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Message by the Secretary

Dear colleagues and participants,

Warm Greetings to you all.

It is with great pleasure that I express my warmest greetings to all the readers of the

International Conference proceedings on Harmonizing Graph Theory and Differential Equations

in the Age of Industry 4.0. Over the course of this conference, we will have the opportunity to

delve into a wide range of topics, from pure mathematics to its myriad applications in fields as

diverse as physics, engineering, finance and beyond. Through presentations, discussions and

shared insights, I am confident that we will gain new perspectives, forge meaningful connections

and lay the groundwork for future breakthroughs.

Within these pages, you will find a rich tapestry of mathematical research, spanning a

diverse array of topics and methodologies. From abstract theory to real-world applications, each

article and paper offers valuable insights that contribute to the ever-evolving landscape of

mathematical knowledge.

I hope that you find inspiration and enlightenment within these pages and that they

serve as a catalyst for further exploration and discovery. Together, let us continue to push the

boundaries of mathematical knowledge and make meaningful contributions to the world around

us.

My sincere appreciation to the organizers and reviewers whose hard work and support

have made this publication possible. I congratulate all the faculty members and students of the

department of mathematics for your efforts and commitment in organizing this conference and

wish you all a happy learning.

Dr.Sr.M.Mary Gilda

Secretary

Holy Cross College (Autonomous)

Nagercoil- 629004
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Message by the Principal

Esteemed Readers and Delegates,

Mathematics, often referred to as the queen of sciences, serves as the bedrock upon which

countless disciplines are built. Its elegance and precision enable us to unravel the mysteries of the

universe, solve complex problems and innovate in ways that shape our world.

Within the pages of these proceedings, you will find a wealth of research, insights and

discoveries that reflect the diversity and vitality of contemporary mathematics. From theoretical

advances to practical applications, each contribution represents a testament to the ingenuity and

dedication of our global community of mathematicians. Our conference serves as a platform for the

exchange of ideas, the presentation of cutting-edge research and the cultivation of collaborative

networks among scholars and practitioners from around the globe. I am immensely proud of

the contributions made by the PG and Research Department of Mathematics for organizing the

International Conference on Harmonizing Graph Theory and Differential Equations in the Age of

Industry 4.0. I thank the esteemed invited speakers, researchers and attendees for sharing your

research, insights and experiences which have enriched the discourse surrounding mathematics and

its multifaceted applications.

My best wishes to you all. God bless you!

Dr.Sr.S.Sahayaselvi

Principal

Holy Cross College (Autonomous)

Nagercoil- 629004
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Message by the Head of the Department, ICHGD 2024

Dear Esteemed Colleagues and Participants,

I am delighted to announce the release of the proceedings for the recent International

Mathematics Conference hosted by our esteemed department. Over the course of two days, we

witnessed insightful discussions, groundbreaking research presentations, and invaluable exchanges

of knowledge among experts and enthusiasts from around the globe.

This compilation encapsulates the essence of our collective efforts, highlighting the

diverse array of topics covered during the conference. From pure mathematics to its

interdisciplinary applications, each contribution reflects the depth and breadth of contemporary

mathematical inquiry.

I extend my heartfelt gratitude to all the keynote speakers, presenters, organizers, and

attendees whose dedication and enthusiasm made this event a resounding success. Your passion

for mathematics and commitment to academic excellence continue to inspire and drive our

community forward.

I encourage everyone to explore the proceedings, engage with the wealth of ideas

contained within its pages, and continue fostering collaborations that will shape the future of

mathematical research and education. On behalf of the Mathematics Department, I extend my

warmest congratulations to all contributors and express my sincere appreciation for your

invaluable contributions to the advancement of our field.

With best regards,

Dr.T.Sheeba Helen

Head of the Department of Mathematics
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Proceedings of ICHGD-2024 ISBN: 978-81-19821-72-3

Dr. SANDRA PINELAS

Military Academy,

Department of Exact and Natural Sciences, Portugal.

Email: sandra.pinelas@gmail.com

DELAY DIFFERENTIAL EQUATIONS WITH IMPULSE

Abstract

This talk explores the intricate dynamics of delay differential equations (DDEs) with

impulse, a topic gaining significant attention in mathematics. Delving into fundamental

principles and applications, the talk will elucidate analytical techniques, stability analysis,

and real-world relevance, aiming to inspire further research and collaboration in this

dynamic field.

Ultimately, this presentation aims to stimulate further research and foster collaboration

among mathematicians and scientists interested in the dynamics of complex systems

governed by delay differential equations with impulse. By unraveling the intricacies of these

mathematical structures, we can advance our comprehension of natural and engineered

systems, paving the way for innovative solutions to pressing scientific challenges.
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Dr. G. BRITTO ANTONY XAVIER

Associate Professor,

Department of Mathematics, Sacred Heart College, Tirupattur, Tamil Nadu, India.

Email: brittoshc@gmail.com

DERIVATIVE GRAPHS OF EXPONENTIAL FUNCTIONS WITH

APPLICATIONS

Abstract

This invited talk aims to introduce a new type function termed as generalized exponential

function with shift value, by which three major fields differential equation, graph theory and

fuzzy theory of mathematical science have being connected. With this background, some

applications in chemical graphs are arrived at and are illustrated with examples. Moreover,

regular fuzzy derivative graphs are discussed and analyzed.

Keywords: Derivative graphs, Generalized exponential function, Fuzzy derivative graphs.

AMS Subject Classification: 39A70, 05C72, 05C20, 11E81.
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DR. A. RIZWANA

Assistant Professor, Department of Mathematics,

V.H.N. Senthikumara Nadar College (Autonomous), Virudhunagar, Tamil Nadu, India.

Email: rijurizwana@gmail.com

TOPOLOGICAL INDICES AND ENERGY IN GRAPHS

Abstract

Chemical Graph Theory is the topology branch of Mathematical Chemistry which applies

graph theory to study molecular structures. A molecular graph or chemical graph is a

representation of the structural formula of a chemical compound in terms of graph theory.

Topological indices are numerical parameters designed for the transformation of a molecular

graph into a number that characterizes the topology of that graph. A graph is completely

determined by specifying either its adjacency structure or its incidence structure and these

specifications provide far more efficient ways of representing a large or complicated graph

than a pictorial representation. Several matrices can be associated with a graph such as the

adjacency matrix or the Laplacian Matrix. A concept related to the spectrum of a graph is

that of energy. In this talk, we shall discuss the recent advances in topological indices and

energy of graphs.

References:

1. Lingping Zhong, The harmonic index for graphs, Applied Mathematics Letters, 25 (2012)

561-566.

2. S.Meenakshi and S. Lavanya, A Survey on Energy of Graphs, Annals of Pure and Applied

Mathematics, Vol. 8, No. 2, 2014, 183-191.

3. A.Rizwana, G.Jeyakumar, Bounds for the Non-Neighbor Harmonic Index of Subdivision

Graphs, International J.Math. Combin. Special Issue 1 (2018), 104-113.

4. A.Rizwana, G.Jeyakumar, The Non-Neighbor Harmonic Index on Elementary Graph

Operations, International Journal of Scientific Research in Mathematical and Statistical

Sciences, Volume-5, Issue-5, pp.01-05, October (2018).
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5. A.Rizwana, G. Jeyakumar, S.Somusundaram, On Non-Neighbor Zagreb Indices and

Non-Neighbor Harmonic Index, International Journal of Mathematics And its Applications,

Volume 4, Issue 2-D (2016), 89-101.

