 𝑖)𝑥
𝑖 + ∑ 𝑑𝑠𝑐(𝐾2,𝑛−1, 𝑖 − 1)𝑥

𝑖 − 2𝑥𝑛𝑛+2
𝑖=4

𝑛+2
𝑖=4  

Consider, 

 ∑ 𝑑𝑠𝑐(𝐾2,𝑛−1, 𝑖)𝑥
𝑖 = ∑ 𝑑𝑠𝑐(𝐾2,𝑛−1, 𝑖)𝑥

𝑖 − 𝑑𝑠𝑐(𝐾2,𝑛−1, 3)𝑥
3𝑛+2

𝑖=3
𝑛+2
𝑖=4  

                                     = ∑ 𝑑𝑠𝑐(𝐾2,𝑛−1, 𝑖)𝑥
𝑖 − (𝑛 − 1)𝑥3𝑛+2

𝑖=3  

                         = 𝐷𝑠𝑐(𝐾2,𝑛−1, 𝑥) − (𝑛 − 1)𝑥
3 

Again consider, 

 ∑ 𝑑𝑠𝑐(𝐾2,𝑛−1, 𝑖 − 1)𝑥
𝑖 = 𝑥∑ 𝑑𝑠𝑐(𝐾2,𝑛−1, 𝑖 − 1)𝑥

𝑖−1𝑛+2
𝑖=4

𝑛+2
𝑖=4  
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                                            = 𝑥∑ 𝑑𝑠𝑐(𝐾2,𝑛−1, 𝑖)𝑥
𝑖𝑛+1

𝑖=3  

                                = 𝑥𝐷𝑠𝑐(𝐾2,𝑛−1, 𝑥) 

Now,  

𝐷𝑠𝑐(𝐾2,𝑛−1, 𝑥) = 𝑛𝑥3 + 𝐷𝑠𝑐(𝐾2,𝑛−1, 𝑥) − (𝑛 − 1)𝑥
3 + 𝑥𝐷𝑠𝑐(𝐾2,𝑛−1, 𝑥) − 2𝑥

𝑛 

       ⇒ 𝐷𝑠𝑐(𝐾2,𝑛, 𝑥) = [(1 + x)𝐷𝑠𝑐(𝐾2,𝑛−1, 𝑥)] − 2𝑥
𝑛 + 𝑥3. 

Remark 3.3. 𝐷𝑠𝑐(𝐾2,𝑛, 𝑥) = [∑ ( 𝑛
𝑖−2
)𝑥𝑖 + (𝑛−1

𝑖−3
)𝑥𝑖] + 2𝑥𝑛+1𝑛+2

𝑖=3   

Theorem 3.4. The coefficients of 𝐷𝑠𝑐(𝐾2,𝑛, 𝑥) possess the following characteristics:  

(i) 𝑑𝑠𝑐(𝐾2,𝑛, 1) = 𝑑𝑠𝑐(𝐾2,𝑛, 2) = 0.   

(ii) 𝑑𝑠𝑐(𝐾2,𝑛, 𝑛 + 2) = 1, for every 𝑛.  

(iii)𝑑𝑠𝑐(𝐾2,𝑛, 𝑛 + 1) = 𝑛 + 2, for every 𝑛 ≥ 2.  

(iv) 𝑑𝑠𝑐(𝐾2,𝑛, 𝑛) =
𝑛(𝑛−1)

2
, for every 𝑛 ≥ 3.  

(v) 𝑑𝑠𝑐(𝐾2,𝑛, 𝑛 − 1) =
𝑛(𝑛2−3𝑛+2)

6
, for every 𝑛 ≥ 4.  

(vi) 𝑑𝑠𝑐(𝐾2,𝑛, 𝑛 − 2) =
𝑛(𝑛3−6𝑛2+11𝑛−6)

24
, for every 𝑛 ≥ 5.  

(vii) 𝑑𝑠𝑐(𝐾2,𝑛, 𝑖) = 𝑑𝑠𝑐(𝐾2,𝑛−𝑖−1, 𝑖), for every 4 ≤ 𝑖 ≤ 𝑛. 

Proof. 

(i) Since every secure connected dominating set must contain atleast 3 vertices, we have  

𝑑𝑠𝑐(𝐾2,𝑛, 1) = 𝑑𝑠𝑐(𝐾2,𝑛, 2) = 0 

(ii) Since 𝑑𝑠𝑐(𝐾2,𝑛, 𝑛 + 2) = [𝑛 + 2], we have the result. 

(iii)We have, 𝑑𝑠𝑐(𝐾2,𝑛, 𝑛 + 1) = {[𝑛 + 2] − {𝑥}/𝑥 ∈ [𝑛 + 2]} 

Therefore, 𝑑𝑠𝑐(𝐾2,𝑛, 𝑛 + 1) = 𝑛 + 2, for every 𝑛 ≥ 2.  

(iv) To prove 𝑑𝑠𝑐(𝐾2,𝑛, 𝑛) =
𝑛(𝑛−1)

2
, for every 𝑛 ≥ 3, we apply induction on 𝑛. 

When 𝑛 = 3, 𝐿𝐻𝑆 = 𝑑𝑠𝑐(𝐾2,3, 3) = 3(from the table) 

                      𝑅𝐻𝑆 =
1

2
× 3 × 2 = 3 

Therefore, 𝐿𝐻𝑆 = 𝑅𝐻𝑆 

Now, suppose that the result is true for all numbers less than 𝑛 and we prove it for 𝑛. 

We have, 𝑑𝑠𝑐(𝐾2,𝑛, 𝑛) = 𝑑𝑠𝑐(𝐾2,𝑛−1, 𝑛) + 𝑑𝑠𝑐(𝐾2,𝑛−1, 𝑛 − 1) − 2 

                                     = 𝑛 + 1 +
1

2
× (𝑛 − 1) × (𝑛 − 2) − 2 =

𝑛(𝑛−1)

2
 

Hence, 𝑑𝑠𝑐(𝐾2,𝑛, 𝑛) =
𝑛(𝑛−1)

2
, for every 𝑛 ≥ 3.  



Proceedings of the International Conference on Algebraic Graph Theory,                                              
Graph Theory and Topology – 9th & 10th January 2025 

201 
 
ISBN: 978-93-48505-23-1 

(v) To prove 𝑑𝑠𝑐(𝐾2,𝑛, 𝑛 − 1) =
𝑛(𝑛2−3𝑛+2)

2
, for every 𝑛 ≥ 4, we apply induction on 𝑛. 

When 𝑛 = 4, 𝐿𝐻𝑆 = 𝑑𝑠𝑐(𝐾2,4, 3) = 4(from the table) 

                      𝑅𝐻𝑆 =
1

6
× 4 × 6 = 4 

Therefore, 𝐿𝐻𝑆 = 𝑅𝐻𝑆 

Now, suppose that the result is true for all numbers less than 𝑛 and we prove it for 𝑛. 

We have, 𝑑𝑠𝑐(𝐾2,𝑛, 𝑛 − 1) = 𝑑𝑠𝑐(𝐾2,𝑛−1, 𝑛 − 1) + 𝑑𝑠𝑐(𝐾2,𝑛−1, 𝑛 − 2) 

                                     =
1

2
× (𝑛 − 1) × (𝑛 − 2) ×

1

6
× (𝑛 − 1) × (𝑛2 − 5𝑛 + 6) 

                                     =
𝑛(𝑛2−3𝑛+2)

2
 

Hence,𝑑𝑠𝑐(𝐾2,𝑛, 𝑛 − 1) =
𝑛(𝑛2−3𝑛+2)

2
, for every 𝑛 ≥ 4.  

(vi) To prove 𝑑𝑠𝑐(𝐾2,𝑛, 𝑛 − 2) =
𝑛(𝑛3−6𝑛2+11𝑛−6)

24
, for every 𝑛 ≥ 5, we apply induction on 

𝑛. 

When 𝑛 = 5, 𝐿𝐻𝑆 = 𝑑𝑠𝑐(𝐾2,5, 3) = 5(from the table) 

                      𝑅𝐻𝑆 =
5

24
× 24 = 5 

Therefore, 𝐿𝐻𝑆 = 𝑅𝐻𝑆 

Now, suppose that the result is true for all numbers less than 𝑛 and we prove it for 𝑛. 

We have, 𝑑𝑠𝑐(𝐾2,𝑛, 𝑛 − 2) = 𝑑𝑠𝑐(𝐾2,𝑛−1, 𝑛 − 2) + 𝑑𝑠𝑐(𝐾2,𝑛−1, 𝑛 − 3) 

                                     =
1

6
× (𝑛 − 1) × (𝑛2 − 5𝑛 + 6) 

                                   ×
1

24
× (𝑛 − 1) × ((𝑛 − 1)3 − 6(𝑛 − 1)2 + 11(𝑛 − 1) − 6) 

                                     =
𝑛(𝑛2−3𝑛+2)

2
 

Hence,𝑑𝑠𝑐(𝐾2,𝑛, 𝑛 − 2) =
𝑛(𝑛3−6𝑛2+11𝑛−6)

24
, for every 𝑛 ≥ 5.  

(vii) The result is obvious from table1. 

4. Conclusion 

In this paper, we have studied and discussed some properties of secure connected 

dominating sets and secure connected domination polynomials of complete bipartite graph𝐾2,𝑛. 

We can further study this property for various types of graphs. 
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Abstract 

 The atom-bond connectivity (ABC) index (ABC-index) of a nontrivial connected 

graph G, denoted by ABC(G), is defined as 𝐴𝐵𝐶(𝐺) = ∑ √
𝑑𝑖+𝑑𝑗−2

𝑑𝑖𝑑𝑗
𝑣𝑖𝑣𝑗∈𝐸(𝐺)

, where 𝑑𝑖 is the 

degree of vertex 𝑣𝑖 in G. In this paper we find the ABC- Index of Wheel graph (𝑊𝑛), Helm 

graph (𝐻𝑛), Centepede graph (𝑃𝑛
∗), Gear graph (𝐺𝑛). Also we discuss some results on ABC -

index of graphs. 

Keywords: ABC- index, centipede, wheel, helm, gear graphs 

2020 Mathematical Subject Classification: 05C20, 05C05 

1. Introduction 

Let 𝐺 be a graph with vertex set 𝑉(𝐺) = {𝑣1, 𝑣2, … , 𝑣𝑛}  and edge set 𝐸(𝐺). 

The degree of each vertex 𝑣𝑖, denoted by 𝑑𝐺(𝑣𝑖) (or simply 𝑑𝑖), is the number of neighbors 

of 𝑣𝑖 in 𝐺. The maximum and minimum vertex degree in 𝐺  are denoted by Δ and δ, 

respectively. The number of vertices of the largest clique in a graph is called its clique 

number and is denoted by ω. The vertex connectivity of a graph 𝐺, denoted by 𝑣, is the smallest 

number of vertices whose removal disconnects 𝐺 or reduces it to a single vertex. 

The index or spectral radius 𝜆1 of 𝐺 is the largest eigenvalue of its adjacency matrix. 

The algebraic connectivity of 𝐺, denoted by 𝑎, is the second smallest eigenvalue of the 

Laplacian matrix of 𝐺. A k-partite graph is said to be complete if any two vertices are adjacent 

if and only if they belong to different partition classes. Our terminology and notation not 

defined here will conform to those in [1]. 

In 1998, Estrada et al. proposed a new index, which is latter known as the atom-bond 

connectivity (ABC) index [8]. The atom-bond connectivity index of a nontrivial graph 𝐺, 

https://www.sciencedirect.com/science/article/pii/S0022247X19305438#br0010
https://www.sciencedirect.com/science/article/pii/S0022247X19305438#br0180
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denoted by 𝐴𝐵𝐶(𝐺), is defined as 𝐴𝐵𝐶(𝐺) = ∑ √
𝑑𝑖+𝑑𝑗−2

𝑑𝑖𝑑𝑗
𝑣𝑖𝑣𝑗∈𝐸(𝐺)

, where 𝑑𝑖 is the degree of 

vertex 𝑣𝑖 in 𝐺. In [8], Estrada et al. used ABC-index for the purpose of modeling 

thermodynamic properties of organic chemical compounds. In 2008, Estrada published another 

paper, in which ABC-index is used as a tool to explain the stability of branched alkanes. This 

work has attracted the attention by several Mathematicians, resulting in a remarkable number 

of research papers on the mathematical properties of the ABC-index, 

see [2], [3], [4], [6], [7], [8], [9], [11], [12]. 

In this paper, we explore some results of atom-bond connectivity index of graphs.  

2. ABC index of some known graphs 

Definition 2.1. A  wheel graph 𝑊𝑛 = 𝐾1 + 𝐶𝑛 is a graph formed by connecting a single 

universal vertex to all vertices of a cycle 𝐶𝑛. 

Example 2.2.  

 

Figure 1: Wheel graph  𝑾𝟒 

Theorem 2.3. For a wheel graph 𝑊𝑛,  𝐴𝐵𝐶(𝑊𝑛)  =  𝑛 [
2

3
+√

(𝑛+1)

3𝑛
], n ≥ 5 

Proof. Let 𝑊𝑛 be the wheel graph with 𝑛 + 1 vertices and 2𝑛 edges. 

Let 𝑊𝑛, 𝑛 edges having the sum of degrees of their vertices 6 and 𝑛 edges having the 

sum of degrees of their vertices 𝑛 + 3 

Let 𝐸1 be the set of edges of 𝑊𝑛 having the multiplication of degrees of their vertices 9 

and  sum of degrees of their vertices 6. 

                                          𝐴𝐵𝐶(𝑊𝑛) = ∑ √
𝑑𝑖+𝑑𝑗−2

𝑑𝑖𝑑𝑗
𝑣𝑖𝑣𝑗𝜖𝐸(𝐺)

                                                         

https://www.sciencedirect.com/science/article/pii/S0022247X19305438#br0180
https://www.sciencedirect.com/science/article/pii/S0022247X19305438#br0070
https://www.sciencedirect.com/science/article/pii/S0022247X19305438#br0080
https://www.sciencedirect.com/science/article/pii/S0022247X19305438#br0090
https://www.sciencedirect.com/science/article/pii/S0022247X19305438#br0120
https://www.sciencedirect.com/science/article/pii/S0022247X19305438#br0130
https://www.sciencedirect.com/science/article/pii/S0022247X19305438#br0140
https://www.sciencedirect.com/science/article/pii/S0022247X19305438#br0230
https://www.sciencedirect.com/science/article/pii/S0022247X19305438#br0380
https://www.sciencedirect.com/science/article/pii/S0022247X19305438#br0390
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= ∑ √(
6 − 2

9
)

𝑣𝑖𝑣𝑗∈𝐸(𝐺)

 

=  𝑛√(
4

9
) 

=
2𝑛

3
 

Let E2 be the set of edges of 𝑊𝑛 having the multiplication of degrees of their vertices 

3𝑛 and having the sum of degrees of their vertices 𝑛 + 3 . 

                                           𝐴𝐵𝐶(𝑊𝑛) = ∑ √
𝑑𝑖+𝑑𝑗−2

𝑑𝑖𝑑𝑗
𝑣𝑖𝑣𝑗𝜖𝐸(𝐺)

 

= ∑ √
𝑛 + 3 − 2

3𝑛
𝑣𝑖𝑣𝑗𝜖𝐸(𝐺)

 

= ∑ √
𝑛 + 1

3𝑛
𝑣𝑖𝑣𝑗𝜖𝐸(𝐺)

 

= 𝑛√
𝑛 + 1

3𝑛
 

                       Therefore, 𝐴𝐵𝐶(𝐺) = ∑ √
𝑑𝑖+𝑑𝑗−2

𝑑𝑖𝑑𝑗
𝑣𝑖𝑣𝑗∈𝐸(𝐺)

 

                                                        = ∑ √
𝑑𝑖+𝑑𝑗−2

𝑑𝑖𝑑𝑗
𝑣𝑖𝑣𝑗𝜖𝐸1(𝐺)

+ ∑ √
𝑑𝑖+𝑑𝑗−2

𝑑𝑖𝑑𝑗
𝑣𝑖𝑣𝑗𝜖𝐸2(𝐺)

 

=  𝑛 (
2

3
) + 𝑛√

𝑛 + 1

3𝑛
 

                                                             = 𝑛((
2

3
) + √

𝑛+1

3𝑛
) 

Defnition2.4. A Helm graph (𝐻𝑛) is the graph obtained from a wheel graph  𝑊𝑛 by adjoining 

a pendent edge at each node of the cycle. 