6. Dr.A.Rizwana, Dr.M.Mohamed Ismail, Non-Neighbor Harmonic Index of Glued Network,

Journal of Information and Computational Science, Volume 11, Issue 9, 2021 Page No: 475

483.
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J. PAULRAJ JOSEPH

Former Professor and Head, Department of Mathematics,

Manonmaniam Sundaranar University,Tirunelveli 627 012, TAMIL NADU.

Email: prof.jpaulraj@gmail.com

SOME NEW OSCILLATION CRITERIA OF TRANSVERSELY VIBRATING

BEAMS

Abstract

Let G be a simple graph of order n and Gc be its complement. If α(G) is a graph parameter,

then the lower and upper bounds on the sum α(G)+α(Gc) in terms of n are of prime importance

in graph theory. The first of its kind with reference to chromatic number of a graph was studied

by Nordhaus and Gaddum on complementary graphs and published in American Mathematical

Monthly in 1956. In this talk, we discuss the recent developments in the theory of domination

and extend it to derived graphs.

AMS Subject Classification: 05C

Key words: Chromatic number, domination number.

References

1. Aouchiche, M and Hansen Abbas, P: A survey of Nordhaus-Gaddum type relations,

Disc.App.Math 161 (4-5)2013, 466 -546

2. C. Berge, Theory of Graphs and Its Applications. Hethuen, London, 1962.

3. E. J. Cockayne and S. T. Hedetniemi, Towards a Theory of Domination in Graph. Networks

7 (1977) 247-261.

4. J. E. Dunbar, T.W. Haynes and S. T. Hedetniemi, Nordhaus-Gaddum Bounds for Domination

Sums in Graphs with Specified Minimum Degree, Util. Math. 67 (2005), 97-105.

5. T.W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs,

Marcel Dekker, Newyork, 1998.

6. S. T. Hedetniemi and R. Laskar, Connected Domination in Graphs, In B. Bollabas, ed. Graph

Theory and combinatorics (Academic Press, London, 1984) 209-217.
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The Chromatic Restrained Domination Number of Middle Graphs
1Divinelin Kumari R(Reg.No.21213042092002) and 2Angel Jebitha M K
1Reg.No.21213042092002, PG and Research Department of Mathematics,

Holy Cross College (Autonomous), Nagercoil, Tamil Nadu, India.

(Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, Tamil Nadu)
2 PG and Research Department of Mathematics, Holy Cross College (Autonomous), Nagercoil,

Tamil Nadu, India.

E-mail: 1divinelinr@gmail.com and 2angeljebitha@holycrossngl.edu.in.

Abstract

Let G = (V,E) be a graph and M(G) be the middle graph of G. A subset D of V is

said to be a chromatic restrained dominating set (or crd-set) if D is a restrained dominating

set and χ(< D >) = χ(G). The minimum cardinality taken over all minimal chromatic

restrained dominating sets is called chromatic restrained domination number and is denoted

by γc
r(G). In this paper, we obtain the chromatic restrained domination number for the

middle graph of some standard graphs.

Keywords : Domination, Restrained Domination, Chromatic Number, Middle Graphs.

AMS Subject Classification : 05C15, 05C69

1 Introduction

All the graphs G = (V,E) = (n,m) considered here are simple, finite and undirected, with

neither loops nor multipe edges. For D ⊆ V , the subgraph induced by D is denoted by 〈D〉.
The open neighborhood N(v) of the vertex v consists of the set of vertices adjacent to v, that is

N(v) = {w ∈ V : vw ∈ E}, and the closed neighborhod of v is N [v] = N(v) ∪ {v}. The degree of

a vertex v in a graph G, denoted by deg(v) is the number of edges incident with v or,

eqivalently, deg(v) = |N(v)|. A vertex of degree one is called an end vertex or a pendant vertex.

A k-vertex-coloring of a graph, or simply a k-coloring, is an assignment of k-colors to its

vertices. The coloring is proper if no two adjacent vertices are assigned the same color. A

coloring in which k-colors are used is called a k-coloring. A graph is k-colorable if it has a

proper k-coloring. The minimum k for which a graph G is k-colorable is called its chromatic

number, and denoted by χ(G). If χ(G) = k, the graph G is said to be k − chromatic. Graph

Theory terminologies which are not defined here can be seen in [4] and [11].

The line graph L(G) is the graph whose vertices correspond to the edges of G, and two vertices

in L(G) are adjacent if and only if the corresponding edges in G are adjacent. The middle

graph of a graph G = (V,E) is the graph M(G) = (V ∪ E,E′
) where uv ∈ E

′
if and only if

either u is a vertex of G and v is an edge of G containing u, or u and v are edges in G having a

11
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vertex in common. To maintain clarity across the paper, we establish a standardized notation

for the vertex set and edge set of the middle graph M(G). Assuming V (G) = {v1, v2, ..., vn},
we define V (M(G)) as V (G) ∪ M where M = {mij/vivj ∈ E(G)}, and E(M(G)) as

{vimij , vjmij/vivj ∈ E(G)} ∪ E(L(G)). In [5], Farshad Kazemnejad, Behnaz Pahlavsay, Elisa

Palezzato and Michele Torielli discussed about the domination number of middle graphs.

A set D ⊆ V of vertices in a graph G is called a dominating set if every vertex u ∈ V is either

an element of D or is adjacent to an element of D. The minimum cardinality taken over all

minimal dominating sets is called the domination number of G and is denoted by γ(G). A set

D ⊆ V is a restrained dominating set if every vertex in V −D is adjacent to a vertex in D and

another vertex in V − D [6]. The minimum cardinality taken over all minimal restrained

dominating sets is called the restrained domination number of G and is denoted by γr(G). A

set D is a γr - set if D is a restrained dominating set of cardinality γr(G).

A set D ⊆ V is a chromatic preserving set or a cp-set if χ(< D >) = χ(G) and the minimum

cardinality of a cp-set in G is called the chromatic preserving number or cp-number of G and is

denoted by cpn(G). This new concept was defined by T.N. Janakiraman and M.

Poobalaranjani [7]. They also defined the concept of dom-chromatic set of a graph. A subset D

of V is said to be a dom-chromatic set (or dc-set)if D is a dominating set and

χ(< D >) = χ(G). The minimum cardinality taken over all minimal dom-chromatic sets in G

is called the dom-chromatic number and is denoted by γch(G). In [8], they established

dom-chromatic numbers for some classes of graphs and also some main results in this area.

Based on this, S. Balamurugan et al [1], [2], [3] introduced and studied the concept of

chromatic strong domination, chromatic total domination, chromatic connected domination,

chromatic weak domination and so on. Also, J. Joseline Manora et al [9], [10] discussed about

connected majority dom-chromatic number of a graph and majority dom-chromatic set of a

graph. Like these, several authors worked on different types of dom-chromatic sets. In this

paper, we initiate a study of the new domination parameter on chromatic restrained

domination number of middle graphs.

2 Main Results

In this section, we obtain the chromatic restrained domination number for the middle graph

of some standard graphs.

Definition 2.1 Let G = (V,E) be a graph and M(G) be the middle graph of G. A subset D of

V is said to be a chromatic restrained dominating set (or crd-set) if D is a restrained

dominating set and χ(< D >) = χ(G). The minimum cardinality taken over all minimal

12
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chromatic restrained dominating sets is called chromatic restrained domination number and is

denoted by γcr(G). Throughout this paper, we denote the chromatic restrained domination

number of middle graphs by γcr(M(G)).

Theorem 2.2 If n ≥ 3, then γcr(M(Kn)) = n.

Proof: Let Kn be the complete graph on n vertices. Then V (Kn) = {v1, v2, ..., vn}. Consider

V (M(Kn)) = V (Kn) ∪ M where M = {mij/1 ≤ i ≤ n, 1 ≤ j ≤ n,mij = mji, i 6= j}.
Also χ(Kn) = χ(M(Kn)) = n. Let Di = NM(Kn)[vi], 1 ≤ i ≤ n. Then D1, D2, ..., Dn are

the subsets of M(Kn) with chromatic number n. For any Di − {mij}, mij ∈ NM(Kn)(vi),

χ(〈Di − {mij}〉) < n. Therefore, Di = NM(Kn)[vi] are the only sets of M(Kn) with chromatic

number n and with minimum cardinality. Also D
′

is are restrained dominating sets of M(Kn).

Therefore, Di is a chromatic restrained dominating set of M(Kn) and γcr(M(Kn)) = |Di| = n.

Theorem 2.3 For any path Pn, γcr(M(Pn)) =


⌈
n
2

⌉
+ 2 if n is odd , n ≥ 5

n
2 + 3 if n is even , n ≥ 4.

Proof: Let Pn be a path on n vertices. Then V (Pn) = {v1, v2, v3, ..., vn} and

E(Pn) = {v1v2, v2v3, ..., vn−1vn}. Consider V (M(Pn)) = V (Pn) ∪ M where

M = {mi(i+1)/1 ≤ i ≤ n− 1} = {m12,m23, ...,m(n−1)n}.
Case (i): n is odd and n ≥ 5

Let D = {v1,m12,m34,m56, ...,m(n−2)(n−1), vn}. Then D is a minimum restrained dominating

set of M(Pn) and |D| = n−1
2 + 2 =

⌈
n
2

⌉
+ 1. Since, v1m12 ∈ E, χ(〈D〉) = 2 6= χ(M(Pn)).

Therefore, D is not a chromatic restrained dominating set for M(Pn). Consider

D1 = (D − {m12}) ∪ {m23, v3}. Then 〈D1〉 contains C3 as an induced subgraph and so

χ(〈D1〉) = 3 = χ(M(Pn)). Also D1 is a restrained dominating set for M(Pn) and

|D1| = |(D − {m12}) ∪ {m23, v3}| =
⌈
n
2

⌉
+ 2. Therefore, γcr(M(Pn)) ≤ |D1| =

⌈
n
2

⌉
+ 2. Suppose

there exists a chromatic restrained dominating set S such that |S| <
⌈
n
2

⌉
+ 2. Then

|D| < |S| < |D1| = |D| + 1, which is impossible. Therefore, γcr(M(Pn)) =
⌈
n
2

⌉
+ 2, where n is

odd and n ≥ 5.

Case (ii): n is even and n ≥ 4

Let D = {v1,m23,m45,m67, ...,m(n−2)(n−1), vn}. Then D is a unique restrained dominating set

of M(Pn) and |D| = n−2
2 + 2 = n

2 + 1. Since D is independent, χ(〈D〉) = 1 6= χ(M(Pn)).

Therefore, D is not a chromatic restrained dominating set of M(Pn). Consider D ∪ {v2,m12}.
Then 〈D ∪ {v2,m12}〉 contains C3 as an induced subgraph. This implies that,

χ(〈D ∪ {v2,m12}〉) = 3 = χ(M(Pn)) and so D ∪ {v2,m12} is a chromatic restrained dominating

set of M(Pn). Therefore, γcr(M(Pn)) = |D ∪ {v2,m12}| = |D|+ 2 = n
2 + 3, where n is even and

n ≥ 4.

Theorem 2.4 For any cycle Cn, γcr(M(Cn)) =


⌈
n
2

⌉
+ 1 if n is odd

n
2 + 2 if n is even

13
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Proof: Let Cn be a cycle on n vertices. Then V (Cn) = {v1, v2, ..., vn} and

E(Cn) = {v1v2, v2v3, v3v4, ..., v(n−1)vn, vnv1}. Consider V (M(Cn)) = V (Cn) ∪ M where

M = {m1n,mi(i+1)/1 ≤ i ≤ n− 1} = {m12,m23, ...,m(n−1)n,m1n}. Also χ(M(Cn)) = 3.

Case (i): Let D = {mi(i+1), vn/i = 2k − 1, 1 ≤ k ≤
⌊
n
2

⌋
} be a restrained dominating set of

M(Cn) and |D| =
⌊
n
2

⌋
+ 1 =

⌈
n
2

⌉
. But χ(〈D〉) = 1. Therefore, D is not a chromatic restrained

dominating set of M(Cn). Consider D1 = (D − vn) ∪ {v1,m1n}. Then 〈D1〉 contains a 3-cycle

and so χ(〈D1〉) = χ(M(Cn)) = 3. Also D1 is a restrained dominating set of M(Cn). Therefore,

D1 is a chromatic restrained dominating set of M(Cn). Therefore,

γcr(M(Cn)) ≤ |D1| =
⌈
n
2

⌉
+ 1. Suppose there exists a chromatic restrained dominating set S

such that |S| <
⌈
n
2

⌉
+ 1. Then |D| < |S| < |D1| = |D| + 1, which is impossible. Therefore,

γcr(M(Cn)) =
⌈
n
2

⌉
+ 1.

Case (ii) : n is even

Let D1 = {mi(i+1)/i = 2k − 1, 1 ≤ k ≤ n
2 } and D2 = {m1n,mi(i+1)/i = 2k, 1 ≤ k ≤ n

2 − 1} are

the only restrained dominating sets of M(Cn) and |D1| = |D2| = n
2 . Since D1 and D2 are

independent, χ(〈D1〉) = χ(〈D2〉) = 1 6= χ(M(Cn)). Therefore, D1 and D2 are not chromatic

restrained dominating sets. Consider D3 = (D1 − {m34}) ∪ {m23, v2, v4} and

D4 = (D2 − {m1n}) ∪ {m12, v2, vn}. Then m12v2m23m12 is a 3-cycle in both 〈D3〉 and 〈D4〉.
Therefore, χ(〈D3〉) = χ(〈D4〉) = χ(M(Cn)) = 3. Also both D3 and D4 are restrained

dominating sets. Therefore, D3 and D4 are chromatic restrained dominating sets of M(Cn) and

|D3| = |D4| = n
2 + 2. Therefore, γcr(M(Cn)) = n

2 + 2 if n is even.

Theorem 2.5 For n ≥ 4, γcr(M(Wn)) = n.

Proof: Let Wn be the wheel graph on n vertices with n− 1 outer vertices and one central vertex.

Let V (Wn) = {v1, v2, ..., vn} where vn is the central vertex and deg(vn) = n − 1. Consider

V (M(Wn)) = V (Wn) ∪ M where M = {mi(i+1),m1(n−1),mjn/1 ≤ i ≤ n − 2, 1 ≤ j ≤ n −
1}. Since ∆(Wn) = n − 1, χ(M(Wn)) = n. Also NM(Wn)(vn) = {mjn/1 ≤ j ≤ n − 1}.
Therefore, D = NM(Wn)[vn] is the only set of M(Wn) with chromatic number n. For any

D − {mjn},mjn ∈ NM(Wn)(vn), χ(〈D − {mjn}〉) < n. Also D is a restrained dominating set.