Example 2.5.  
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                                                                  Figure 2: Helm graph 𝐻4 

Theorem 2.6. For the Helm graph 𝐻𝑛, 𝐴𝐵𝐶(𝐻𝑛) = 𝑛√
3

4
+√

3

8
+√

𝑛+2

4𝑛
’ n ≥ 5 

Definition 2.7. A Centipede graph 𝑃𝑛
∗ is a graph on 2n vertices obtained by appending a single 

pendant edge to each vertex of a path 𝑃𝑛. 

Example 2.8.          

                

                                                         Figure 3: Centipede graph 𝑃5
∗ 

Theorem 2.9. For the Centipede graph 𝑃𝑛
∗, 𝐴𝐵𝐶(𝑃𝑛

∗) = 4√
1

2
+√

2

3
[(𝑛 − 2)(𝑛 − 3)], 𝑛 ≥ 3.  

Definition 2.10. A graph 𝐺𝑛 is obtained by inserting an extra vertex between each pair of 

adjacent vertices on the perimeter of a wheel graph  𝑊𝑛. 𝐺𝑛 has 2 + 𝑛 vertices and 3𝑛 edges. 

Theorem 2.11. For the gear graph 𝐺𝑛, 𝐴𝐵𝐶(𝐺𝑛) = 𝑛 (2√
3

6
+√

𝑛+1

3𝑛
) , 𝑛 ≥ 3 
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3. Conclusion 

        In this paper, we determined ABC- index of some graphs.  Further we can find ABC-

index for new graph structures. 
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Abstract 

Let 𝐺 be a graph  with 𝑝 vertices and 𝑞 edges. An edge labeling 𝑓: 𝐸(𝐺) → {(𝑞
𝑖
)  ,0 ≤ 𝑖 ≤ 𝑞}   

is  said  to  be  an edge combination  cordial  labeling of  G  if  it  induces  a  vertex  labeling 

𝑓∗: 𝑉 → {0,1}    given by 𝑓∗(𝑣) = {
1    𝑖𝑓 𝑡ℎ𝑒 𝑙𝑎𝑏𝑒𝑙𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑑𝑔𝑒𝑠 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑡𝑜 𝑣 𝑎𝑟𝑒 𝑒𝑞𝑢𝑎𝑙
0         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                          

      

such that  |𝑣𝑓∗(0) − 𝑣𝑓∗(1)| ≤ 1, where 𝑣𝑓∗(0) is the number of edges labeled with 0 and 

𝑣𝑓∗(1) is the number of edges labeled with 1. A graph 𝐺 is said to be an  edge combination 

cordial graph if it admits  edge combination cordial labeling. In this paper we prove the 

existence of this labeling of path, cycle, flower, 𝑃𝑛ʘ𝐾1, 𝐶𝑛ʘ𝐾1,  ladder and jewel graph. 

Keywords: cordial labeling, combination labeling, combination cordial labeling,  edge 

combination cordial labeling.              

2020 Mathematics Subject Classification (AMS): 05C78 

1. Introduction 
 The graphs referred to here are assumed to be simple, finite, connected and undirected. 

We adopt Harary’s [3] definitions for additional terminology. One of the prominent areas of 

research in graph theory is graph labeling. Graph labeling is an assignment of integers to the 

elements of a graph under certain conditions. Rosa [5] initially proposed graph labeling in 

1967. Numerous types of graph labeling have been developed over the past fifty-five years. 

Gallian [2] elegantly categorized these labelings in his survey. Cordial labeling, one of the 

popular labelings was introduced by Cahit [1]. Suresh Manjanath Hegde et. al [6] proposed 

combinatorial labeling in 2005. Drawing from the idea of these two, B.J.Murali et. al [4] 

introduced the concept of combination cordial labeling. Building upon the previous concepts, 

we introduced a new notation namely edge combination cordial labeling as an edge counterpart 

of combination cordial labeling. 

This paper focuses on exploring the existence of edge combination cordial labeling of path, 

cycle, flower, 𝑃𝑛ʘ𝐾1, 𝐶𝑛ʘ𝐾1,  ladder and jewel graph. 
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Definition 1.1. [6] A (𝑝, 𝑞) graph 𝐺 = (𝑉, 𝐸) is said to be combination graph if there exists a 

bijection 𝑓: 𝑉(𝐺) → {1,2,3, …… . 𝑝}  such that the induced edge function    𝑔𝑓 : 𝐸(𝐺) → 𝑁 

defined as   𝑔𝑓(𝑢𝑣) = {
𝑓(𝑢)𝐶𝑓(𝑣)   𝑖𝑓      𝑓(𝑢) > 𝑓(𝑣)

𝑓(𝑢)𝐶𝑓(𝑣)     𝑖𝑓     𝑓(𝑣) >  𝑓(𝑢)
 

is injective, where 𝑓(𝑢)𝐶𝑓(𝑣)  is the number of combinations of 𝑓(𝑢) things taken 𝑓(𝑣) at a 

time. Such a labeling 𝑓 is called combination labeling of G.  

Definition 1.2. [1] Let 𝑓  be a function from the vertices of 𝐺 to {0,1} and for each edge  𝑥𝑦  

assign the label  | 𝑓(𝑥) − 𝑓(𝑦)|.  Call 𝑓 a cordial labeling of 𝐺  if the number of vertices labeled 

0 and the number of vertices labeled 1 differ by at most 1, and the number of edges labeled 0 

and the number of edges labeled 1 differ by at most 1 

Definition 1.3. [4] Let G = (V, E) be a graph with n vertices. A function f : V(G)  

{(𝑛
𝑖
); 0 ≤ 𝑖 ≤ 𝑛} of a graph G is said to be a combination cordial labeling if the induced edge 

function  f * : E  {0, 1} defined by   f *(𝑢𝑣) = {
  1        if    𝑓 (𝑢)    =  𝑓 (𝑣)

 0         if    𝑓 (𝑢)      𝑓 (𝑣)
 satisfies the 

condition ef * (0) – ef * (1)  1. 
 

2. MAIN RESULTS 

      In this paper we introduce the concept of edge combination cordial labeling behavior of  

path, cycle , flower, 𝑃𝑛ʘ𝐾1 , 𝐶𝑛ʘ𝐾1 ,  ladder and jewel graph. 

Theorem 2.1. The path graph  𝑃𝑛 is edge combination cordial if 𝑛 ≥ 3. 

Proof. Let 𝑃𝑛 be a path graph with n vertices and n-1 edges. 

𝑉(𝑃𝑛) = {𝑣𝑖 / 1 ≤ 𝑖 ≤ 𝑛} ,        𝐸(𝑃𝑛) = {𝑣𝑖𝑣𝑖+1/1 ≤ 𝑖 ≤ 𝑛 − 1}. 

An edge labeling 𝑓: 𝐸(𝑃𝑛) → {(𝑛−1
𝑖
) , 0 ≤ 𝑖 ≤ 𝑛 − 1}  for  𝑛 ≥ 3  is defined as follows: 

              𝑓(𝑣1𝑣2)       =     (
𝑛−1
0
) 

    𝑓(𝑣𝑛−1𝑣𝑛)    =   {  
(𝑛−1
0
)     𝑖𝑓  𝑛 𝑖𝑠  𝑒𝑣𝑒𝑛

(
𝑛−1
𝑛−1

2

)     𝑖𝑓 𝑛  𝑖𝑠  𝑜𝑑𝑑 .
 

If n is even, then 

           𝑓(𝑣𝑖𝑣𝑖+1)      =     𝑓(𝑣𝑖+1𝑣𝑖+2)     =     (
𝑛−1
𝑖

2

)     𝑤ℎ𝑒𝑟𝑒  𝑖 = 2,4,6…𝑛 − 2. 

If n is odd, then 

           𝑓(𝑣𝑖𝑣𝑖+1)      =     𝑓(𝑣𝑖+1𝑣𝑖+2)     =     (
𝑛−1
𝑖

2

)     𝑤ℎ𝑒𝑟𝑒  𝑖 = 2,4,6…𝑛 − 3. 

Then the induced vertex labeling 𝑓∗: 𝑉 → {0,1}   is defined as follows: 

Case (i)  𝑛 is even. 
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   𝑓∗(𝑣𝑖)    =  {
1      𝑖𝑓  𝑖 = 1,3,5, … . 𝑛 − 3, 𝑛 − 1
      0      𝑖𝑓  𝑖 = 2,4,6…𝑛 − 2, 𝑛

 

Thus we get 𝑣𝑓∗(1) =
𝑛

2
,   𝑣𝑓∗(0) =

𝑛

2
  .  

Case (ii)  𝑛 is odd. 

   𝑓∗(𝑣𝑖)    =  {
1  𝑖𝑓 𝑖  𝑖𝑠 𝑜𝑑𝑑
0  𝑖𝑓 𝑖  𝑖𝑠 𝑒𝑣𝑒𝑛.

 

Thus we get  𝑣𝑓∗(1) =
𝑛+1

2
,   𝑣𝑓∗(0) =

𝑛−1

2
  . 

In both the cases |𝑣𝑓∗(0) − 𝑣𝑓∗(1)|  ≤ 1. 

Hence 𝑃𝑛 is edge combination cordial if  𝑛 ≥ 3. 

An example of edge combination cordial labeling of 𝑃8 is given below:

 

Theorem 2.2.  The cycle graph  𝐶𝑛 is edge combination cordial  if 𝑛 ≥ 3. 

Proof. Let 𝐶𝑛 be a cycle graph with n vertices and n edges. 

𝑉(𝐶𝑛) = {𝑣𝑖  / 1 ≤ 𝑖 ≤ 𝑛} ,     𝐸(𝐶𝑛) = {𝑣𝑖𝑣𝑖+1/1 ≤ 𝑖 ≤ 𝑛 − 1} ∪ {𝑣𝑛𝑣1} 

 An edge labeling 𝑓: 𝐸(𝐶𝑛) → {(𝑛
𝑖
) , 0 ≤ 𝑖 ≤ 𝑛}  for  𝑛 ≥ 3 is defined as follows :         

                                𝑓(𝑣1𝑣2)       =      (
𝑛
0
), 

              𝑓(𝑣𝑛𝑣1)        =     {  
(𝑛
0
)     𝑖𝑓  𝑛 𝑖𝑠  𝑒𝑣𝑒𝑛

(
𝑛
𝑛−1

2

)     𝑖𝑓 𝑛  𝑖𝑠  𝑜𝑑𝑑 .
 

 If n is even, then 

           𝑓(𝑣𝑖𝑣𝑖+1)    =     𝑓(𝑣𝑖+1𝑣𝑖+2)     =     (
𝑛
𝑖

2

)     𝑤ℎ𝑒𝑟𝑒  𝑖 = 2,4,6…𝑛 − 2, 

If n is odd, then     

       𝑓(𝑣𝑖𝑣𝑖+1)     =     𝑓(𝑣𝑖+1𝑣𝑖+2)     =     (
𝑛
𝑖

2

)     𝑤ℎ𝑒𝑟𝑒  𝑖 = 2,4,6…𝑛 − 1 

Then the induced vertex labeling 𝑓∗: 𝑉 → {0,1}  is defined as follows: 

Case (i):  𝑛 is even. 

 𝑓∗(𝑣𝑖)     =   {
1  𝑖𝑓 𝑖  𝑖𝑠 𝑜𝑑𝑑
0  𝑖𝑓 𝑖  𝑖𝑠 𝑒𝑣𝑒𝑛 .

 

  Thus we get  𝑣𝑓∗(1) =
𝑛

2
,   𝑣𝑓∗(0) =

𝑛

2
 .   
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Case (ii):  𝑛 is odd  .   

   𝑓∗(𝑣𝑖)    =   {
1  𝑖𝑓 𝑖  𝑖𝑠 𝑜𝑑𝑑,    𝑖 ≠ 1
0  𝑖𝑓 𝑖  𝑖𝑠 𝑒𝑣𝑒𝑛 , 𝑖 = 1

 

Thus we get   𝑣𝑓∗(1) =
𝑛−1

2
,   𝑣𝑓∗(0) =

𝑛+1

2
 . 

In both the cases |𝑣𝑓∗(0) − 𝑣𝑓∗(1)|  ≤ 1. 

 Hence 𝐶𝑛 is edge combination cordial if  𝑛 ≥ 3. 

An example of edge combination cordial labeling of  𝐶5 is given below: 

 

 

Theorem 2.3.  The flower graph 𝐹𝑙𝑛 is edge combination cordial  if  n≥ 3. 

Proof. Let 𝐹𝑙𝑛 be a flower graph with 2𝑛 + 1 vertices and 4𝑛 edges. 

 𝑉(𝐹𝑙𝑛) = {𝑣𝑖 / 0 ≤ 𝑖 ≤ 𝑛} ∪ {𝑤𝑖 / 1 ≤ 𝑖 ≤ 𝑛}, ,                                                                                 

𝐸(𝐹𝑙𝑛) = {𝑣0𝑣𝑖/1 ≤ 𝑖 ≤ 𝑛} ∪ {𝑣0𝑤𝑖/1 ≤ 𝑖 ≤ 𝑛} ∪ {𝑣𝑖𝑤𝑖/1 ≤ 𝑖 ≤ 𝑛} ∪                          

               {𝑣𝑖𝑣𝑖+1/1 ≤ 𝑖 ≤ 𝑛 − 1} ∪ {𝑣𝑛𝑣1}. 

An edge labeling 𝑓: 𝐸(𝐹𝑙𝑛) → {(4𝑛
𝑖
) , 0 ≤ 𝑖 ≤ 4𝑛}    for n≥ 3  defined as follows: 

               𝑓(𝑣𝑖𝑣𝑖+1)  = 𝑓(𝑣𝑛𝑣1) =  (
4𝑛
1
)   ,  1 ≤ 𝑖 ≤ 𝑛 − 1, 

             𝑓(𝑣0𝑣𝑖)    =  𝑓(𝑣𝑖𝑤𝑖)  =  𝑓(𝑣0𝑤𝑖) = (
4𝑛
4𝑛
)   ,  1 ≤ 𝑖 ≤ 𝑛. 

Then the induced vertex labeling 𝑓∗: 𝑉 → {0,1}   is defined by, 

𝑓∗(𝑣𝑖) = 0,    0 ≤ 𝑖 ≤ 𝑛,  𝑓∗(𝑤𝑖) = 1 , 1 ≤ 𝑖 ≤ 𝑛 .                                                                                                               

Thus we get,  𝑣𝑓∗(1) = 𝑛,   𝑣𝑓∗(0) = 𝑛 + 1, Therefore  |𝑣𝑓∗(0) − 𝑣𝑓∗(1)|  ≤ 1. 

Hence 𝐹𝑙𝑛 is edge combination cordial if n≥ 3. 



Proceedings of the International Conference on Algebraic Graph Theory,                                              
Graph Theory and Topology – 9th & 10th January 2025 

212 
 
ISBN: 978-93-48505-23-1 

An example of edge combination cordial labelling of 𝐹𝑙5 is given below:

 

Theorem 3.4. The comb graph 𝑃𝑛ʘ𝐾1 is edge combination cordial if  n≥ 2. 