Therefore, D = NM(Wn)[vn] is the only chromatic restrained dominating set of M(Wn) with

minimum cardinality. Therefore, γcr(M(Wn)) = |D| = n.

Theorem 2.6 For n ≥ 2, γcr(M(K1,n−1)) = 2n− 1.

Proof: Let V (K1,n−1) = {v0, v1, v2, ..., vn−1} and E(K1,n−1) = {v0v1, v0v2, ..., v0vn−1}. Consider

V (M(K1,n−1)) = V (K1,n−1)∪M whereM = {mi/1 ≤ i ≤ n−1}. Also χ(M(K1,n−1)) = n, since

∆(K1,n−1) = n − 1. Let D = V (K1,n−1) be the restrained dominating set of M(K1,n−1). Since

D is independent in M(K1,n−1), χ(〈D〉) = 1 6= χ(M(K1,n−1)). Therefore, D is not a chromatic

restrained dominating set of M(K1,n−1). Since χ(M(K1,n−1)) = n,M ∪ {v0} is the only set

whose induced subgraph has chromatic number n. But M∪ {v0} is not a restrained dominating

14
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set of M(K1,n−1). Therefore, V (M(K1,n−1)) is the only chromatic restrained dominating set of

M(K1,n−1).Therefore, γcr(M(K1,n−1)) = |V (M(K1,n−1))| = n+ n− 1 = 2n− 1.

Theorem 2.7 For any complete bipartite graph Kr,s, γcr(M(Kr,s)) = r + s where s ≥ r ≥ 2.

Proof: Let Kr,s be the complete bipartite graph with r + s vertices. Let

V (Kr,s) = {v1, v2, ..., vr, u1, u2, ..., us} and E(Kr,s) = {viuj/1 ≤ i ≤ r, 1 ≤ j ≤ s}. Consider

V (M(Kr,s)) = V (Kr,s) ∪M where M = {mij/1 ≤ i ≤ r, 1 ≤ j ≤ s}. Also χ(M(Kr,s)) = s + 1

since ∆(Kr,s) = s. Let D be a restrained dominating set of M(Kr,s).

Case (i): γr-set contains only the vertices of Kr,s

Let D = {v1, v2, ..., vr, u1, u2, ..., us}. Then D is a restrained dominating set of M(Kr,s) with

cardinality |D| = r + s. Therefore, γr(Kr,s) ≤ r + s. Suppose there exists a restrained

dominating set D
′

such that
∣∣∣D′
∣∣∣ < r + s. Since γr-set contains only vertices of Kr,s,

D
′ ⊂ V (Kr,s). Then there exists at least one vertex of V (Kr,s) in V −D′

which is not adjacent

to any vertex of D
′
. Therefore, D

′
is not a restrained dominating set of M(Kr,s). Hence, there

does not exists a restrained dominating set D
′

such that
∣∣∣D′
∣∣∣ < r + s. Therefore,

γr(M(Kr,s)) = r + s.

Case (ii): γr-set contains only the edges of Kr,s

Since all the v
′

is and u
′

js are independent and s ≥ r, every γr-set of M(Kr,s) should contain s

edges, from which, r edges connecting different v
′

i with different u
′

js and the remaining s − r

edges connecting the remaining u
′

js with any v
′

is. Hence, it contributes at least s vertices to

every γr-set. Therefore, γr(M(Kr,s)) ≥ s. Let

D = {m11,m22, ...,mrr} ∪ {m1(r+1),m1(r+2), ...,m1s} be a restrained dominating set of M(Kr,s)

with cardinality s. Then, γr(M(Kr,s)) ≤ s. Therefore, γr(M(Kr,s)) = s.

Case (iii): γr-set contains both vertices and edges of Kr,s

Subcase (i): s > r

Then every γr-set can contain at most s − r vertices from u
′

js, 1 ≤ j ≤ s of Kr,s and so there

exists at least 2r vertices (r vertices from v
′

is and at least r vertices from u
′

js) of Kr,s which are

not adjacent to any of these s − r vertices. If r vertices from u
′

js and r vertices from v
′

is are

not adjacent to any of these s − r vertices, then there must be r edges of Kr,s in every γr-set

incident with different v
′

is and different u
′

js where the u
′

js should be other than the s − r

vertices which are in the γr-set. Hence, γr(M(Kr,s)) ≥ s. Consider

D = {u1, u2, ..., us−r,m1(s−r+1),m2(s−r+2), ...,mrs} where |D| = s. Then D is a restrained

dominating set and γr(M(Kr,s)) ≤ s. Therefore, γr(M(Kr,s)) = s.

Subcase (ii): s = r

Consider D = {v1, u1,m22,m33, ...,mrr}. Then D is a restrained dominating set of M(Kr,s)

with cardinality s+ 1 and γr(M(Kr,s)) ≤ s+ 1. Furthermore, every γr-set can contain at most

two vertices of Kr,s. If it contains exactly one vertex of Kr,s, then there exists 2s− 1 vertices of

Kr,s (s vertices from v
′

is and s − 1 vertices from u
′

js or vice versa) which are not adjacent to

15
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the vertex in the γr-set. Then there must be s edges in the γr-set incident with different v
′

is and

different u
′

js. On the other hand, if there exists two vertices (one vertex from v
′

is and another

vertex from u
′

js) of Kr,s in the γr-set, then there exits 2(s− 1) vertices(s− 1 vertices in v
′

is and

s − 1 vertices in u
′

js) which are not adjacent to any of the two vertices in the γr-set. Hence,

there must be s − 1 edges of Kr,s in the γr-set incident with different v
′

is and different u
′

js

where the v
′

is and u
′

js should be other than the vertices in the γr-set. Thus every γr-set of

M(Kr,s) must contain at least s + 1 vertices from M(Kr,s). Hence, γr(M(Kr,s)) ≥ s + 1.

Therefore, γr(M(Kr,s)) = s+ 1.

From the above three cases, γr(M(Kr,s)) = s, since s is minimum. Then

D = {m11,m22, ...,mrr} ∪ {m1(r+1),m1(r+2), ...,m1s} is a restrained dominating set with

cardinality s. But D is not a chromatic restrained dominating set of M(Kr,s), since

χ(〈D〉) = s − r + 1 6= χ(M(Kr,s)). Let NM(Kr,s)(vi) = {mi1,mi2, ...,mis/1 ≤ i ≤ r}. Since v
′

is

are vertices of maximum degree, exactly one of NM(Kr,s)[vi] is in every γcr-set. Let

D1 = D ∪ NM(Kr,s)[v1]. Since χ 〈D1〉) = s + 1 and D1 is a restrained dominating set of

M(Kr,s), D1 is a chromatic restrained dominating set of M(Kr,s) with cardinality r + s.

Therefore, γcr(M(Kr,s)) = r + s.

Theorem 2.8 For any bistar graph Br,s, γcr(M(Br,s)) = 2r + s+ 2.