Proof. Let 𝑃𝑛ʘ𝐾1 be a comb graph with 2𝑛 vertices and 2𝑛 − 1 edges 

 𝑉(𝑃𝑛ʘ𝐾1)  = {𝑢𝑖 / 1 ≤ 𝑖 ≤ 𝑛} ∪ {𝑣𝑖 / 1 ≤ 𝑖 ≤ 𝑛} ,                                                                                                 

  𝐸( 𝑃𝑛ʘ𝐾1) = {𝑢𝑖𝑢𝑖+1/1 ≤ 𝑖 ≤ 𝑛 − 1} ∪ {𝑢𝑖𝑣𝑖/1 ≤ 𝑖 ≤ 𝑛}. 

 An edge labeling 𝑓: 𝐸(𝑃𝑛ʘ𝐾1) → {(2𝑛−1
𝑖
) , 0 ≤ 𝑖 ≤ 2𝑛 − 1} for n≥ 2 defined as follows: 

             𝑓(𝑢𝑖𝑣𝑖)         =      (
2𝑛−1
0
)  ,  1 ≤ 𝑖 ≤ 𝑛, 

               𝑓(𝑢𝑖𝑢𝑖+1)      =      (
2𝑛−1
1
)  ,  1 ≤ 𝑖 ≤ 𝑛 − 1. 

Then the induced vertex labeling 𝑓∗: 𝑉 → {0,1}  is defined by, 

𝑓∗(𝑢𝑖) = 0, 1 ≤ 𝑖 ≤ 𝑛,    𝑓∗(𝑣𝑖) = 1, 1 ≤ 𝑖 ≤ 𝑛. 

Thus we get   𝑣𝑓∗(1) = 𝑛,   𝑣𝑓∗(0) = 𝑛, Therefore  |𝑣𝑓∗(0) − 𝑣𝑓∗(1)|  ≤ 1. 

Hence the comb graph  𝑃𝑛ʘ𝐾1  is edge combination cordial if n≥ 2. 

An example of edge combination cordial labeling of 𝑃6ʘ𝐾1 is given below: 
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Theorem 3.5. The crown graph 𝐶𝑛ʘ𝐾1 is edge combination cordial if 𝑛 ≥ 3. 

Proof. Let 𝐶𝑛ʘ𝐾1 be a  graph with 2𝑛 vertices and 2𝑛 edges 

𝑉(𝐶𝑛ʘ𝐾1) = {𝑢𝑖  / 1 ≤ 𝑖 ≤ 𝑛} ∪ {𝑣𝑖  / 1 ≤ 𝑖 ≤ 𝑛} ,                                                                                                 

 𝐸(𝐶𝑛ʘ𝐾1) = {𝑢𝑖𝑢𝑖+11 ≤ 𝑖 ≤ 𝑛 − 1} ∪ {𝑢𝑖𝑣𝑖1 ≤ 𝑖 ≤ 𝑛} ∪ {𝑢𝑛𝑣11 ≤ 𝑖 ≤ 𝑛} 

Ann edge labeling  𝑓: 𝐸(𝐶𝑛ʘ𝐾1) → {(2𝑛−1
𝑖
) 0 ≤ 𝑖 ≤ 2𝑛} for  𝑛 ≥ 3  is defined as follows: 

                𝑓(𝑢𝑖𝑣𝑖)       =        (
2𝑛
0
)  ,  1 ≤ 𝑖 ≤ 𝑛, 

                      𝑓(𝑢𝑖𝑢𝑖+1)   =      (
2𝑛
1
)  ,  1 ≤ 𝑖 ≤ 𝑛 − 1, 

               𝑓(𝑢𝑛𝑢1)      =         (
2𝑛
1
)  . 

The induced vertex labeling  𝑓∗: 𝑉 → {0,1} defined by, 

  𝑓∗(𝑢𝑖) = 0, 1 ≤ 𝑖 ≤ 𝑛,    𝑓∗(𝑣𝑖) = 1, 1 ≤ 𝑖 ≤ 𝑛 

Thus we get   𝑣𝑓∗(1) = 𝑛,   𝑣𝑓∗(0) = 𝑛,    

Therefore  |𝑣𝑓∗(0) − 𝑣𝑓∗(1)|  ≤ 1 

Hence  𝐶𝑛ʘ𝐾1  is edge combination cordial graph if 𝑛 ≥ 3. 

An example of edge combination cordial labeling of 𝐶5ʘ𝐾1 is given below: 

 

Theorem 3.6. The ladder graph 𝑃𝑛𝑋𝑃2  is edge combination cordial if 𝑛 ≥ 2. 

Proof. Let 𝑃𝑛𝑋𝑃2 be a ladder graph with  2𝑛 vertices 3𝑛 − 2 edges. 

 𝑉(𝑃𝑛𝑋𝑃2) = {𝑢𝑖 / 1 ≤ 𝑖 ≤ 𝑛} ∪ {𝑣𝑖 / 1 ≤ 𝑖 ≤ 𝑛} , 
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  𝐸(𝑃𝑛𝑋𝑃2) = {𝑣𝑖  𝑣𝑖+1/ 1 ≤ 𝑖 ≤ 𝑛 − 1} ∪ {𝑢𝑖𝑣𝑖 / 1 ≤ 𝑖 ≤ 𝑛} ∪  {𝑢𝑖𝑢𝑖+1 / 1 ≤ 𝑖 ≤ 𝑛 − 1}. 

 An edge labeling  𝑓: 𝐸(𝑃𝑛𝑋𝑃2) → {(3𝑛−2
𝑖
), 0 ≤ 𝑖 ≤ 3𝑛 − 2} for 𝑛 ≥ 2 is defined as follows: 

           𝑓(𝑣𝑖𝑣𝑖+1) = (3𝑛−2
0
)   ,   1 ≤ 𝑖 ≤ 𝑛 − 1, 

               𝑓(𝑢𝑖𝑢𝑖+1) = (
3𝑛−2
1
)   ,   1 ≤ 𝑖 ≤ 𝑛 − 1, 

              𝑓(𝑢𝑖𝑣𝑖)      = (
3𝑛−2
0
)   ,        1 ≤ 𝑖 ≤ 𝑛. 

Then the induced vertex labeling 𝑓∗: 𝑉 → {0,1}   is defined by, 

 𝑓∗(𝑣𝑖) = 1 , 1≤ 𝑖 ≤ 𝑛,  𝑓∗(𝑢𝑖) = 0 , 1≤ 𝑖 ≤ 𝑛 . 

Thus we get   𝑣𝑓∗(1) = 𝑛,   𝑣𝑓∗(0) = 𝑛.  Therefore  |𝑣𝑓∗(0) − 𝑣𝑓∗(1)|  ≤ 1. 

Hence  𝑃𝑛𝑋𝑃2  is edge combination cordial graph if 𝑛 ≥ 2. 

An example of edge combination cordial labeling of 𝑃5𝑋𝑃2 is given below: 

 

 

 

Theorem 3.7. The Jewel graph (𝑃2 ∪𝑚𝐾1) + 𝑁2  is edge combination cordial for m≥ 1.  

Proof. Let (𝑃2 ∪𝑚𝐾1) + 𝑁2 be a graph with  𝑚+ 4 vertices and 2𝑚 + 5 edges 

𝑉[ (𝑃2 ∪𝑚𝐾1) + 𝑁2] = {𝑢, 𝑣, 𝑢𝑖/ 1 ≤ 𝑖 ≤ 𝑚} ∪ { 𝑥, 𝑦} ,      

 𝐸[ (𝑃2 ∪ 𝑚𝐾1) + 𝑁2] = {𝑢𝑥, 𝑢𝑣, 𝑣𝑥, 𝑢𝑦, 𝑣𝑦} ∪ { 𝑢𝑖𝑥 ∪ 𝑢𝑖𝑦/1 ≤ 𝑖 ≤ 𝑚} ,     

 An edge labeling 𝑓:  𝐸[ (𝑃2 ∪𝑚𝐾1) + 𝑁2] → {(2𝑚+5
𝑖
), 0 ≤ 𝑖 ≤ 2𝑚 + 5} is defined as 

follows: 

Case (i):  1 ≤ 𝑚 ≤ 3 

                 𝑓(𝑢𝑣) = 𝑓(𝑣𝑥) = 𝑓(𝑣𝑦) = (2𝑚+5
0
)    

                𝑓(𝑢𝑥) = 𝑓(𝑢𝑦) = (2𝑚+5
1
) ,    𝑓(𝑢𝑖𝑥) = 𝑓(𝑢𝑖𝑦) = (

2𝑚+5
0
)   ,  1 ≤ 𝑖 ≤ 3 

Then the induced vertex labeling 𝑓∗: 𝑉 → {0,1}   is defined as follows: 

  𝑓∗(𝑢) =  𝑓∗(𝑥) = 𝑓∗(𝑦) = 0,     

  𝑓∗(𝑣) = 1 ,     𝑓∗(𝑢𝑖) = 1  ,        1 ≤ 𝑖 ≤ 3          

  Thus we get   𝑣𝑓∗(1) = 3,   𝑣𝑓∗(0) = 𝑚 + 1 

Case (ii):  𝑚 ≥ 4 
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                 𝑓(𝑢𝑣) =  (2𝑚+5
0
) 

                𝑓(𝑢𝑥) = 𝑓(𝑢𝑦) = 𝑓(𝑣𝑥) = 𝑓(𝑣𝑦) = (2𝑚+5
1
)   

                 𝑓(𝑢𝑖𝑦) =    (
2𝑚+5
0
)     ,   1 ≤ 𝑖 ≤ 𝑚 

If m is odd, then 

                         𝑓(𝑢𝑖𝑥) = {  
(2𝑚+5

0
)   𝑓𝑜𝑟   1 ≤ 𝑖 ≤

𝑚+5

2
 ,

(2𝑚+5
1
)   𝑓𝑜𝑟   

𝑚+7

2
≤ 𝑖 ≤ 𝑚    

  ,                    

If m is even, then 

                         𝑓(𝑢𝑖𝑥) = {  
(2𝑚+5

0
)     𝑓𝑜𝑟    1 ≤ 𝑖 ≤

𝑚+4

2
 ,

(2𝑚+5
1
)   𝑓𝑜𝑟   

𝑚+6

2
≤ 𝑖 ≤ 𝑚     

         

Then the induced vertex labeling 𝑓∗: 𝑉 → {0,1}   is defined as follows: 

 𝑓∗(𝑢) = 𝑓∗(𝑣)  =  𝑓∗(𝑥) = 𝑓∗(𝑦) = 0 

Subcase (i):  𝒎 is odd 

  𝑓∗(𝑢𝑖) = 1  for  1≤ 𝑖 ≤ 
𝑚+5

2
,      𝑓∗(𝑢𝑖) = 0  for  

𝑚+7

2
≤ 𝑖 ≤ m. 

 Thus we get   𝑣𝑓∗(1) =
𝑚+5

2
,     𝑣𝑓∗(0) =

𝑚+3

2
 .   

Subcase (ii):  𝒎 is even                           

  𝑓∗(𝑢𝑖) = 1   for  1≤ 𝑖 ≤ 
𝑚+4

2
 ,    𝑓∗(𝑢𝑖) = 0   for  

𝑚+6

2
≤ 𝑖 ≤ m     

  Thus we get   𝑣𝑓∗(1) =
𝑚+4

2
,   𝑣𝑓∗(0) =

𝑚+4

2
,    

  In both the cases  |𝑣𝑓∗(0) − 𝑣𝑓∗(1)|  ≤ 1.  

Hence (𝑃2 ∪𝑚𝐾1) + 𝑁2 is edge combination cordial graph. 

An example of edge combination cordial labeling of (𝑃2 ∪𝑚𝐾1) + 𝑁2  is given below: 
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4. Conclusion 

We explore the concept of edge combination cordial labeling, a novel graph labeling 

technique. Through a comprehensive analysis, we demonstrated the existence of edge 

combination cordial labeling of path, cycle, flower, 𝑃𝑛ʘ𝐾1 , 𝐶𝑛ʘ𝐾1 ,  ladder and jewel graph.  
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Abstract 

  This paper investigate the concept of Intuitionistic fuzzy ideal and prime ideal in Near- 

ring. Also some definitions of Intuitionistic fuzzy ideal and prime ideal in a Near-ring. The 

purpose of this paper is to improve the concept of Intuitionistic fuzzy ideals of a Near-ring 

given a new characterization using the Intuitionistic fuzzy points. Moreover, some results and 

properties of Intuitionistic fuzzy prime ideal are discussed. 

Keywords: Fuzzy ideal near-ring, Intuitionistic fuzzy ideal near-ring, Intuitionistic fuzzy 

points, Intuitionistic fuzzy prime ideal. 
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1. Introduction   

Intuitionistic Fuzzy Ideal in Near-Ring is defined by Zhan Jianming & Ma Xueling[8] 

and fuzzy ideals of rings were introduced by  Liu.W[6].The notion of fuzzy ideals and its 

properties were applied to various areas:semigroups [4,5]. In this paper we consider 

Intuitionistic Fuzzy Ideal in Near-Ring and investigate the related theorems and Properties. 

2. Intuitionistic Fuzzy Ideal of Near-Ring 

Definition 2.1. Let R  be the subset of all intuitionistic fuzzy points of near-ring R and Let 

A denote the set of all intuitionistic fuzzy points contained in  AAA , . 

That is A =    AA andRx /,  

mailto:1amirthajothigoldwin@gmail.com
mailto:2Vseetha05@gmail.com
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Theorem 2.2.  AAA ,  is an intuitionistic fuzzy ideal of near-ring R if and only if: 

i)      AAyx 
 ,, '' ,, ,     

 AAyx ,'' ,,  

ii)     
 AAR yx ,, '' ,,      

 AAyx ,'' ,,  

Proof. Assume  AAA , is an intuitionistic fuzzy ideal of near-ring R. 

Since Near-ring R satisfies the following conditions 

   
    








xyxy

xyxy

AA

AA

ii)

i)
   ...... (1) 

   
    








yxy

yxy

AA

AA





iv)

iii)
   …… (2) 

    
     








zxyyzx

zxyyzx

AA

AA

vi)

v)
  …… (3) ∀ x, y, z ∊ R 

Now, Let     
 AAyx ,, '' ,,  

 From (1), we get    xyxy AA  and    xA  

                              xyxy AA   and    xA  

      xyxy AA and      xyxy AA  

   
 AAyxy ,'' ,

 

    AAx  ,,  

Similarly we can prove  AAxyx ,  

    
 AAy ,'' ,

 

By assumption (1), 

  AAyx ,  

From (2),  
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    yxy AA  and   ' yA and    yxy AA  and   ' yA
 

        ' yxy AA
 

and      ' yxy AA
 

  
   AAxy ,','

 

Conversly, Assume 

1.       AAyx ,, '',,  

  AAyx ,     …… (4) 

2.  AAyRx ,,   ⇒  AAxy ,     …… (5) 

 To prove that  AA ,A is an Intuitionistic fuzzy ideal of near-ring R. 

i.e. It is enough to prove that (1), (2), and (3) 

 Let x, y ∊ R, we have y+x, yR 

We have        AAxx AA
xy ,,

and       AAxx AA
y ,,

 

Then By (4), we have             AAxxxx AAAA
yyx ,,,  

Hence,    xyyx AA   

 and    xyyx AA    

Hence (1) Proved 

Now we show that    xxy AA   and    xxy AA    

Let   Rx ,  and    AAy ,','  

By (5), 
      AAu xAxA

xy ,
,

 

Hence    xxy AA   and    xxy AA    

Hence (2) proved. 
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Now, we show that 

     zxyyzx AA   and     zxyyzx AA   

we have, x+z ∊ R and  AAy  ,  

   AAyzx  ,  [By (5)] 

Now, we have    AAyzx , and  AAxy ,  

From (4),         
 AAzz AA

xyyzx ,,  

Hence     zxyyzx AA   and     zxyyzx AA   

Theorem 2.3. An Intuitionistic fuzzy ideal  AA, of near-ring R is an intuitionistic fuzzy 

prime ideal iff for any two intuitionistic fuzzy points     Ryx  ',', , , 

      AAyx ,',', . Implies either    AAx ,, or    AAy ,',' . 

Theorem 2.4. A subset  AA, of near-ring R is said to be an intuitionistic fuzzy prime 

ideal iff 

   
    








xyxy

xyxy

AA

AA

ii)

i)
   …… (6) 

   
    








yxy

yxy

AA

AA





iv)

iii)
   …… (7) 

    
     








zxyyzx

zxyyzx

AA

AA

vi)

v)
  …… (8) 

Proof. Let  AA,  be an intuitionistic fuzzy prime ideal. 

Suppose     xyxy AA    and    xyxy AA    

   AAyxy ,  

   AAx ,  

Similarly we can prove  AAy ,  
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    

 Our assumption is wrong. 

   xyxy AA   and    yxyyxy AA   

Now, suppose    xxy AA  and    xxy AA   

        AAxy ,  

 Which is contradiction. 

Hence    xxy AA   and    xxy AA   

Now, suppose     zxyyzx AA    and      zxyyzx AA   

    AAxyyzx ,  

          AAzy ,  

Which is absurd 

Then     zxyyzx AA    and      zxyyzx AA    

Conversely, Assume (6), (7) and (8) 

To we prove that     Ryx   ',', ,  

      AAuyx  ,',',  

Implies either     AAx ,,  or   AAy  ,',' > 

Suppose    AAx  ,, and   AAy  ,'',  > 

    xA and    xA       and   ' yA and   ' yA  

Let  xyA ' and  xyA '  

    yxy AA   and    yxy AA   

Which is contradiction to (7), 
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Hence  AA,  is an intuitionistic fuzzy prime ideal. 

Definition 2.5. Let A and B be two IFSs of X. Then the disjunctive sum is

     xxBA BABA ,  and the disjunctive Difference is      xxBA BABA ,  

Where  xBA = max     xx
BABA cc 

 ,  and  xBA = min     xx
BABA cc 

 ,  and  xBA

= min     xx cBA  , ,  xBA = max     xx cBA  ,  

Theorem 2.6. If  AAA ,  is an IFI of R then  cc AA

cA , is also an IFI of R. 

Proof. Let x, y, z ∊ R. 

Given  AAA , is an IFI of R. 

∴ A satisfies the following axioms. 

i)    xyxy AA   and     xyxy AA                           …… (1)    

ii)    yxy AA   and    yxy AA        …… (2) 

iii)     zxyyzx AA   and     zxyyzx AA    …… (3) 

Now,    yxyyxy AAc  1   xA1  [By 1]    =  xcA
  

Similarly we can prove    xyxy cc AA
  

Now,    xyxy AAc  1   yA1  [By 2]    =  ycA
  

Similarly we can prove    yxy cc AA
  

Now,      xyyzxxyyzx AAc  1    zA1  [By 3]  =  zcA
  

Similarly, we can prove     zxyyzx cc AA
  

Hence Ac = < A
c, A

c > is an IFI of Near-ring R. 

Theorem 2.7. If A and B are two IFIs of R then 
 cc BABA

cBA , is also IFI of R. 

Proof. Let  AAA , and  BBB ,  



Proceedings of the International Conference on Algebraic Graph Theory,                                              
Graph Theory and Topology – 9th & 10th January 2025 

223 
 
ISBN: 978-93-48505-23-1 

By previous theorem, If  BBB ,   is an IFI of R then  cc BB

cB ,  is also IFI of R. 

W.H.T    


xxBA cc BABA

c ,  

Where,     xx cc BABA



,min  and     xx cc BABA




,max  

i)       yxyyxyyxy cc BABA



,min       xx cBA  ,min    

       =  xcBA
  [Since A and Bc are IFI]  

Similarly, we can prove    xyxy cc BABA 
  

ii)       xyxyxy cc BABA



,min      yy cBA  ,min   =  ycBA

  

Similarly we can prove    yxy cc BABA 
  

iii)          xyyzxxyyzxxyyzx cc BABA



,min  

                    zz cBA  ,min   =  zcBA
  

Similarly we can prove     zxyyzx cc BABA 
  

Hence cBA is an IFI of R. 

Theorem 2.8. IF  AAA , and  BBB , be two IFI of nearing R then 

  BABABA ,  is an IFI of R. 

Proof. W.K.T       xxx
BABABA cc   ,max and       xxx

BABABA cc   ,min  

i)       yxyyxyyxy
BABABA cc 

 ,max  

                                   xx
BABA cc 

 ,max   [By theorem 2]    =  xBA  

 Similarly, we can prove, 

   xyxy BABA    

ii)       xyxyxy
BABABA cc   ,max  
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             yy
BABA cc 

 ,max  =  yBA  

Similarly, we get    yxy BABA    

iii)          xyyzxxyyzxxyyzx
BABABA cc 

 ,max  

       zz
BABA cc 

 ,max =  zBA  

Similarly, we get     zxyyzx BABA    

Hence A+B is an IFI of Nearring R. 

Theorem 2.9. If A and B are IFI of nearring R, Then A-B is also an IFI of nearing R. 

Proof. W.K.T       xxx cBABA   ,min  and  

      xxx cBABA  ,max  

The proof is similar to the theorem 2. 

Properties 2.10. If A, B, C are IFI of Near-ring R and 0,1 are respectively fuzzy null and fuzzy 

universal subsets then we have. 

1. 








ABBA

ABBA
  Commutativity 

2. BBBAAA  ,  Indempotent 

3. 
AA;A

A;AA





111

000
 

4. 
   
   CBACBA

CBACBA




  associativity 

5.   AA
cc   Involution 

6. 
 
  







ccc

ccc

BABA

BABA
  De’Morgan’s law 

We give the proofs of 4, 5 and 6. The rest can be proved in the same manners. 
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Result 2.11. Intuitionistic Fuzzy ideal of a Nearring R does satisfy distributive law. 

Preposition 2.12.  If A and   fiAi 
are IFI of nearring R then 

1.a)   
ii

AiAAiA 







 & b)   

ii

AiAAiA 







 

 2.  a) 
i

c

c

i

AiAi 







& b) 

i

c

c

i

AiAi 







. 

3. Conclusion 

 In this paper, we consider a new kind of Intuitionistic Fuzzy Ideal of Near-Ring, which is 

a generalization of Fuzzy Ring and Fuzzy Near-Ring. Some related properties of Intuitionistic 

Fuzzy Ideal of Near-Ring are described. 
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Abstract 

 Topological indices are numerical values derived from the structure of a chemical 

graph.The Nanorod graph 𝐺𝑁𝑟  is a simple connected graph which is constructed with NaOH 

concentration as vertices and other reaction parameters such as pH, temperature, time and volume 

of solvent in a given ratio as edges. In this article, we discuss the degree based topological index 

namely atom-bond connectivity index of a Nanorod graph. Also we find the numerical value in 

step values,𝑘 = 0.1,0.09,0.08,0.07,0.06,0.05,0.04,0.03,0.02 and 0.01. 

Keywords : Nanorod graph, atom-bond connectivity index 

AMS Subject Classification : 05C90,05C92. 

1  Introduction 

    For notation and graph theory terminology not given here we follow [1].Chemical 

graph theory is widely studied by researchers due to its extensive applications in daily life. A 

topological index is a numerical invariant used as a molecular descriptor. This topological 

descriptor, also referred to as a graph theoretic index is a numerical quantity that represents the 

molecular graph structure and its unique chemical and physical properties. There are different 

classes of topological indices such as distance based, counting based and degree based topological 

indices [2]. Degree based topological indices are extensively studied and have important 

applications in chemical graph theory. The authors Sonia et.al [3].S.Sobiya, S.Sujitha and M.K 

Angel Jebitha defined and generated the Nanorod graph [4] by using [3] and various graphical 

parameters are studied in the previous work [4]. 

  The Nanorod graph 𝐺𝑁𝑟  is a simple connected graph with vertex 𝑉(𝐺) =

{𝑣1, 𝑣2, 𝑣3, ⋯ 𝑣𝑛} and edge set 𝐸(𝐺). The verties of 𝐺𝑁𝑟 correspond to NaOH concentration and 

mailto:1sobijose90@gmail.com
mailto:2sujitha.s@gmail.com
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an edge between two vertices corresponding to the UV spectrum (pH, temperature, time, volume 

of solvent in a given ratio) of these NaOH concentration.To construct the family of Nanorod 

graphs, various step values can be employed. In this paper, we utilize ten step values denoted by 

𝑘(𝑘 = 0.1, 0.09, 0.08, 0.07, 0.06, 0.05, 0.04, 0.03, 0.02, 0.01). The order of the Nanorod graph, 

represented as ‘𝑝’is determined by 𝑝 = ⌊
1.5

𝑘
+ 1⌋,while the size is ‘𝑞’ and the reaction time is 

‘𝑡’[5]. The degree of vertex 𝑢, indicated by 𝑑𝑢, is the number of edges that are incident to 𝑣. 

Extrada and Torres  introduced the atom-bond connectivity index in 1998 [6].The atom-

bond Connectivity index is defined as 

𝐴𝐵𝐶(𝐺) =∑
𝑢𝑣𝜖𝐸(𝐺)

√
𝑑𝑢 + 𝑑𝑣 − 2

𝑑𝑢𝑑𝑣
 

2  The degree based topological indices of a Nanorod graph 

Theorem 2.1   Let GNr be a Nanorod Graph. Then the ABC index is ABC(GNr) is 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 (−168𝑛 + 14𝑝𝑛 + 104𝑝 − 714)

1
2(−154𝑛 + 14𝑝𝑛 + 104𝑝 − 610)−

1
2 

𝑖𝑓  k = 0.1, n = t − 1  𝑎𝑛𝑑  k = 0.09, n = t

(−4𝑛2 − 477𝑛 + 42𝑝𝑛 + 117𝑝 − 491)
1
2(−4𝑛2 − 435𝑛 + 42𝑝𝑛 + 117𝑝 − 358)−

1
2 

 𝑖𝑓  k = 0.08, n = t − 1  𝑎𝑛𝑑  k = 0.07, n = t

(−7.8056𝑛6 + 50.9999𝑛5 − 309.1111n4 − 1324.8333n3 + 12960.3333n2 − 25570.6666n +

49.1667pn3 − 389pn2 + 628.8333pn − 166p + 11920)
1
2

(−7.8056n6 + 65.6667n5 − 313.2778n4 − 1661.6667n3 + 11922.1667n2 − 17873n + 75pn3

−392pn2 + 623pn − 253p + 13560)−
1
2   𝑖𝑓  k = 0.06, n = t − 1, k = 0.05, n = t, k = 0.04, n = t + 1
𝑎𝑛𝑑  k = 0.03, n = t + 2

(−16445𝑛2 − 438851𝑛 + 7768𝑝𝑛 − 6139𝑝 + 457298)
1
2(−16445𝑛2 − 429961𝑛 + 7768𝑝𝑛 − 6139𝑝 +

446995)−
1
2  𝑖𝑓  k = 0.02, n = t − 1  𝑎𝑛𝑑 `k = 0.01, n = t

 

  

  

Proof.  Let 𝐺𝑁𝑟 be a Nanorod Graph 

we know that the ABC index is 

𝐴𝐵𝐶(𝐺𝑁𝑟) =∑
𝑢𝑣𝜖𝐸(𝐺𝑁𝑟)

√
𝑑𝑢 + 𝑑𝑣 − 2

𝑑𝑢𝑑𝑣
 

Case (I) When 𝑘 = 0.1, 𝑛 = 𝑡 − 1 and 𝑘 = 0.09, 𝑛 = 𝑡 
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∑
𝑢𝑣𝜖𝐸(𝐺𝑁𝑟)

(𝑑𝑢 + 𝑑𝑣 − 2)

= [(𝑝 − 1) + (𝑝 − 1) − 2] + 2[(𝑝 − 1) + (𝑝 − 2) − 2] + 2[(𝑝 − 1) + (𝑝 − 5)

− 2] + 2[(𝑝 − 1) + (𝑝 − 7) − 2] + (−4𝑛 + 12)[(𝑝 − 1) + (𝑝 − 10) − 2] + (6𝑛

− 4)[(𝑝 − 1) + (𝑝 − 13) − 2] + 6[(𝑝 − 1) + (𝑝 − 11) − 2] + 6[(𝑝 − 1) + (𝑝

− 12) − 2] + [(𝑝 − 2) + (𝑝 − 7) − 2] + (−2𝑛 + 6)[(𝑝 − 2) + (𝑝 − 10) − 2]

+ (3𝑛 − 2)[(𝑝 − 2) + (𝑝 − 13) − 2] + 3[(𝑝 − 2) + (𝑝 − 12) − 2] + 3[(𝑝 − 2)

+ (𝑝 − 11) − 2] + 3[(𝑝 − 5) + (𝑝 − 12) − 2] + 3[(𝑝 − 5) + (𝑝 − 11) − 2]

+ (−2𝑛 + 5)[(𝑝 − 5) + (𝑝 − 10) − 2] + 3[(𝑝 − 7) + (𝑝 − 11) − 2] + (−2𝑛

+ 5)[(𝑝 − 7) + (𝑝 − 10) − 2] + (−2𝑛 + 5)[(𝑝 − 10) + (𝑝 − 10) − 2] + (3𝑛

− 3)[(𝑝 − 5) + (𝑝 − 13) − 2] + (3𝑛 − 3)[(𝑝 − 7) + (𝑝 − 12) − 2] + (3𝑛

− 3)[(𝑝 − 10) + (𝑝 − 11) − 2] + (𝑛 − 1)[(𝑝 − 13) + (𝑝 − 10) − 2] 

On Simplification, we get 

  ∑𝑢𝑣𝜖𝐸(𝐺𝑁𝑟) (𝑑𝑢 + 𝑑𝑣 − 2) = −168𝑛 + 14𝑝𝑛 + 104𝑝 − 714  (a) 

  ∑𝑢𝑣𝜖𝐸(𝐺𝑁𝑟) (𝑑𝑢 + 𝑑𝑣) = −154𝑛 + 14𝑝𝑛 + 104𝑝 − 610  (b) [7] 

From (a) and (b) 𝐴𝐵𝐶(𝐺𝑁𝑟) = √
−168𝑛+14𝑝𝑛+104𝑝−714

−154𝑛+14𝑝𝑛+104𝑝−610
 

Therfore, 

𝐴𝐵𝐶(𝐺𝑁𝑟) = (−168𝑛 + 14𝑝𝑛 + 104𝑝 − 714)
1

2(−154𝑛 + 14𝑝𝑛 + 104𝑝 − 610)−
1

2 

Case(II) When 𝑘 = 0.08, 𝑛 = 𝑡 − 1  and 𝑘 = 0.07, 𝑛 = 𝑡 ∑𝑢𝑣𝜖𝐸(𝐺𝑁𝑟) (𝑑𝑢 + 𝑑𝑣 − 2) = 3[(𝑝 −

1) + (𝑝 − 1) − 2] + 3[(𝑝 − 1) + (𝑝 − 3) − 2] + 3[(𝑝 − 1) + (𝑝 − 6) − 2] + 3[(𝑝 − 1) +

(𝑝 − 9) − 2] + (−3𝑛 + 9)[(𝑝 − 1) + (𝑝 − 11) − 2] + 12[(𝑝 − 1) + (𝑝 − 14) − 2] + (6𝑛 −

3)[(𝑝 − 1) + (𝑝 − 15) − 2] + (−6𝑛 + 15)[(𝑝 − 1) + (𝑝 − 13) − 2] + 9[(𝑝 − 1) + (−𝑛 +

8) − 2] + (−𝑛 + 3)[(𝑝 − 3) + (𝑝 − 11) − 2] + 4[(𝑝 − 3) + (𝑝 − 14) − 2] + (2𝑛 − 1)[(𝑝 −

3) + (𝑝 − 15) − 2] + (−2𝑛 + 5)[(𝑝 − 3) + (𝑝 − 13) − 2] + 3[(𝑝 − 3) + (−𝑛 + 8) − 2] +