Proof: Let Br,s be the bistar graph obtained by joining the center vertices of two stars K1,r and

K1,s where r ≥ s ≥ 2. Let V (Br,s) = {v0, u0, v1, v2, ..., vr, ur+1, ur+2, ..., ur+s}
= {v0, u0, vi, uj/1 ≤ i ≤ r, r + 1 ≤ j ≤ r + s} where u0 and v0 are the center vertices of K1,r

and K1,s with |V (Br,s)| = r + s + 2 and

E(Br,s) = {v0vi, u0uj , v0u0/1 ≤ i ≤ r, r + 1 ≤ j ≤ r + s}. Consider V (M(Br,s)) = V (Br,s) ∪M
where M = {mi/1 ≤ i ≤ r} ∪ {mj/r + 1 ≤ j ≤ r + s} ∪ {m0}. Let v0 be a vertex of maximum

degree and ∆(Br,s) = r + 1. Therefore, χ(M(Br,s)) = r + 2. Let N be the set of pendant

vertices where N = {vi, uj/1 ≤ i ≤ r, r+ 1 ≤ j ≤ r+ s}. Consider D = N ∪ {m0}. Then D is a

restrained dominating set of M(Br,s) with cardinality r + s + 1. Since D is independent,

χ(〈D〉) = 1. Therefore, D is not a chromatic restrained dominating set of M(Br,s). Let

S = NM(Br,s)[v0] = {m0, v0,m1,m2, ...,mr}. Consider

D1 = N ∪ S = {m0, v0, vi, uj ,mi/1 ≤ i ≤ r, r + 1 ≤ j ≤ r + s}. Then D1 is a restrained

dominating set of M(Br,s) with χ(〈D1〉) = r + 2. Therefore, D1 is a chromatic restrained

dominating set of M(Br,s) with cardinality |D| = 2r + s + 2. Therefore,

γcr(M(Br,s)) ≤ 2r + s + 2. Since any chromatic restrained dominating set must contain all the

end vertices and the maximum degree vertex together with the edges incident with it, we have

γcr(M(Br,s)) ≥ 2r + s+ 2. Therefore, γcr(M(Br,s)) = 2r + s+ 2.

Theorem 2.9 Let Fn be the friendship graph where n ≥ 2. Then γcr(M(Fn)) = 2n+ 1.

Proof: Let V (Fn) = {v0, v1, v2, ..., v2n} and
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E(Fn) = {v0v1, v0v2, ..., v0v2n} ∪ {v1v2, v3v4, ..., v2n−1v2n}. Consider V (M(Fn)) = V (Fn) ∪M
where M = {mi/1 ≤ i ≤ 2n} ∪ {mi(i+1)/1 ≤ i ≤ 2n − 1 and i is odd }. Let v0 be a vertex of

maximum degree of Fn where deg(v0) = 2n. Since ∆(Fn) = 2n, χ(M(Fn)) = 2n + 1. Let

NM(Fn)(v0) = {mi/1 ≤ i ≤ 2n}. Since any chromatic restrained dominating set must contain

all the vertices of NM(Fn))[v0], γcr(M(Fn)) ≥ 2n + 1. Let D = {v0,mi/1 ≤ i ≤ 2n}. Then D is

a restrained dominating set of M(Fn). Since χ(〈D〉) = χ(M(Fn)), D is a chromatic restrained

dominating set of M(Fn). Therefore,γcr(Fn) ≤ |D| = 2n+ 1. Hence, γcr(M(Fn)) = 2n+ 1.

3 Conclusion

In this paper, we obtained the chromatic restrained domination number for the middle

graph of some standard graphs and observed that
⌈
n
2

⌉
≤ γcr(M(G)) ≤ 2n−1. Characterizing the

extremal graphs associated with both the upper and lower bounds for the chromatic restrained

domination number of middle graphs is a prospective avenue for future research.

References

[1] Balamurugan. S, Prabakaran. G and Swaminathan. V, On Chromatic Strong Dominating

Sets in Graphs, International Journal of Engineering Science, Advanced Computing and Bio

- Technology, Vol. 2, No. 3, July - September 2011, pp. 139 - 149.

[2] Balamurugan. S, Anitha. M, Angala Eswari. M and Kalaiselvi. S, Chromatic total domination

in graphs, Journal of Discrete Mathematical Sciences and Cryptography, Volume 22, Issue 5,

2019, pp. 745 - 751.

[3] Balamurugan. S, Anitha. M and Kalaiselvi. S, Chromatic connected domination in graphs,

Journal of Discrete Mathematical Sciences and Cryptography, Volume 22, Issue 5, 2019, pp.

753 - 760.

[4] Bondy. J. A and Murty. U. S. R, Graph Theory with Applications, Springer, 2008.

[5] Farshad Kazemnejad, Behnaz Pahlavsay, Elisa Palezzato and Michele Torielli, Domination

Number of Middle Graphs, August 2020.

[6] Gayla S. Domke, Johannes H. Hattingh, Stephen T. Hedetniemi, Renu C. Laskar, Lisa R.

Markus, Restrained Domination in Graphs, Discrete Mathematics, 203 (1999) 61 - 69.

[7] Janakiraman. T. N and Poobalaranjani. M, On The Chromatic Preserving Sets, International

Journal of Engineering Science, Advanced Computing and Bio - Technology, Vol. 1, No. 1,

January - March 2010, pp. 29 - 42.

17



REFERENCES
Proceedings of ICHGD-2024 ISBN: 978-81-19821-72-3

REFERENCES

[8] Janakiraman. T. N and Poobalaranjani. M, Dom-Chromatic sets of graphs, International

Journal of Engineering Science, Advanced Computing and Bio - Technology, Vol. 2, No. 2,

April - June 2011, pp. 88 - 103.

[9] Joseline Manora. J and Mekala. R, Majority dom-chromatic set of a graph, Bulletin of Pure

and Applied Sciences, Vol. 38 E(Math & Stat.), No. 1, 2019, pp. 289 - 296.

[10] Selvalakshmi. P and Balamurugan. S, A Note on Chromatic Weak Dominating Sets in

Graphs, International Journal of Mathematics Trends and Technology (IJMTT) - Volume

53, Number 6, January 2018.

[11] Teresa W. Haynes, Stephen T. Hedetniemi, Peter J. Slater, Fundamentals of Domination in

Graphs, Marcel Dekker, 1998.

18



1 INTRODUCTION
Proceedings of ICHGD-2024 ISBN: 978-81-19821-72-3

Decomposition of Square Harmonic Mean Graphs
1Bebisha Lenin L S and 2Jaslin Melbha M

1Reg.No.22113282092003, Department of Mathematics, Women’s Christian College, Nagercoil,

Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli,

Tamil Nadu, India.
2 Department of Mathematics, Women’s Christian College, Nagercoil, Tamil Nadu, India.

E-mail: 1bebishalenin8497@gmail.com and 2 mjaslinmelbha@gmail.com

Abstract

Let G = (V,E) be a connected simple graph with p vertices and q edges. If G1, G2, , Gn

are connected edge disjoint sub graphs of G such that

E(G) = E(G1) ∪ E(G2) ∪ ... ∪ E(Gn), then (G1, G2, , Gn) is said to be a Decomposition of

G.If there is an injective function h : V (G) → {1, 2, , q + 1} such that an induced edge

function h∗ : E(G) → {1, 2, , q} defined by h∗(e = uv) = d 2h(u)2h(v)2

h(u)2+h(v)2
e or b 2h(u)2h(v)2

h(u)2+h(v)2
c is

bijective, then a graph G = (V,E) with p vertices and q edges is called a square harmonic

mean labeling. A graph which admits a square harmonic mean labeling is called a square

harmonic mean graph. Based on this result, we introduce a new concept namely

Decomposition of Square Harmonic Mean Graphs. In this paper, we study Continuous

Monotonic Star Decomposition and Even Path Decomposition of Square Harmonic Mean

Graphs.