3[(𝑝 − 6) + (𝑝 − 14) − 2] + (−2𝑛 + 5)[(𝑝 − 6) + (𝑝 − 13) − 2] + 3[(𝑝 − 6) + 7 − 2] +

(2𝑛 − 1)[(𝑝 − 6) + (−2𝑛 + 10) − 2] + (−2𝑛 + 5)[(𝑝 − 9) + (𝑝 − 13) − 2] + 3[(𝑝 − 9) +

7 − 2] + (2𝑛 − 1)[(𝑝 − 9) + 8 − 2] + 3[(𝑝 − 11) + 7 − 2] + (2𝑛 − 1)[(𝑝 − 11) + 8 − 2] +

(2𝑛 − 1)[(𝑝 − 14) + 8 − 2] + (12𝑛 − 12)[(𝑝 − 1) + (𝑝 − 17) − 2] + (4𝑛 − 4)[(𝑝 − 3) +

(𝑝 − 17) − 2] + (3𝑛 − 3)[(𝑝 − 6) + (𝑝 − 17) − 2] + (3𝑛 − 3)[(𝑝 − 9) + (𝑝 − 16) − 2] +

(𝑛 − 1)[(𝑝 − 11) + (𝑝 − 13) − 2] + (𝑛 − 1)[(𝑝 − 14) + (𝑝 − 13) − 2] + (𝑛 − 1)[(𝑝 − 17) +
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(𝑝 − 13) − 2] 

Simplifying the above expression, we get 

  ∑𝑢𝑣𝜖𝐸(𝐺𝑁𝑟) (𝑑𝑢 + 𝑑𝑣 − 2) = −4𝑛2 − 477𝑛 + 42𝑝𝑛 + 117𝑝 − 491  (c) 

  ∑𝑢𝑣𝜖𝐸(𝐺𝑁𝑟) (𝑑𝑢 + 𝑑𝑣) = −4𝑛
2 − 435𝑛 + 42𝑝𝑛 + 117𝑝 − 358  (d) [7] 

From (c) and (d) 𝐴𝐵𝐶(𝐺𝑁𝑟) = √
−4𝑛2−477𝑛+42𝑝𝑛+117𝑝−491

−4𝑛2−435𝑛+42𝑝𝑛+117𝑝−358
 

Therfore,  

𝐴𝐵𝐶(𝐺𝑁𝑟) = (−4𝑛2 − 477𝑛 + 42𝑝𝑛 + 117𝑝 − 491)
1
2(−4𝑛2 − 435𝑛 + 42𝑝𝑛 + 117𝑝

− 358)−
1
2 

Case(III) When 𝑘 = 0.06, 𝑛 = 𝑡 − 1, 𝑘 = 0.05, 𝑛 = 𝑡, 𝑘 = 0.04, 𝑛 = 𝑡 + 1  and 𝑘 = 0.03, 𝑛 =

∑𝑢𝑣𝜖𝐸(𝐺𝑁𝑟) (𝑑𝑢 + 𝑑𝑣 − 2) = [−
1

3
𝑛3 +

7

2
𝑛2 −

49

6
𝑛 + 8][(𝑝 − 1) + (𝑝 − 1) − 2] + [−

1

6
𝑛3 +

3

2
𝑛2 −

10

3
𝑛 + 5][(𝑝 − 1) + (𝑝 − 2) − 2] + [−

1

6
𝑛3 +

3

2
𝑛2 −

10

3
𝑛 + 5][(𝑝 − 1) + (𝑝 − 5) −

2] + [−
1

6
𝑛3 +

3

2
𝑛2 −

10

3
𝑛 + 5][(𝑝 − 1) + (𝑝 − 7) − 2] + [−

1

6
𝑛3 +

3

2
𝑛2 −

10

3
𝑛 + 5][(𝑝 − 1) +

(𝑝 − 10) − 2] + [−
1

6
𝑛3 +

3

2
𝑛2 −

10

3
𝑛 + 5][(𝑝 − 1) + (𝑝 − 13) − 2] + [−

1

6
𝑛3 +

3

2
𝑛2 −

10

3
𝑛 +

5][(𝑝 − 1) + (𝑝 − 15) − 2] + [−
5

3
𝑛3 + 15𝑛2 −

127

3
𝑛 + 41][(𝑝 − 1) + (𝑝 − 18) − 2] +

[
13

3
𝑛3 −

69

2
𝑛2 +

493

6
𝑛 − 49][(𝑝 − 1) + (𝑝 − 21) − 2] + [−

2

3
𝑛3 +

5

2
𝑛2 −

509

6
𝑛 + 59][(𝑝 −

1) + (
1

6
𝑛3 +

3

2
𝑛2 −

11

3
𝑛 + 8) − 2] + [−

17

3
𝑛3 +

5

2
𝑛2 +

1

6
𝑛 + 7][(𝑝 − 1) + (

7

2
𝑛2 −

23

2
𝑛 + 15) −

2] + [−
25

6
𝑛3 +

57

2
𝑛2 −

169

3
𝑛 + 41][(𝑝 − 1) + (

7

6
𝑛3 − 5𝑛2 +

29

6
𝑛 + 8) − 2] + [−

1

2
𝑛3 +

9

2
𝑛2 −

10𝑛 + 15][(𝑝 − 1) + (
13

6
𝑛3 − 13𝑛2 +

137

6
𝑛 − 2) − 2] + [(𝑝 − 2) + (𝑝 − 7) − 2] + [(𝑝 −

2) + (𝑝 − 10) − 2] + [(𝑝 − 2) + (𝑝 − 13) − 2] + [(𝑝 − 2) + (𝑝 − 15) − 2] + [−
1

2
𝑛3 +

9

2
𝑛2 − 13𝑛 + 13][(𝑝 − 2) + (𝑝 − 18) − 2] + [

3

2
𝑛3 − 12𝑛2 +

57

2
𝑛 − 17][(𝑝 − 2) + (𝑝 − 21) −

2] + 3[(𝑝 − 2) + (−
5

3
𝑛3 +

27

2
𝑛2 −

167

6
𝑛 + 22) − 2] + 3[(𝑝 − 2) + (

7

6
𝑛3 −

17

2
𝑛2 +

58

3
𝑛 −

5) − 2] + 3[(𝑝 − 2) + (
7

6
𝑛3 −

17

2
𝑛2 +

58

3
𝑛 − 3) − 2] + [

1

6
𝑛3 −

3

2
𝑛2 +

13

3
𝑛][(𝑝 − 2) +

(−
5

6
𝑛3 + 8𝑛2 −

121

6
𝑛 + 23) − 2] + [(𝑝 − 5) + (𝑝 − 15) − 2] + [−

1

2
𝑛3 +

9

2
𝑛2 − 13𝑛 +

13][(𝑝 − 5) + (𝑝 − 18) − 2] + [
3

2
𝑛3 − 12𝑛2 +

57

2
𝑛 − 17][(𝑝 − 5) + (𝑝 − 21) − 2] + [

1

6
𝑛3 −
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2𝑛2 +
35

6
𝑛 − 1][(𝑝 − 5) + (

1

6
𝑛3 +

3

2
𝑛2 −

11

3
𝑛 + 8) − 2] + [−

4

3
𝑛3 +

19

2
𝑛2 −

121

6
𝑛 + 15][(𝑝 −

5) + (
7

2
𝑛2 −

23

2
𝑛 + 15) − 2] + [−

5

6
𝑛3 +

11

2
𝑛2 −

32

3
𝑛 + 9][(𝑝 − 5) + (

7

6
𝑛3 − 5𝑛2 +

29

6
𝑛 +

8) − 2] + 3[(𝑝 − 5) + (
13

6
𝑛3 − 13𝑛2 +

137

6
𝑛 − 2) − 2] + [

1

6
𝑛3 − 2𝑛2 +

35

6
𝑛 − 1][(𝑝 − 7) +

(
1

6
𝑛3 +

3

2
𝑛2 −

11

3
𝑛 + 8) − 2] + [−

5

6
𝑛3 + 6𝑛2 −

79

6
𝑛 + 11][(𝑝 − 7) + (

7

2
𝑛2 −

23

2
𝑛 + 15) −

2] + [−
5

6
𝑛3 +

11

2
𝑛2 −

32

3
𝑛 + 9][(𝑝 − 7) + (

4

3
𝑛3 −

13

2
𝑛2 +

55

6
𝑛 + 4) − 2] + 3[(𝑝 − 7) +

(
7

3
𝑛3 −

29

2
𝑛2 +

163

6
𝑛 − 6) − 2] + [

1

6
𝑛3 − 𝑛2 +

11

6
𝑛 + 2][(𝑝 − 7) + (

7

6
𝑛3 − 7𝑛2 +

77

6
𝑛 + 3) −

2] + 3[(𝑝 − 10) + (
5

3
𝑛3 −

19

2
𝑛2 +

101

6
𝑛 − 2) − 2] + [

1

6
𝑛3 − 𝑛2 +

11

6
𝑛 + 2][(𝑝 − 10) + (𝑛3 −

11

2
𝑛2 +

19

2
𝑛 + 3) − 2] + [

1

6
𝑛3 − 𝑛2 +

11

6
𝑛 + 2][(𝑝 − 10) + (

1

3
𝑛3 −

3

2
𝑛2 +

13

6
𝑛 + 8) − 2] +

[
1

6
𝑛3 − 𝑛2 +

11

6
𝑛 + 2][(𝑝 − 10) + (−

1

6
𝑛3 +

3

2
𝑛2 −

10

3
𝑛 + 12) − 2] + [

1

6
𝑛3 − 𝑛2 +

11

6
𝑛 +

2][(𝑝 − 13) + (
1

6
𝑛3 −

1

2
𝑛2 +

1

3
𝑛 + 8) − 2] + [−

1

6
𝑛3 + 𝑛2 −

11

6
𝑛 + 4][(𝑝 − 13) − (

1

3
𝑛3 +

5

2
𝑛2 −

31

6
𝑛 + 12) − 2] + 3[(𝑝 − 13) + (−

1

3
𝑛3 +

5

2
𝑛2 −

31

6
𝑛 + 13) − 2] + 3[(𝑝 − 15) +

(−
1

6
𝑛3 +

3

2
𝑛2 −

10

3
𝑛 + 11) − 2] + 3[(𝑝 − 18) + (−

1

6
𝑛3 +

3

2
𝑛2 −

10

3
𝑛 + 12) − 2] + [

11

6
𝑛3 −

14𝑛2 +
229

6
𝑛 − 26][(𝑝 − 1) + (4𝑛2 − 21𝑛 + 37) − 2] + [

1

3
𝑛3 − 2𝑛2 +

29

3
𝑛 − 8][(𝑝 − 1) +

(2𝑛2 − 11𝑛 + 26) − 2] + [−
5

2
𝑛2 +

29

2
𝑛 − 17][(𝑝 − 2) + (8𝑛2 − 29𝑛 + 32) − 2] + [

1

6
𝑛3 −

3

2
𝑛2 +

16

3
𝑛 − 4][(𝑝 − 2) + (2𝑛2 − 11𝑛 + 26) − 2] + [

2

3
𝑛3 −

11

2
𝑛2 +

89

6
𝑛 − 10][(𝑝 − 5) +

(4𝑛2 − 21𝑛 + 37) − 2] + [
1

6
𝑛3 −

3

2
𝑛2 +

16

3
𝑛 − 4][(𝑝 − 5) + (2𝑛2 − 11𝑛 + 26) − 2] +

[
2

3
𝑛3 −

11

2
𝑛2 +

89

6
𝑛 − 10][(𝑝 − 7) + (

3

2
𝑛2 −

15

2
𝑛 + 20) − 2] + [

1

6
𝑛3 −

3

2
𝑛2 +

16

3
𝑛 − 4][(𝑝 −

7) + (−𝑛2 + 6𝑛 + 4) − 2] + [
1

3
𝑛3 −

7

2
𝑛2 +

67

6
𝑛 − 8][(𝑝 − 10) + (−

3

2
𝑛2 +

17

2
𝑛) − 2] +

[−
1

2
𝑛2 +

7

2
𝑛 − 3][(𝑝 − 10) + (−

3

2
𝑛2 +

17

2
𝑛 + 1) − 2] + [−

1

2
𝑛3 −

9

2
𝑛2 + 13𝑛 − 9][(𝑝 −

13) + (𝑛 + 9) − 2] + [−
1

2
𝑛2 +

7

2
𝑛 − 3][(𝑝 − 13) + (𝑛 + 10) − 2] + [−

1

2
𝑛3 −

9

2
𝑛2 + 13𝑛 −

9][(𝑝 − 15) + (𝑛 + 9) − 2] + [−
1

2
𝑛2 +

7

2
𝑛 − 3][(𝑝 − 15) + (𝑛 + 10) − 2] + [−

1

2
𝑛3 −

9

2
𝑛2 +

13𝑛 − 9][(𝑝 − 18) + (𝑛 + 10) − 2] + [−
1

2
𝑛3 −

9

2
𝑛2 + 13𝑛 − 9][(𝑝 − 21) + (𝑛 + 9) − 2] +

[−
1

2
𝑛2 +

7

2
𝑛 − 3][(𝑝 − 21) + (𝑛 + 10) − 2] + [−

1

2
𝑛2 +

7

2
𝑛 − 3][(𝑝 − 23) + (𝑛 + 10) − 2] +
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[−
8

3
𝑛3 + 22𝑛2 −

142

3
𝑛 + 28][(𝑝 − 1) + (16 − 𝑛) − 2] + [−

13

3
𝑛3 + 32𝑛2 −

197

3
𝑛 + 38][(𝑝 −

1) + (−4𝑛 + 26) − 2] + [−𝑛3 +
15

2
𝑛2 −

31

2
𝑛 + 9][(𝑝 − 2) + (2𝑛 + 7) − 2] + [−𝑛3 +

15

2
𝑛2 −

31

2
𝑛 + 9][(𝑝 − 2) + (2𝑛 + 8) − 2] + [−

5

6
𝑛3 +

13

2
𝑛2 −

41

3
𝑛 + 8][(𝑝 − 5) + (16 − 𝑛) − 2] +

[−
7

6
𝑛3 +

17

2
𝑛2 −

52

3
𝑛 + 10][(𝑝 − 5) + (26 − 4𝑛) − 2] + [−

7

6
𝑛3 +

17

2
𝑛2 −

52

3
𝑛 + 10][(𝑝 −

7) + (26 − 4𝑛) − 2] + [−𝑛3 +
15

2
𝑛2 −

31

2
𝑛 + 9][(𝑝 − 10) + (17 − 𝑛) − 2] + [−

1

2
𝑛3 + 4𝑛2 −

17

2
𝑛 + 5][(𝑝 − 10) + 15 − 2] + [−𝑛3 +

15

2
𝑛2 −

31

2
𝑛 + 9][(𝑝 − 13) + (𝑛 + 11) − 2] +

[−
1

2
𝑛3 + 4𝑛2 −

17

2
𝑛 + 5][(𝑝 − 13) + (𝑛 + 12) − 2] + [−𝑛3 +

15

2
𝑛2 −

31

2
𝑛 + 9][(𝑝 − 15) +

(𝑛 + 11) − 2] + [−
1

2
𝑛3 + 4𝑛2 −

17

2
𝑛 + 5][(𝑝 − 15) + (𝑛 + 12) − 2] + [−𝑛3 +

15

2
𝑛2 −

31

2
𝑛 +

9][(𝑝 − 18) + (𝑛 + 11) − 2] + [−
1

2
𝑛3 + 4𝑛2 −

17

2
𝑛 + 5][(𝑝 − 18) + (𝑛 + 12) − 2] +

[−𝑛3 +
15

2
𝑛2 −

31

2
𝑛 + 9][(𝑝 − 21) + (𝑛 + 11) − 2] + [−

1

2
𝑛3 + 4𝑛2 −

17

2
𝑛 + 5][(𝑝 − 21) +

(𝑛 + 12) − 2] + [−𝑛3 +
15

2
𝑛2 −

31

2
𝑛 + 9][(𝑝 − 23) + (𝑛 + 11) − 2] + [−

1

2
𝑛3 + 4𝑛2 −

17

2
𝑛 +

5][(𝑝 − 23) + (𝑛 + 12) − 2] + [−𝑛3 +
15

2
𝑛2 −

31

2
𝑛 + 9][(𝑝 − 26) + (𝑛 + 11) − 2] +

[−
1

2
𝑛3 + 4𝑛2 −

17

2
𝑛 + 5][(𝑝 − 26) + (𝑛 + 12) − 2] + [−

1

2
𝑛3 + 4𝑛2 −

17

2
𝑛 + 5][(𝑝 − 29) +

(𝑛 + 12) − 2] + [
5

2
𝑛3 − 15𝑛2 +

55

2
𝑛 − 15][(𝑝 − 1) + (𝑝 − 40) − 2] + [

5

2
𝑛3 − 15𝑛2 +

55

2
𝑛 −

15][(𝑝 − 1) + (𝑝 − 38) − 2] + [
5

2
𝑛3 − 15𝑛2 +

55

2
𝑛 − 15][(𝑝 − 1) + (𝑝 − 36) − 2] + [

5

2
𝑛3 −

15𝑛2 +
55

2
𝑛 − 15][(𝑝 − 1) + (𝑝 − 35) − 2] + [

5

2
𝑛3 − 15𝑛2 +

55

2
𝑛 − 15][(𝑝 − 1) + (𝑝 −

33) − 2] + [
5

2
𝑛3 − 15𝑛2 +

55

2
𝑛 − 15][(𝑝 − 1) + (𝑝 − 32) − 2] + [

1

6
𝑛3 − 𝑛2 +

11

6
𝑛 − 1][(𝑝 −

2) + (𝑝 − 26) − 2] + [
1

6
𝑛3 − 𝑛2 +

11

6
𝑛 − 1][(𝑝 − 2) + (𝑝 − 29) − 2] + [

2

3
𝑛3 − 4𝑛2 +

22

3
𝑛 −

4][(𝑝 − 2) + (𝑝 − 39) − 2] + [
1

3
𝑛3 − 2𝑛2 +

11

3
𝑛 − 2][(𝑝 − 2) + (𝑝 − 41) − 2] + [

1

2
𝑛3 −

3𝑛2 +
11

2
𝑛 − 3][(𝑝 − 2) + (𝑝 − 33) − 2] + [

1

2
𝑛3 − 3𝑛2 +

11

2
𝑛 − 3][(𝑝 − 2) + (𝑝 − 32) −

2] + [
1

2
𝑛3 − 3𝑛2 +

11

2
𝑛 − 3][(𝑝 − 5) + (𝑝 − 40) − 2] + [

1

2
𝑛3 − 3𝑛2 +

11

2
𝑛 − 3][(𝑝 − 5) +

(𝑝 − 38) − 2] + [
1

2
𝑛3 − 3𝑛2 +

11

2
𝑛 − 3][(𝑝 − 5) + (𝑝 − 36) − 2] + [

1

2
𝑛3 − 3𝑛2 +

11

2
𝑛 −

3][(𝑝 − 5) + (𝑝 − 35) − 2] + [
1

2
𝑛3 − 3𝑛2 +

11

2
𝑛 − 3][(𝑝 − 5) + (𝑝 − 33) − 2] + [

1

2
𝑛3 −
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3𝑛2 +
11

2
𝑛 − 3][(𝑝 − 5) + (𝑝 − 32) − 2] + [

1

2
𝑛3 − 3𝑛2 +

11

2
𝑛 − 3][(𝑝 − 7) + (𝑝 − 40) −

2] + [
1

2
𝑛3 − 3𝑛2 +

11

2
𝑛 − 3][(𝑝 − 7) + (𝑝 − 38) − 2] + [

1

2
𝑛3 − 3𝑛2 +

11

2
𝑛 − 3][(𝑝 − 7) +

(𝑝 − 36) − 2] + [
1

2
𝑛3 − 3𝑛2 +

11

2
𝑛 − 3][(𝑝 − 7) + (𝑝 − 35) − 2] + [

1

2
𝑛3 − 3𝑛2 +

11

2
𝑛 −

3][(𝑝 − 7) + (𝑝 − 33) − 2] + [
1

2
𝑛3 − 3𝑛2 +

11

2
𝑛 − 3][(𝑝 − 7) + (𝑝 − 32) − 2] + [

1

2
𝑛3 −

3𝑛2 +
11

2
𝑛 − 3][(𝑝 − 10) + (𝑝 − 35) − 2] + [

1

2
𝑛3 − 3𝑛2 +

11

2
𝑛 − 3][(𝑝 − 10) + (𝑝 − 33) −

2] + [
1

2
𝑛3 − 3𝑛2 +

11

2
𝑛 − 3][(𝑝 − 10) + (𝑝 − 32) − 2] + [

1

2
𝑛3 − 3𝑛2 +

11

2
𝑛 − 3][(𝑝 − 13) +

(𝑝 − 34) − 2] + [
1

2
𝑛3 − 3𝑛2 +

11

2
𝑛 − 3][(𝑝 − 13) + (𝑝 − 33) − 2] + [

1

2
𝑛3 − 3𝑛2 +

11

2
𝑛 −

3][(𝑝 − 13) + (𝑝 − 32) − 2] + [
1

3
𝑛3 − 2𝑛2 +

11

3
𝑛 − 2][(𝑝 − 13) + (𝑝 − 31) − 2] + [

1

2
𝑛3 −

3𝑛2 +
11

2
𝑛 − 3][(𝑝 − 15) + (𝑝 − 34) − 2] + [

1

2
𝑛3 − 3𝑛2 +

11

2
𝑛 − 3][(𝑝 − 15) + (𝑝 − 33) −

2] + [
1

2
𝑛3 − 3𝑛2 +

11

2
𝑛 − 3][(𝑝 − 15) + (𝑝 − 32) − 2] + [

1

3
𝑛3 − 2𝑛2 +

11

3
𝑛 − 2][(𝑝 − 15) +

(𝑝 − 31) − 2] + [
1

2
𝑛3 − 3𝑛2 +

11

2
𝑛 − 3][(𝑝 − 18) + (𝑝 − 34) − 2] + [

1

2
𝑛3 − 3𝑛2 +

11

2
𝑛 −

3][(𝑝 − 18) + (𝑝 − 33) − 2] + [
1

2
𝑛3 − 3𝑛2 +

11

2
𝑛 − 3][(𝑝 − 18) + (𝑝 − 32) − 2] + [

1

3
𝑛3 −

2𝑛2 +
11

3
𝑛 − 2][(𝑝 − 18) + (𝑝 − 31) − 2] + [

1

2
𝑛3 − 3𝑛2 +

11

2
𝑛 − 3][(𝑝 − 21) + (𝑝 − 34) −

2] + [
1

2
𝑛3 − 3𝑛2 +

11

2
𝑛 − 3][(𝑝 − 21) + (𝑝 − 33) − 2] + [

1

2
𝑛3 − 3𝑛2 +

11

2
𝑛 − 3][(𝑝 − 21) +

(𝑝 − 32) − 2] + [
1

3
𝑛3 − 2𝑛2 +

11

3
𝑛 − 2][(𝑝 − 21) + (𝑝 − 31) − 2] + [

1

2
𝑛3 − 3𝑛2 +

11

2
𝑛 −

3][(𝑝 − 23) + (𝑝 − 34) − 2] + [
1

2
𝑛3 − 3𝑛2 +

11

2
𝑛 − 3][(𝑝 − 23) + (𝑝 − 33) − 2] + [

1

2
𝑛3 −

3𝑛2 +
11

2
𝑛 − 3][(𝑝 − 23) + (𝑝 − 32) − 2] + [

1

3
𝑛3 − 2𝑛2 +

11

3
𝑛 − 2][(𝑝 − 23) + (𝑝 − 31) −

2] + [
1

2
𝑛3 − 3𝑛2 +

11

2
𝑛 − 3][(𝑝 − 26) + (𝑝 − 34) − 2] + [

1

2
𝑛3 − 3𝑛2 +

11

2
𝑛 − 3][(𝑝 − 26) +

(𝑝 − 33) − 2] + [
1

2
𝑛3 − 3𝑛2 +

11

2
𝑛 − 3][(𝑝 − 26) + (𝑝 − 32) − 2] + [

1

3
𝑛3 − 2𝑛2 +

11

3
𝑛 −

2][(𝑝 − 26) + (𝑝 − 31) − 2] + [
1

2
𝑛3 − 3𝑛2 +

11

2
𝑛 − 3][(𝑝 − 29) + (𝑝 − 34) − 2] + [

1

2
𝑛3 −

3𝑛2 +
11

2
𝑛 − 3][(𝑝 − 29) + (𝑝 − 33) − 2] + [

1

2
𝑛3 − 3𝑛2 +

11

2
𝑛 − 3][(𝑝 − 29) + (𝑝 − 32) −

2] + [
1

3
𝑛3 − 2𝑛2 +

11

3
𝑛 − 2][(𝑝 − 29) + (𝑝 − 31) − 2] + [

1

2
𝑛3 − 3𝑛2 +

11

2
𝑛 − 3][(𝑝 − 31) +

(𝑝 − 34) − 2] + [
1

2
𝑛3 − 3𝑛2 +

11

2
𝑛 − 3][(𝑝 − 31) + (𝑝 − 33) − 2] + [

1

2
𝑛3 − 3𝑛2 +

11

2
𝑛 −

3][(𝑝 − 31) + (𝑝 − 32) − 2] + [
1

3
𝑛3 − 2𝑛2 +

11

3
𝑛 − 2][(𝑝 − 31) + (𝑝 − 31) − 2] + [

1

2
𝑛3 −
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3𝑛2 +
11

2
𝑛 − 3][(𝑝 − 34) + (𝑝 − 33) − 2] + [

1

2
𝑛3 − 3𝑛2 +

11

2
𝑛 − 3][(𝑝 − 34) + (𝑝 − 32) −

2] + [
1

3
𝑛3 − 2𝑛2 +

11

3
𝑛 − 2][(𝑝 − 34) + (𝑝 − 31) − 2] + [

1

2
𝑛3 − 3𝑛2 +

11

2
𝑛 − 3][(𝑝 − 37) +

(𝑝 − 32) − 2] + [
1

3
𝑛3 − 2𝑛2 +

11

3
𝑛 − 2][(𝑝 − 37) + (𝑝 − 31) − 2] + [

1

3
𝑛3 − 2𝑛2 +

11

3
𝑛 −

2][(𝑝 − 39) + (𝑝 − 31) − 2] 

On Simplication, we get 

  ∑𝑢𝑣𝜖𝐸(𝐺𝑁𝑟) (𝑑𝑢 + 𝑑𝑣) = −7.8056𝑛
6 + 65.6667𝑛5 − 313.2778𝑛4 − 1161.6667𝑛3 +

11922.1667𝑛2 − 17873𝑛 + 69𝑝𝑛3 − 392𝑝𝑛2 + 623𝑝𝑛 − 144𝑝 + 12550 (e) [7] 

  ∑𝑢𝑣𝜖𝐸(𝐺𝑁𝑟) (𝑑𝑢 + 𝑑𝑣 − 2) = −7.8056𝑛6 + 50.9999𝑛5 − 309.1111𝑛4 −

1324.8333𝑛3 + 12960.3333𝑛2 − 25570.6666𝑛 + 49.1667𝑝𝑛3 − 389𝑝𝑛2 + 628.8333𝑝𝑛 −

166𝑝 + 11920  (f) 

From (e) and (f)  

𝐴𝐵𝐶(𝐺𝑁𝑟)

= √
−7.8056𝑛6 + 50.9999𝑛5 − 309.1111𝑛4 − 1324.8333𝑛3 + 12960.3333𝑛2 − 25570.6666𝑛 + 49.1667𝑝𝑛3 − 389𝑝𝑛2 + 628.8333𝑝𝑛 − 166𝑝 + 11920

−7.8056𝑛6 + 65.6667𝑛5 − 313.2778𝑛4 − 1661.6667𝑛3 + 11922.1667𝑛2 − 17873𝑛 + 75𝑝𝑛3 − 392𝑝𝑛2 + 623𝑝𝑛 − 253𝑝 + 13560
 

Therfore,  

𝐴𝐵𝐶(𝐺𝑁𝑟) = (−7.8056𝑛
6 + 50.9999𝑛5 − 309.1111𝑛4 − 1324.8333𝑛3 + 12960.3333𝑛2

− 25570.6666𝑛 + 49.1667𝑝𝑛3 − 389𝑝𝑛2 + 628.8333𝑝𝑛 − 166𝑝

+ 11920)
1
2(−7.8056𝑛6 + 65.6667𝑛5 − 313.2778𝑛4 − 1661.6667𝑛3

+ 11922.1667𝑛2 − 17873𝑛 + 75𝑝𝑛3 − 392𝑝𝑛2 + 623𝑝𝑛 − 253𝑝 + 13560)−
1
2 

Case (IV) When 𝑘 = 0.02, 𝑛 = 𝑡 − 1 and 𝑘 = 0.01, 𝑛 = 𝑡 
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∑
𝑢𝑣𝜖𝐸(𝐺𝑁𝑟)

(𝑑𝑢 + 𝑑𝑣 − 2)

= [57𝑛 − 36][(𝑝 − 1) + (𝑝 − 1) − 2] + [6𝑛 + 1][(𝑝 − 1) + (𝑝 − 2) − 2]

+ [6𝑛 + 1][(𝑝 − 1) + (76𝑛 − 6) − 2] + [6𝑛 + 1][(𝑝 − 1) + (76𝑛 − 8) − 2]

+ [6𝑛 + 1][(𝑝 − 1) + (𝑝 − 10) − 2] + [6𝑛 + 1][(𝑝 − 1) + (𝑝 − 13) − 2] + [6𝑛

+ 1][(𝑝 − 1) + (𝑝 − 15) − 2] + [6𝑛 + 1][(𝑝 − 1) + (𝑝 − 18) − 2] + [6𝑛

+ 1][(𝑝 − 1) + (𝑝 − 21) − 2] + [6𝑛 + 1][(𝑝 − 1) + (𝑝 − 23) − 2] + [6𝑛

+ 1][(𝑝 − 1) + (𝑝 − 26) − 2] + [6𝑛 + 1][(𝑝 − 1) + (𝑝 − 29) − 2] + [6𝑛

+ 1][(𝑝 − 1) + (76𝑛 − 32) − 2] + [6𝑛 + 1][(𝑝 − 1) + (74𝑛 − 32) − 2] + [6𝑛

+ 1][(𝑝 − 1) + (𝑝 − 37) − 2] + [6𝑛 + 1][(𝑝 − 1) + (𝑝 − 39) − 2] + [6𝑛

+ 1][(𝑝 − 1) + (𝑝 − 42) − 2] + [6𝑛 + 1][(𝑝 − 1) + (𝑝 − 45) − 2] + [−15𝑛

+ 43][(𝑝 − 1) + (74𝑛 − 45) − 2] + [−15𝑛 + 43][(𝑝 − 1) + (𝑝 − 50) − 2]

+ [−15𝑛 + 43][(𝑝 − 1) + (𝑝 − 53) − 2] + [−15𝑛 + 43][(𝑝 − 1) + (𝑝 − 55)

− 2] + [−15𝑛 + 43][(𝑝 − 1) + (𝑝 − 58) − 2] + [−15𝑛 + 43][(𝑝 − 1) + (𝑝

− 61) − 2] + [−8𝑛 + 29][(𝑝 − 1) + (72𝑛 − 56) − 2] + [−8𝑛 + 29][(𝑝 − 1)

+ (68𝑛 − 51) − 2] + [−8𝑛 + 29][(𝑝 − 1) + (63𝑛 − 44) − 2] + [−8𝑛

+ 29][(𝑝 − 1) + (60𝑛 − 40) − 2] + [−8𝑛 + 29][(𝑝 − 1) + (55𝑛 − 33) − 2]