Keywords : Square harmonic mean graphs, Decomposition, Continuous Monotonic

Decomposition (CMD), Continuous Monotonic Star Decomposition (CMSD), Even Path

Decomposition (EPD).

AMS Subject Classification : 05C38, 05C78

1 Introduction

All graphs considered here are simple, finite, connected and undirected graph. A graph

labeling is an assignment of integers to the vertices or edges or both based on certain conditions.

The concept of square harmonic mean labeling was introduced by L. S. Bebisha Lenin,M. Jaslin

Melbha [1]. We adhere to Hararys [3] conventions for all other terms and notations. The concept

of Continuous Monotonic Decomposition was introduced by N. Gnana Dhas and J. Paulraj

Joseph [5]. Arithmetic odd decomposition was introduced by E. Ebin Raja Merly and N. Gnana

Dhas [2]. The aforementioned studies served as our inspiration as we introduce a new concept

Decomposition of Square Harmonic Mean Graphs.The basic definitions and theorems which are

needed in the subsequent sections are given below.

Definition 1.1 A bipartite graph is a graph whose vertex set V (G) can be partitioned into two

subsets V1 and V2 such that every edge of G joins a vertex of V1 with a vertex of V2. If every
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vertex of V1 is adjacent with every vertex of V2, then G is a complete bipartite graph. If |V1| = m

and |V2| = n, then the complete bipartite graph is denoted by Km,n.

Definition 1.2 A Triangular Snake Tn is obtained from a path u1, u2, , un by joining uα and

uα+1 to a new vertex vi for 1 ≤ α ≤ n− 1. That is every edge of a path is replaced by a triangle

C3.

Definition 1.3 A Diamond Snake graph Dn is obtained by joining vertices uα and uα+1 to two

new vertices vα and wα for 1 ≤ α ≤ n. That is every edge of a path is replaced by a cycle C4.

Theorem 1.4 Path Pn admits a square harmonic mean graph. [1]

Theorem 1.5 Triangular Snake Tn admits a square harmonic mean graph. [1]

Theorem 1.6 Diamond snake admits a square harmonic mean graph.

2 CMSD of Square Harmonic Mean Graphs

In this section, we investigate Continuous Monotonic Star Decomposition of complete bipartite

graph K2,n, complete bipartite graph K3,n.

Definition 2.1 A Decomposition (G1, G2, , Gn) of G is said to be a Continuous Monotonic

Decomposition (CMD), if each Gi is connected and |E(Gi)| = i for every i = 1, 2, , n. Clearly

q = n(n+1)
2 .

Definition 2.2 A Continuous Monotonic Decomposition in which each Gi is a star is said to

be a Continuous Monotonic Star Decomposition (CMSD).

Theorem 2.3 A complete bipartite graph K2,n admits Continuous Monotonic Star

Decomposition of Square Harmonic Mean Graph, if n = 2α− 1; α ≥ 4.

Proof: Let G = K2,n be a complete bipartite graph. Let V = (V1, V2) be the bipartition of K2,n

where V1 = u, v and V2 = {u1, u2, , un}.
case (i) If n = 2α− 1;α = 2, 3.

Decompose the graph G with Continuous Monotonic Star Decomposition satisfies the condition

q = n(n+1)
2 . After decomposition of K2,n and get edge disjoint star sub graphs Sα; 1 ≤ α ≤ n of

G. Each sub graph will have n + 1 vertices and n edges. Also, label the vertices of each

subgraph and get distinct edge labels. Therefore, it satisfies the labeling pattern of square

harmonic mean graph. Hence G =
n⋃
α=1

Sα . Each sub graph is a square harmonic mean graph

and G is the union of sub graphs. Also satisfies the condition of Continuous Monotonic Star

Decomposition (CMSD). Hence K2,n admits a Continuous Monotonic Star Decomposition of

20



2 CMSD OF SQUARE HARMONIC MEAN GRAPHS
Proceedings of ICHGD-2024 ISBN: 978-81-19821-72-3

Square Harmonic Mean Graph.

case (ii) If n = 2α− 1;α ≥ 4.

Decompose the graph G with Continuous Monotonic Star Decomposition satisfies the condition

q = n(n+1)
2 . After decomposition of K2,n and not get edge disjoint star sub graphs Sα. Also, it

does not satisfy the condition of Continuous Monotonic Star Decomposition (CMSD). Hence

K2,n does not admits a Continuous Monotonic Star Decomposition of Square Harmonic Mean

Graph, if n = 2α− 1;α ≥ 4.

Obviously, K2,n admits a Continuous Monotonic Star Decomposition of Square Harmonic

Mean Graph, if n = 2α− 1;α = 2, 3.

Theorem 2.4 A complete bipartite graph K3,n admits Continuous Monotonic Star

Decomposition of Square Harmonic Mean Graph, if n = α; α = 1, 2.

Proof: Let G = K3,n be a complete bipartite graph. Let V = (V1, V2) be the bipartition of K3,n

where V1 = u, v and V2 = {u1, u2, , un}.
case (i) If n = α;α = 1, 2.

Decompose the graph G with Continuous Monotonic Star Decomposition satisfies the condition

q = n(n+1)
2 . After decomposition of K3,n and get edge disjoint star sub graphs Sα; 1 ≤ α ≤ n of

G. Each sub graph will have n + 1 vertices and n edges. Also, label the vertices of each

subgraph and get distinct edge labels. Therefore, it satisfies the labeling pattern of square

harmonic mean graph. Hence G =
n⋃
α=1

Sα . Each sub graph is a square harmonic mean graph

and G is the union of sub graphs. Also satisfies the condition of Continuous Monotonic Star

Decomposition (CMSD). Hence K3,n admits a Continuous Monotonic Star Decomposition of

Square Harmonic Mean Graph.

case (ii) If n = α;α ≥ 3.

Decompose the graph G with Continuous Monotonic Star Decomposition satisfies the condition

q = n(n+1)
2 . After decomposition of K3,n and not get edge disjoint star sub graphs Sα. Also, it

does not satisfy the condition of Continuous Monotonic Star Decomposition (CMSD). Hence

K3,n does not admits a Continuous Monotonic Star Decomposition of Square Harmonic Mean

Graph, if n = α;α ≥ 3.

Obviously, K3,n admits a Continuous Monotonic Star Decomposition of Square Harmonic

Mean Graph, if n = α;α = 1, 2.

Example 2.5 The image below displays a Continuous Monotonic Star Decomposition of Square

Harmonic Mean Labeling of K3,2.
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Figure 1: CMSD of (S1, S2, S3) of K3,2

In this example, Number of sub graphs, n = 3. Therefore n(n+1)
2 = 3(3+1)

2 = 6 which is equal

to the number of edges of K3,6. Clearly it satisfies the condition of Continuous Monotonic Star

Decomposition (CMSD) of Square Harmonic Mean Graph.

3 Even Path Decomposition of Square Harmonic Mean

Graphs

In this section, we investigate Even Path Decomposition of Triangular snake nC3, Diamond snake

Dn.

Definition 3.1 If a = 2 and d = 2 in Arithmetic Decomposition, then q = n(n + 1). That is,

the number of edges of G is the sum of first n even numbers 2, 4, 6, ..., 2n. Thus, we call this

decomposition as Even Decomposition (ED). Since, the number of edges of each sub graphs of G

is even, we denote the Even Decomposition as G2, G4, , G2n.