+ [−8𝑛 + 29][(𝑝 − 1) + (50𝑛 − 26) − 2] + [−8𝑛 + 29][(𝑝 − 1) + (47𝑛

− 22) − 2] + [−8𝑛 + 29][(𝑝 − 1) + (42𝑛 − 15) − 2] + [−8𝑛 + 29][(𝑝 − 1)

+ (38𝑛 − 10) − 2] + [6𝑛 + 1][(𝑝 − 1) + (34𝑛 − 4) − 2] + [(𝑝 − 2) + (76𝑛

− 8) − 2] + [(𝑝 − 2) + (𝑝 − 10) − 2] + [(𝑝 − 2) + (𝑝 − 13) − 2] + [(𝑝 − 2)

+ (𝑝 − 15) − 2] + [(𝑝 − 2) + (𝑝 − 18) − 2] + [(𝑝 − 2) + (𝑝 − 21) − 2] + [(𝑝

− 2) + (𝑝 − 23) − 2] + [(𝑝 − 2) + (𝑝 − 26) − 2] + [(𝑝 − 2) + (𝑝 − 29) − 2]

+ [(𝑝 − 2) + (76𝑛 − 32) − 2] + [(𝑝 − 2) + (74𝑛 − 32) − 2] + [(𝑝 − 2) + (𝑝

− 37) − 2] + [(𝑝 − 2) + (𝑝 − 39) − 2] + [(𝑝 − 2) + (𝑝 − 42) − 2] + [(𝑝 − 2)

+ (𝑝 − 45) − 2] + [−3𝑛 + 7][(𝑝 − 2) + (74𝑛 − 45) − 2] + [−3𝑛 + 7][(𝑝 − 2)

+ (𝑝 − 50) − 2] + [−3𝑛 + 7][(𝑝 − 2) + (𝑝 − 53) − 2] + [−3𝑛 + 7][(𝑝 − 2)

+ (𝑝 − 55) − 2] + [−3𝑛 + 7][(𝑝 − 2) + (𝑝 − 58) − 2] + [−3𝑛 + 7][(𝑝 − 2)

+ (𝑝 − 61) − 2] + [−2𝑛 + 5][(𝑝 − 2) + (72𝑛 − 56) − 2] + [−2𝑛 + 5][(𝑝 − 2)

+ (68𝑛 − 51) − 2] + [−2𝑛 + 5][(𝑝 − 2) + (63𝑛 − 44) − 2] + [−2𝑛 + 5][(𝑝

− 2) + (60𝑛 − 40) − 2] + [−2𝑛 + 5][(𝑝 − 2) + (55𝑛 − 33) − 2] + [−2𝑛
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+ 5][(𝑝 − 2) + (50𝑛 − 26) − 2] + [−2𝑛 + 5][(𝑝 − 2) + (47𝑛 − 22) − 2]

+ [−2𝑛 + 5][(𝑝 − 2) + (42𝑛 − 15) − 2] + [−2𝑛 + 5][(𝑝 − 2) + (38𝑛 − 10)

− 2] + [(𝑝 − 2) + (34𝑛 − 4) − 2] + [(𝑝 − 10) + (76𝑛 − 32) − 2] + [(𝑝 − 10)

+ (74𝑛 − 32) − 2] + [(𝑝 − 10) + (𝑝 − 37) − 2] + [(𝑝 − 10) + (𝑝 − 39) − 2]

+ [(𝑝 − 10) + (𝑝 − 42) − 2] + [(𝑝 − 10) + (𝑝 − 45) − 2] + [−3𝑛 + 7][(𝑝

− 10) + (74𝑛 − 4) − 2] + [−3𝑛 + 7][(𝑝 − 10) + (𝑝 − 50) − 2] + [−3𝑛

+ 7][(𝑝 − 10) + (𝑝 − 53) − 2] + [−3𝑛 + 7][(𝑝 − 10) + (𝑝 − 55) − 2] + [−3𝑛

+ 7][(𝑝 − 10) + (𝑝 − 58) − 2][−3𝑛 + 7][(𝑝 − 10) + (𝑝 − 61) − 2] + [−2𝑛

+ 5][(𝑝 − 10) + (72𝑛 − 56) − 2] + [−2𝑛 + 5][(𝑝 − 10) + (68𝑛 − 51) − 2]

+ [−2𝑛 + 5][(𝑝 − 10) + (63𝑛 − 44) − 2] + [−2𝑛 + 5][(𝑝 − 10) + (60𝑛

− 40) − 2] + [−2𝑛 + 5][(𝑝 − 10) + (55𝑛 − 33) − 2] + [−2𝑛 + 5][(𝑝 − 10)

+ (50𝑛 − 26) − 2] + [−2𝑛 + 5][(𝑝 − 10) + (47𝑛 − 22) − 2] + [−2𝑛 + 5][(𝑝

− 10) + (42𝑛 − 15) − 2] + [−2𝑛 + 5][(𝑝 − 10) + (38𝑛 − 10) − 2] + [(𝑝

− 10) + (34𝑛 − 4) − 2] + [(𝑝 − 13) + (𝑝 − 39) − 2] + [(𝑝 − 13) + (𝑝 − 42)

− 2] + [(𝑝 − 13) + (𝑝 − 45) − 2] + [−3𝑛 + 7][(𝑝 − 13) + (74𝑛 − 45) − 2]

+ [−3𝑛 + 7][(𝑝 − 13) + (𝑝 − 50) − 2] + [−3𝑛 + 7][(𝑝 − 13) + (𝑝 − 53) − 2]

+ [−3𝑛 + 7][(𝑝 − 13) + (𝑝 − 55) − 2] + [−3𝑛 + 7][(𝑝 − 13) + (𝑝 − 58) − 2]

+ [−3𝑛 + 7][(𝑝 − 13) + (𝑝 − 61) − 2] + [−2𝑛 + 5][(𝑝 − 13) + (72𝑛 − 56)

− 2] + [−2𝑛 + 5][(𝑝 − 13) + (68𝑛 − 51) − 2] + [−2𝑛 + 5][(𝑝 − 13) + (63𝑛

− 44) − 2] + [−2𝑛 + 5][(𝑝 − 13) + (60𝑛 − 40) − 2] + [−2𝑛 + 5][(𝑝 − 13)

+ (55𝑛 − 33) − 2] + [−2𝑛 + 5][(𝑝 − 13) + (50𝑛 − 26) − 2] + [−2𝑛 + 5][(𝑝

− 13) + (47𝑛 − 22) − 2] + [−2𝑛 + 5][(𝑝 − 13) + (42𝑛 − 15) − 2] + [−2𝑛

+ 5][(𝑝 − 13) + (38𝑛 − 10) − 2] + [(𝑝 − 13) + (34𝑛 − 4) − 2] + [−3𝑛

+ 7][(𝑝 − 15) + (74𝑛 − 45) − 2] + [−3𝑛 + 7][(𝑝 − 15) + (𝑝 − 50) − 2]

+ [−3𝑛 + 7][(𝑝 − 15) + (𝑝 − 53) − 2] + [−3𝑛 + 7][(𝑝 − 15) + (𝑝 − 55) − 2]

+ [−3𝑛 + 7][(𝑝 − 15) + (𝑝 − 58) − 2] + [−3𝑛 + 7][(𝑝 − 15) + (𝑝 − 61) − 2]

+ [−2𝑛 + 5][(𝑝 − 15) + (72𝑛 − 56) − 2] + [−2𝑛 + 5][(𝑝 − 15) + (63𝑛

− 44) − 2] + [−2𝑛 + 5][(𝑝 − 15) + (60𝑛 − 40) − 2] + [−2𝑛 + 5][(𝑝 − 15)

+ (55𝑛 − 33) − 2] + [−2𝑛 + 5][(𝑝 − 15) + (50𝑛 − 26) − 2] + [−2𝑛 + 5][(𝑝

− 15) + (47𝑛 − 22) − 2] + [−2𝑛 + 5][(𝑝 − 15) + (42𝑛 − 15) − 2] + [−2𝑛

+ 5][(𝑝 − 15) + (38𝑛 − 10) − 2] + [−2𝑛 + 5][(𝑝 − 15) + (34𝑛 − 4) − 2]
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+ [−3𝑛 + 7][(𝑝 − 18) + (𝑝 − 55) − 2] + [−3𝑛 + 7][(𝑝 − 18) + (𝑝 − 58) − 2]

+ [−2𝑛 + 7][(𝑝 − 18) + (𝑝 − 61) − 2] + [−2𝑛 + 5][(𝑝 − 18) + (72𝑛 − 56)

− 2] + [−2𝑛 + 5][(𝑝 − 18) + (68𝑛 − 51) − 2] + [−2𝑛 + 5][(𝑝 − 18) + (63𝑛

− 44) − 2] + [−2𝑛 + 5][(𝑝 − 18) + (60𝑛 − 40) − 2] + [−2𝑛 + 5][(𝑝 − 18)

+ (55𝑛 − 33) − 2] + [−2𝑛 + 5][(𝑝 − 18) + (51𝑛 − 28) − 2] + [−2𝑛 + 5][(𝑝

− 18) + (48𝑛 − 24) − 2] + [−2𝑛 + 5][(𝑝 − 18) + (44𝑛 − 19) − 2] + [−2𝑛

+ 5][(𝑝 − 18) + (40𝑛 − 14) − 2] + [−2𝑛 + 5][(𝑝 − 18) + (37𝑛 − 10) − 2]

+ [−2𝑛 + 5][(𝑝 − 18) + (33𝑛 − 5) − 2] + [𝑛 + 2][(𝑝 − 18) + 29𝑛 − 2] + [3𝑛

− 2][(𝑝 − 18) + (26𝑛 + 4) − 2] + [−2𝑛 + 5][(𝑝 − 21) + (73𝑛 − 58) − 2]

+ [−2𝑛 + 5][(𝑝 − 21) + (69𝑛 − 53) − 2] + [−2𝑛 + 5][(𝑝 − 21) + (65𝑛

− 48) − 2] + [−2𝑛 + 5][(𝑝 − 21) + (62𝑛 − 44) − 2] + [−2𝑛 + 5][(𝑝 − 21)

+ (58𝑛 − 39) − 2] + [−2𝑛 + 5][(𝑝 − 21) + (54𝑛 − 34) − 2] + [−2𝑛 + 5][(𝑝

− 21) + (51𝑛 − 30) − 2] + [−2𝑛 + 5][(𝑝 − 21) + (47𝑛 − 25) − 2] + [−2𝑛

+ 5][(𝑝 − 21) + (43𝑛 − 20) − 2] + [−2𝑛 + 5][(𝑝 − 21) + (40𝑛 − 16) − 2]

+ [−2𝑛 + 5][(𝑝 − 21) + (36𝑛 − 11) − 2] + [𝑛 + 2][(𝑝 − 21) + (32𝑛 − 6)

− 2] + [𝑛 + 2][(𝑝 − 21) + (29𝑛 − 2) − 2] + [𝑛 + 2][(𝑝 − 21) + (25𝑛 + 3)

− 2] + [𝑛 + 2][(𝑝 − 21) + (21𝑛 + 8) − 2] + [3𝑛 − 2][(𝑝 − 21) + (18𝑛 + 12)

− 2] + [−2𝑛 + 5][(𝑝 − 23) + (64𝑛 − 48) − 2] + [−2𝑛 + 5][(𝑝 − 23) + (63𝑛

− 46) − 2] + [−2𝑛 + 5][(𝑝 − 23) + (56𝑛 − 38) − 2] + [−2𝑛 + 5][(𝑝 − 23)

+ (53𝑛 − 34) − 2] + [−2𝑛 + 5][(𝑝 − 23) + (49𝑛 − 29) − 2] + [−2𝑛 + 5][(𝑝

− 23) + (45𝑛 − 24) − 2] + [−2𝑛 + 5][(𝑝 − 23) + (42𝑛 − 20) − 2] + [−2𝑛

+ 5][(𝑝 − 23) + (38𝑛 − 15) − 2] + [𝑛 + 2][(𝑝 − 23) + (34𝑛 − 10) − 2] + [𝑛

+ 2][(𝑝 − 23) + (31𝑛 − 6) − 2] + [𝑛 + 2][(𝑝 − 23) + (27𝑛 − 1) − 2] + [𝑛

+ 2][(𝑝 − 23) + (23𝑛 + 4) − 2] + [𝑛 + 2][(𝑝 − 23) + (20𝑛 + 8) − 2] + [𝑛

+ 2][(𝑝 − 23) + (16𝑛 + 13) − 2] + [3𝑛 − 2][(𝑝 − 23) + (12𝑛 + 18) − 2]

+ [−2𝑛 + 5][(𝑝 − 26) + (55𝑛 − 38) − 2] + [−2𝑛 + 5][(𝑝 − 26) + (51𝑛

− 33) − 2] + [−2𝑛 + 5][(𝑝 − 26) + (47𝑛 − 28) − 2] + [−2𝑛 + 5][(𝑝 − 26)

+ (44𝑛 − 24) − 2] + [−2𝑛 + 5][(𝑝 − 26) + (40𝑛 − 19) − 2] + [𝑛 + 2][(𝑝

− 26) + (36𝑛 − 14) − 2] + [𝑛 + 2][(𝑝 − 26) + (33𝑛 − 10) − 2] + [𝑛 + 2][(𝑝

− 26) + (29𝑛 − 5) − 2] + [𝑛 + 2][(𝑝 − 26) + 25𝑛 − 2] + [𝑛 + 2][(𝑝 − 26)

+ (22𝑛 + 4) − 2] + [𝑛 + 2][(𝑝 − 26) + (18𝑛 + 9) − 2] + [𝑛 + 2][(𝑝 − 26)
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+ (14𝑛 + 14) − 2] + [𝑛 + 2][(𝑝 − 26) + (11𝑛 + 18) − 2] + [3𝑛 − 2][(𝑝

− 26) + (7𝑛 + 23) − 2] + [−2𝑛 + 5][(𝑝 − 29) + (49𝑛 − 31) − 2] + [−2𝑛

+ 5][(𝑝 − 29) + (42𝑛 − 23) − 2] + [𝑛 + 2][(𝑝 − 29) + (38𝑛 − 18) − 2] + [𝑛

+ 2][(𝑝 − 29) + (35𝑛 − 14) − 2] + [𝑛 + 2][(𝑝 − 29) + (31𝑛 − 9) − 2] + [𝑛

+ 2][(𝑝 − 29) + (27𝑛 − 4) − 2] + [𝑛 + 2][(𝑝 − 29) + 24𝑛 − 2] + [𝑛 + 2][(𝑝

− 29) + (20𝑛 + 5) − 2] + [𝑛 + 2][(𝑝 − 29) + (16𝑛 + 10) − 2] + [𝑛 + 2][(𝑝

− 29) + (13𝑛 + 14) − 2] + [𝑛 + 2][(𝑝 − 29) + (9𝑛 + 19) − 2] + [𝑛 + 2][(𝑝

− 29) + (5𝑛 + 24) − 2] + [3𝑛 − 2][(𝑝 − 29) + (2𝑛 + 28) − 2] + [𝑛 + 2][(𝑝

− 37) + (19𝑛 + 2) − 2] + [𝑛 + 2][(𝑝 − 37) + (15𝑛 + 7) − 2] + [𝑛 + 2][(𝑝

− 37) + (11𝑛 + 12) − 2] + [𝑛 + 2][(𝑝 − 37) + (8𝑛 + 16) − 2] + [𝑛 + 2][(𝑝

− 37) + (4𝑛 + 21) − 2] + [−2𝑛 + 5][(𝑝 − 37) + (2𝑛 + 24) − 2] + 3[(𝑝 − 37)

+ (3𝑛 + 24) − 2] + 3[(𝑝 − 37) + (6𝑛 + 22) − 2] + 3[(𝑝 − 37) + (4𝑛 + 25)

− 2] + [2𝑛 − 1][(𝑝 − 37) + (5𝑛 + 25) − 2] + [𝑛 + 2][(𝑝 − 39) + (10𝑛 + 12)

− 2] + [𝑛 + 2][(𝑝 − 39) + (6𝑛 + 17) − 2] + [−2𝑛 + 5][(𝑝 − 39) + (7𝑛 + 17)

− 2] + 3[(𝑝 − 39) + (5𝑛 + 20) − 2] + 3[(𝑝 − 39) + (5𝑛 + 21) − 2] + 3[(𝑝

− 39) + (6𝑛 + 21) − 2] + 3[(𝑝 − 39) + (6𝑛 + 22) − 2] + 3[(𝑝 − 39) + (6𝑛

+ 23) − 2] + [2𝑛 − 1][(𝑝 − 39) + (6𝑛 + 24) − 2] + 3[(𝑝 − 42) + (6𝑛 + 17)

− 2] + 3[(𝑝 − 42) + (6𝑛 + 18) − 2] + 3[(𝑝 − 42) + (6𝑛 + 19) − 2] + 3[(𝑝

− 42) + (6𝑛 + 20) − 2] + 3[(𝑝 − 42) + (6𝑛 + 21) − 2] + 3[(𝑝 − 42) + (6𝑛

+ 22) − 2] + 3[(𝑝 − 42) + (6𝑛 + 23) − 2] + [2𝑛 − 1][(𝑝 − 42) + (6𝑛 + 24)

− 2] + 3[(𝑝 − 45) + (6𝑛 + 18) − 2] + 3[(𝑝 − 45) + (6𝑛 + 19) − 2] + 3[(𝑝

− 45) + (6𝑛 + 20) − 2] + 3[(𝑝 − 45) + (6𝑛 + 21) − 2] + 3[(𝑝 − 45) + (6𝑛

+ 22) − 2] + 3[(𝑝 − 45) + (6𝑛 + 23) − 2] + [2𝑛 − 1][(𝑝 − 45) + (6𝑛 + 24)

− 2] + 3[(𝑝 − 50) + (6𝑛 + 20) − 2] + 3[(𝑝 − 50) + (6𝑛 + 21) − 2] + 3[(𝑝

− 50) + (6𝑛 + 22) − 2] + 3[(𝑝 − 50) + (6𝑛 + 23) − 2] + [2𝑛 − 1][(𝑝 − 50)

+ (6𝑛 + 24) − 2] + 3[(𝑝 − 53) + (6𝑛 + 21) − 2] + 3[(𝑝 − 53) + (6𝑛 + 22)

− 2] + 3[(𝑝 − 53) + (6𝑛 + 23) − 2] + [2𝑛 − 1][(𝑝 − 53) + (6𝑛 + 24) − 2]

+ 3[(𝑝 − 55) + (6𝑛 + 24) − 2] + 3[(𝑝 − 55) + (6𝑛 + 23) − 2] + [2𝑛 − 1][(𝑝

− 55) + (6𝑛 + 24) − 2] + 3[(𝑝 − 58) + (6𝑛 + 23) − 2] + [2𝑛 − 1][(𝑝 − 58)

+ (6𝑛 + 24) − 2] + [2𝑛 − 1][(𝑝 − 61) + (6𝑛 + 24) − 2] + [(76𝑛 − 6) + (𝑝

− 15) − 2] + [(76𝑛 − 6) + (𝑝 − 18) − 2] + [(76𝑛 − 6) + (𝑝 − 21) − 2]
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+ [(76𝑛 − 6) + (𝑝 − 23) − 2] + [(76𝑛 − 6) + (𝑝 − 26) − 2] + [(76𝑛 − 6)

+ (𝑝 − 29) − 2] + [(76𝑛 − 6) + (76𝑛 − 32) − 2] + [(76𝑛 − 6) + (74𝑛 − 32)

− 2] + [(76𝑛 − 6) + (𝑝 − 37) − 2] + [(76𝑛 − 6) + (𝑝 − 39) − 2] + [(76𝑛

− 6) + (𝑝 − 42) − 2] + [(76𝑛 − 6) + (𝑝 − 45) − 2] + [−3𝑛 + 7][(76𝑛 − 6)

+ (74𝑛 − 45) − 2] + [−3𝑛 + 7][(76𝑛 − 6) + (𝑝 − 50) − 2] + [−3𝑛

+ 7][(76𝑛 − 6) + (𝑝 − 53) − 2] + [−3𝑛 + 7][(76𝑛 − 6) + (𝑝 − 55) − 2]

+ [−3𝑛 + 7][(76𝑛 − 6) + (𝑝 − 58) − 2] + [−3𝑛 + 7][(76𝑛 − 6) + (𝑝 − 61)

− 2] + [−2𝑛 + 5][(76𝑛 − 6) + (72𝑛 − 56) − 2] + [−2𝑛 + 5][(76𝑛 − 6)

+ (68𝑛 − 51) − 2] + [−2𝑛 + 5][(76𝑛 − 6) + (63𝑛 − 44) − 2] + [−2𝑛

+ 5][(76𝑛 − 6) + (60𝑛 − 40) − 2] + [−2𝑛 + 5][(76𝑛 − 6) + (55𝑛 − 33) − 2]

+ [−2𝑛 + 5][(76𝑛 − 6) + (50𝑛 − 26) − 2] + [−2𝑛 + 5][(76𝑛 − 6) + (47𝑛

− 22) − 2] + [−2𝑛 + 5][(76𝑛 − 6) + (42𝑛15) − 2] + [−2𝑛 + 5][(76𝑛 − 6)

+ (38𝑛 − 10) − 2] + [(76𝑛 − 6) + (34𝑛 − 4) − 2] + [(76𝑛 − 8) + (𝑝 − 23)

− 2] + [(76𝑛 − 8) + (𝑝 − 26) − 2] + [(76𝑛 − 8) + (𝑝 − 29) − 2] + [(76𝑛

− 8) + (76𝑛 − 32) − 2] + [(76𝑛 − 8) + (74𝑛 − 32) − 2] + [(76𝑛 − 8) + (𝑝

− 37) − 2] + [(76𝑛 − 8) + (𝑝 − 39) − 2] + [(76𝑛 − 8) + (𝑝 − 42) − 2]

+ [(76𝑛 − 8) + (𝑝 − 45) − 2] + [−3𝑛 + 7][(76𝑛 − 8) + (74𝑛 − 45) − 2]

+ [−3𝑛 + 7][(76𝑛 − 8) + (𝑝 − 50) − 2] + [−3𝑛 + 7][(76𝑛 − 8) + (𝑝 − 53)

− 2] + [−3𝑛 + 7][(76𝑛 − 8) + (𝑝 − 55) − 2] + [−3𝑛 + 7][(76𝑛 − 8) + (𝑝

− 58) − 2] + [−3𝑛 + 7][(76𝑛 − 8) + (𝑝 − 61) − 2] + [−2𝑛 + 5][(76𝑛 − 8)

+ (72𝑛 − 56) − 2] + [−2𝑛 + 5][(76𝑛 − 8) + (68𝑛 − 51) − 2] + [−2𝑛

+ 5][(76𝑛 − 8) + (63𝑛 − 44) − 2] + [−2𝑛 + 5][(76𝑛 − 8) + (60𝑛 − 40) − 2]

+ [−2𝑛 + 5][(76𝑛 − 8) + (55𝑛 − 33) − 2] + [−2𝑛 + 5][(76𝑛 − 8) + (50𝑛

− 26) − 2] + [−2𝑛 + 5][(76𝑛 − 8) + (47𝑛 − 22) − 2] + [−2𝑛 + 5][(76𝑛

− 8) + (42𝑛 − 15) − 2] + [−2𝑛 + 5][(76𝑛 − 8) + (38𝑛 − 10) − 2] + [(76𝑛

− 8) + (34𝑛 − 4) − 2] + [𝑛 + 2][(79𝑛 − 35) + (37𝑛 − 18) − 2] + [𝑛

+ 2][(79𝑛 − 35) + (33𝑛 − 13) − 2] + [𝑛 + 2][(79𝑛 − 35) + (29𝑛 − 8) − 2]

+ [𝑛 + 2][(79𝑛 − 35) + (26𝑛 − 4) − 2] + [𝑛 + 2][(79𝑛 − 35) + (22𝑛 + 1)

− 2] + [𝑛 + 2][(79𝑛 − 35) + (18𝑛 + 6) − 2] + [𝑛 + 2][(79𝑛 − 35) + (15𝑛

+ 10) − 2] + [𝑛 + 2][(79𝑛 − 35) + (11𝑛 + 15) − 2] + [𝑛 + 2][(79𝑛 − 35)

+ (7𝑛 + 20) − 2] + [𝑛 + 2][(79𝑛 − 35) + (4𝑛 + 24) − 2] + [𝑛 + 2][(79𝑛
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− 35) + 29 − 2] + [(79𝑛 − 35) + (−2𝑛 + 32) − 2] + [𝑛 + 2][(74𝑛 − 32)

+ (28𝑛 − 8) − 2] + [𝑛 + 2][(74𝑛 − 32) + (24𝑛 − 3) − 2] + [𝑛 + 2][(74𝑛

− 32) + (20𝑛 + 2) − 2] + [𝑛 + 2][(74𝑛 − 32) + (17𝑛 + 6) − 2] + [𝑛

+ 2][(74𝑛 − 32) + (13𝑛 + 11) − 2] + [𝑛 + 2][(74𝑛 − 32) + (9𝑛 + 16) − 2]

+ [𝑛 + 2][(74𝑛 − 32) + (6𝑛 + 20) − 2] + [𝑛 + 2][(74𝑛 − 32) + (2𝑛 + 25)

− 2] + [−2𝑛 + 5][(74𝑛 − 32) + 28 − 2] + 3[(74𝑛 − 32) + (𝑛 + 28) − 2]

+ (2𝑛 − 1)[(74𝑛 − 32) + (𝑛 + 29) − 2] + [13𝑛 − 13][(𝑝 − 1) + (𝑝 − 60)

− 2] + [52𝑛 − 52][(𝑝 − 1) + (𝑝 − 93) − 2] + [52𝑛 − 52][(𝑝 − 1) + (𝑝 − 95)

− 2] + [52𝑛 − 52][(𝑝 − 1) + (𝑝 − 98) − 2] + [52𝑛 − 52][(𝑝 − 1) + (𝑝

− 101) − 2] + [52𝑛 − 52][(𝑝 − 1) + (𝑝 − 103) − 2] + [52𝑛 − 52][(𝑝 − 1)

+ (𝑝 − 106) − 2] + (52𝑛 − 52)[(𝑝 − 1) + (𝑝 − 109) − 2] + (52𝑛 − 52)[(𝑝

− 1) + (𝑝 − 111) − 2] + (52𝑛 − 52)[(𝑝 − 1) + (𝑝 − 114) − 2] + (52𝑛

− 52)[(𝑝 − 1) + (𝑝 − 117) − 2] + (52𝑛 − 52)[(𝑝 − 1) + (𝑝 − 119) − 2]

+ (52𝑛 − 52)[(𝑝 − 1) + (𝑝 − 122) − 2] + (13𝑛 − 13)[(𝑝 − 1) + (𝑝 − 123)

− 2] + (39𝑛 − 39)[(𝑝 − 1) + (𝑝 − 121) − 2] + (39𝑛 − 39)[(𝑝 − 1) + (𝑝

− 120) − 2] + (39𝑛 − 39)[(𝑝 − 1) + (𝑝 − 118) − 2] + (39𝑛 − 39)[(𝑝 − 1)

+ (𝑝 − 116) − 2] + (39𝑛 − 39)[(𝑝 − 1) + (𝑝 − 115) − 2] + (39𝑛 − 39)[(𝑝

− 1) + (𝑝 − 113) − 2] + (39𝑛 − 39)[(𝑝 − 1) + (𝑝 − 112) − 2] + (39𝑛

− 39)[(𝑝 − 1) + (𝑝 − 110) − 2] + (39𝑛 − 39)[(𝑝 − 1) + (𝑝 − 108) − 2]

+ (39𝑛 − 39)[(𝑝 − 1) + (𝑝 − 107) − 2] + (39𝑛 − 39)[(𝑝 − 1) + (𝑝 − 105)

− 2] + (39𝑛 − 39)[(𝑝 − 1) + (𝑝 − 104) − 2] + (39𝑛 − 39)[(𝑝 − 1) + (𝑝

− 102) − 2] + (39𝑛 − 39)[(𝑝 − 1) + (𝑝 − 100) − 2] + (39𝑛 − 39)[(𝑝 − 1)

+ (𝑝 − 99) − 2] + (39𝑛 − 39)[(𝑝 − 1) + (𝑝 − 97) − 2] + (39𝑛 − 39)[(𝑝 − 1)

+ (𝑝 − 96) − 2] + (39𝑛 − 39)[(𝑝 − 1) + (𝑝 − 94) − 2] + (13𝑛 − 13)[(𝑝 − 1)

+ (𝑝 − 92) − 2] + (𝑛 − 1)[(𝑝 − 2) + (𝑝 − 90) − 2] + (4𝑛 − 4)[(𝑝 − 2) + (𝑝

− 93) − 2] + (4𝑛 − 4)[(𝑝 − 2) + (𝑝 − 95) − 2] + (4𝑛 − 4)[(𝑝 − 2) + (𝑝

− 98) − 2] + (4𝑛 − 4)[(𝑝 − 2) + (𝑝 − 101) − 2] + (4𝑛 − 4)[(𝑝 − 2) + (𝑝

− 103) − 2] + (4𝑛 − 4)[(𝑝 − 2) + (𝑝 − 106) − 2] + (4𝑛 − 4)[(𝑝 − 2) + (𝑝

− 109) − 2] + (4𝑛 − 4)[(𝑝 − 2) + (𝑝 − 111) − 2] + (4𝑛 − 4)[(𝑝 − 2) + (𝑝

− 114) − 2] + (4𝑛 − 4)[(𝑝 − 2) + (𝑝 − 117) − 2] + (4𝑛 − 4 

Simplifying the above expression, we get 
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  ∑𝑢𝑣𝜖𝐸(𝐺𝑁𝑟) (𝑑𝑢 + 𝑑𝑣 − 2) = −16445𝑛2 − 438851𝑛 + 7768𝑝𝑛 − 6139𝑝 + 457298  

(g) 

  ∑𝑢𝑣𝜖𝐸(𝐺𝑁𝑟) (𝑑𝑢 + 𝑑𝑣) = −16445𝑛
2 − 429961𝑛 + 7768𝑝𝑛 − 6139𝑝 + 446995  (h) 

[7] 

From (g) and (h) 𝐴𝐵𝐶(𝐺𝑁𝑟) = √
−16445𝑛2−438851𝑛+7768𝑝𝑛−6139𝑝+457298

−16445𝑛2−429961𝑛+7768𝑝𝑛−6139𝑝+446995
 

Therfore, 𝐴𝐵𝐶(𝐺𝑁𝑟) = (−16445𝑛2 − 438851𝑛 + 7768𝑝𝑛 − 6139𝑝 +

457298)
1

2(−16445𝑛2 − 429961𝑛 + 7768𝑝𝑛 − 6139𝑝 + 446995)−
1

2 

  

3 Numercal Representation 

   The below table displays numerical values of the atom-bond connectivity index on 

different step Values  

  Step Value 𝑘   𝐴𝐵𝐶(𝐺𝑁𝑟)  

 0.1   0.9461  

 0.09   0.9489  

 0.08   0.9599  

 0.07   0.9653  

 0.06   −0.1319  

 0.05   −0.6458 

 0.04   −1.2977  

 0.03   −1.7570  

 0.02   1.0057  

 0.01   1.4017 

  

Table:1 Numerical values of the atom-bond connectivity index 

4  Conclusion 

   In this article, this study explored the degree-based topological index namely the atom-

bond connectivity (ABC) index, for the Nanorod grapg 𝐺𝑁𝑟. Numerical values of the ABC index 

are computed for step values of 𝑘 ranging from 0.1 to 0.01 in increments of 0.01.  
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