Definition 3.2 An Even Decomposition (ED) as G2, G4, , G2n of G is said to be an Even Path

Decomposition (EPD) if each G2i is a path of size 2i and it is denoted by P2, P4, , P2n.

Theorem 3.3 Triangular snake nC3 admits Even Path Decomposition (EPD) of Square

Harmonic Mean graph, if n =
α(α+ 1)

3
where

α(α+ 1)

3
is a natural number.

Proof: Let G = nC3. Let u1, u2, , un be the path of length n and let v1, v2, , vn be new vertices

with joining the path uα, u(α + 1) respectively. That is every edge of a path is replaced by C3.
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Then |V (Tn)| = 2n + 1 and |E(Tn)| = 3n. By theorem 1.2, G admits a square harmonic mean

graph.

case (i) If n = α(α+1)
3 , where α(α+1)

3 is a natural number

Decompose the graph G with Even Path Decomposition and get distinct edge labels for each sub

graphs of G be Pα; 2 ≤ α ≤ 2n of G. Each sub graph will have n+ 1 vertices and n edges. Also,

it satisfies the labeling pattern of square harmonic mean graph. By theorem 1.1., each subgraph

Pα is a square harmonic mean graph. Hence, G =
n⋃
α=1

P2α . Therefore G is the union of sub

graphs, also it satisfies the condition of Even Path Decomposition (EPD), that is q = n(n + 1).

Hence, nC3 admits Even Path Decomposition (EPD) of Square Harmonic Mean Graph.

case(ii) If n =
α(α+ 1)

3
where n /∈ N

Decompose the graph G with Even Path Decomposition, but there is no existence of distinct

edge labels for each sub graphs of G be Pα. Hence, it does not satisfy the condition of Even

Path Decomposition. Thus, nC3 does not admits Even Path Decomposition (EPD) of Square

Harmonic Mean Graph, if n 6= α(α+1)
3 , where α(α+1)

3 is a natural number

Therefore, nC3 admits Even Path Decomposition (EPD) of Square Harmonic Mean Graph,

n = α(α+1)
3 , where α(α+1)

3 is a natural number

Example 3.4 The image below displays an Even Path Decomposition of Square Harmonic Mean

Labeling of 4C3.

Figure 2: CMSD of (P2, P4, P6) of 4C3

In this example, Number of sub graphs, n = 3. Therefore n(n+ 1) = 3(3 + 1) = 12 which is

equal to the number of edges of 4C3. Clearly it satisfies the condition of Even Path Decomposition
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(EPD) of Square Harmonic Mean Graph.

Theorem 3.5 Diamond snake Dn admits Even Path Decomposition (EPD) of Square Harmonic

Mean graph, if n =
α(α+ 1)

4
where

α(α+ 1)

4
is a natural number.

Proof: Let G = Dn. Consider a path v1, v2, , vn of size n by joining vertices vα and vα+1 to

two new vertices uα and wα. That is every edge of a path can be replaced by a cycle C4. Then

|V (G)| = 3n + 1 and |E(G)| = 4n, where n is the number of blocks in G. By theorem 1.3., G

admits a square harmonic mean graph.

case (i) If n = α(α+1)
4 , where α(α+1)

4 is a natural number

Decompose the graph G with Even Path Decomposition and get distinct edge labels for each sub

graphs of G be Pα; 2 ≤ α ≤ 2n of G. Each sub graph will have n+ 1 vertices and n edges. Also,

it satisfies the labeling pattern of square harmonic mean graph. By theorem 1.1., each subgraph

Pα is a square harmonic mean graph. Hence, G =
n⋃
α=1

P2α . Therefore G is the union of sub

graphs, also it satisfies the condition of Even Path Decomposition (EPD), that is q = n(n + 1).

Hence, Dn admits Even Path Decomposition (EPD) of Square Harmonic Mean Graph.

case(ii) If n =
α(α+ 1)

4
where n /∈ N

Decompose the graph G with Even Path Decomposition, but there is no existence of distinct

edge labels for each sub graphs of G be Pα. Hence, it does not satisfy the condition of Even

Path Decomposition. Thus, Dn does not admits Even Path Decomposition (EPD) of Square

Harmonic Mean Graph, if n 6= α(α+1)
4 , where α(α+1)

4 is a natural number

Therefore, Dn admits Even Path Decomposition (EPD) of Square Harmonic Mean Graph,

n = α(α+1)
4 , where α(α+1)

4 is a natural number

4 Conclusion

The study of labeled graph and their decomposition is important due to its diversified

applications. All graphs are not Square Harmonic Mean Graphs. It is very interesting to

investigate the decomposition of graphs that admits Square Harmonic Mean Labeling. All

Square Harmonic Mean Graphs cannot be decomposed by Continuous Monotonic Star

Decomposition and Even Path Decomposition. The derived results are demonstrated by means

of sufficient illustrations which provide better understanding.
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Abstract

A set S ⊆ V has at least two members and every pair of vertices u and v is such that

(d(u), d(v)) = 1, then it is said to be a relatively prime dominating set. The relatively

prime domination number, represented by γrpd(G), is the lowest cardinality of a relatively

prime dominating set. The switching of a finite undirected graph by a subset is defined as

the graph Gσ(V,E′), which is obtained from G by removing all edges between σ and its

complement V − σ and adding as edges all non-edges between σ and V − σ. In this paper,

we compute the relatively prime domination number of some standard graphs like Shell

Graph, Wheel Graph, Barbell Graph, Jewel Graph, Extended Jewel Graph and Comb

Graph. Apart from these, the relatively prime domination number of some vertex

switching graphs such as Wheel Graph and Comb Graph are also evaluated .

Keywords : Dominating Set, Domination Number, Relatively Prime Dominating Set,

Relatively Prime Dominating Number, Vertex switching.

AMS Subject Classification : 05C69

1 Introduction

By a graph G = (V,E) we mean a finite undirected graph without loops and multiple

edges. For graph theoretical terms, we refer to Harary [2] and for terms related to domination

we refer to Haynes [3]. A subset S of V is said to be a dominating set in G if every vertex in

V − S is adjacent to at least one vertex in S. The domination number γ(G) is the minimum

cardinality of a dominating set in G. Berge [1] and Ore [8] formulated the concept of domination

in graphs. It was further extended to define many othermdomination related parameters in

graphs. Let G be a non-trivial graph. A set S of V is said to be a relatively prime dominating

set if it is a dominating set and for every pair of vertices u and v in S such that (d(u), d(v)) =

1. The minimum cardinality of a relatively prime dominating set is called the relatively prime

domination number and it is denoted by γrpd(G). Switching in graphs was introduced by Lint

and Seidel [7]. For a finite undirected graph G(V,E) and v ∈ V , the vertex switching [6] of G

by v is the graph Gv which is obtained from G by removing all edges incident to v and adding

edges which are not adjacent to v. In this paper we determine the relatively prime domination

number of some standard graphs which includes shell graph C(n, n−3), wheel graph Wn, (2, n) -

barbell graph B(Kn,Kn), jewel graph Jn, extended jewel graph E(J*n,m), Comb graph PnK1.
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The relatively prime domination number of some vertex switching graphs such as Wheel graph

and Comb graph are also evaluated.

2 Definitions and examples

Definition 2.1 For n ≥ 4, the wheel Wn is defined to be the graph K1 + Cn−1

Definition 2.2 Shell Graph C(n, n − 3) is defined as a cycle Cn with n-3 chords sharing a

common end point called apex. Shell graphs are denoted by C(n, n− 3), n ≥ 4.

Definition 2.3 Jewel Graph Jn is a graph with vertex set V (Jn) = {u, x, v, y, ui : 1 ≤ i ≤ n}
and the edge set E(Jn)={ux, vx, uy, vy, xy, uui, vui : 1 ≤ i ≤ n}.

The prime edge in a jewel graph Jn is defined to be the edge joining the vertices x and y.

Definition 2.4 Jewel Graph J∗
n without the prime edge is defined as the graph in which the

prime edge, that is the edge joining the vertices x and y is removed.

Definition 2.5 Extended Jewel Graph E(J∗
n,m) without the prime edge is the graph with the

vertex set V (E(J∗
n,m)) = {u, x, v, y, ui, vi : 1 ≤ i ≤ n} and the edge set E(E(J∗

n,m)) =

{ux, vx, uy, vy, xy, uui, vui, uvi, vvi : 1 ≤ i ≤ n}.

Definition 2.6 Comb Graph is a graph obtained by joining a single pendant edge to each vertex

of a path Pn. It is denoted by PnK1.

Definition 2.7 The (2,n) - Barbell graph is the simple graph obtained by connecting two copies

of a complete graph Kn by a bridge and it is denoted by B(Kn,Kn).

3 Main Results

Theorem 3.1 Let G be a wheel graph Wn for n ≥ 4.

Then γrpd(Wn) =

{
2 if n ≡ 1 (mod 3)

0 if n ≡ 1 (mod 3)

Proof: Let u be the centre, and v1, v2, . . . . . . , vn−1 be the vertices of the outer cycle Cn−1 of

Wn. The resultant graph G is Wn with V (G) = {u, vi/1 ≤ i ≤ n − 1} and

E(G) = {uvi, vivi+ 1, v1vn/1 ≤ i ≤ n − 1}. Then Wn has n vertices and 2n − 2 edges and

d(u) = n− 1 and d(vi) = 3, 1 ≤ i ≤ n− 1.

Case 1. n 6≡ 1 (mod 3)

Suppose that n is either odd or even. In this case {u, vi} for 1 ≤ i ≤ n − 1 is a minimal

relatively prime dominating set of Wn. Also d(u) = n − 1 and d(vi) = 3, 1 ≤ i ≤ n − 1. Then

(d(u), d(vi)) = (n− 1, 3) = 1. Hence γrpd(Wn) = 2.
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Case 2. n ≡ 1 (mod 3)

In this case (d(u), d(vi)) = (n− 1, 3) 6= 1. This implies that any dominating set of Wn must

contain atleast two vertices having degree which is divisible by 3. Hence γrpd(Wn) = 0.

Theorem 3.2 Let G be a shell graph C(n, n− 3), n ≥ 4.

Then γrpd(G) =

2 if n 6≡ 1(mod 6)

0 if n ≡ 1 (mod 6)
.

Proof: Let v1, v2, . . . . . . , vn be the vertices of the cycle Cn. Fix the vertex v1 to be the

apex of the graph and construct (n − 3) chords sharing a common vertex with the apex. The

resultant graph G is C(n, n − 3) with V (G) = {v1, v2, . . . . . . , vn} and E(G) = {vivi+1, 1 ≤ i ≤
n− 1, vnv1, v1vi, 3 ≤ i ≤ n− 1}. Hence C(n, n− 3) has n vertices and 2n− 3 edges.

Case 1. n 6≡ 1(mod 6)

Suppose that n is either odd or even and let n ≡ 1(mod 6). In this case either {v1,v2}
or {v1,v3} is a minimal relatively prime dominating set of C(n, n − 3). Also d(v1) = n − 1 and

d(v2) = d(vn) = 2 and d(vi) = 3, 3 ≤ i ≤ n − 1. Then either (d(v1), d(v)2)) = (n − 1, 2) = 1 or

(d(v1), d(v2)) = (n− 1, 3) = 1. Therefore γrpd(G) = 2.

Case 2.. n ≡ 1 (mod 6)

Here (d(v1), d(v2)) = (n− 1, 2) 6= 1 and (d(v1), d(v2)) = (n− 1, 3) 6= 1. This implies that any

dominating set of G must contain atleast two vertices having degree which is divisible by either

3 or 2. Hence γrpd(G) = 0 if n ≡ 1 (mod 6).

Example 3.3 For C(n, n − 3), v1, v2 is a minimal relatively prime dominating set. Hence

γrpd(C(6, 3) = 0

Figure 1: C(6, 3)

Theorem 3.4 Let G be a jewel graph Jn. Then γrpd(Jn) =

{
2 if n+ 2 6≡ 0 (mod 6)

0 if n+ 2 ≡ 0 (mod 6).

Proof: Let Jn be the jewel graph where n denotes the number of jewels in the graph. Then

V (Jn) = {u, x, v, y, ui : 1 ≤ i ≤ n} and E(Jn) = {ux, vx, uy, vy, xy, uui, vui : 1 ≤ i ≤ n}. The
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prime edge in a jewel graph Jn is defined to be the edge joining the vertices x and y. Then

d(x) = 3 = d(y), d(u) = d(v) = n + 2 and d(ui) = 2. Hence Jn has n + 4 vertices and 2n + 5

edges.

Case 1. n+ 2 6≡ 0(mod 6)

Suppose that n is either odd or even and let n+2 6≡ 1(mod 6). Clearly either {u, ui : 1 ≤ i ≤
n} or {u, x} is a minimal relatively prime dominating set of Jn. Also d(u) = n+ 2 and d(x) = 3

and d(ui) = 2, 2 ≤ i ≤ n. Then either (d(u), d(ui)) = (n+2, 2) = 1 or (d(u), d(x)) = (n+2, 3) = 1.

Hence γrpd(Jn) = 2.

Case 2. n+ 2 ≡ 0 (mod 6)

In this case (d(u), d(ui)) = (n + 2, 2) 6= 1 or (d(u), d(x)) = (n + 2, 3) 6= 1. This implies that

any dominating set of Jn must contain atleast two vertices having degree which is divisible by

either 3 or 2. Hence γrpd(Jn) = 0.

Example 3.5 For J5, {u, ui} for 1 ≤ i ≤ 5 is a minimal relatively prime dominating set. Hence

γrpd(C(6, 3) = 0

Figure 2: J5

Theorem 3.6 Let G be a jewel graph J∗
n without the prime edge.

Then γrpd(J∗
n) =

{
2 if n is odd

0 if n is even.

Proof: Let J∗
n be the jewel graph without the prime edge where n denotes the number of jewels

in the graph. The prime edge which joins the vertices x and y is removed. Consider J∗
n with

the vertex set V (J∗
n) = {u, x, v, y, ui : 1 ≤ i ≤ n} and the edge set E(J∗

n) =

29



Proceedings of ICHGD-2024 ISBN: 978-81-19821-72-3
3 MAIN RESULTS

{ux, vx, uy, vy, xy, uui, vui : 1 ≤ i ≤ n}. Hence J∗
n has n + 4 vertices and 2n + 4 edges. Also

d(u) = n+ 2 = d(v) and d(x) = d(y) = d(ui) = 2, 1 ≤ i ≤ n.

Case 1. Assume that n is odd. Clearly {u, ui}, {u, x}, {u, y}, {v, ui}, {v, x}, {v, y} are

minimal relatively prime dominating set of J∗
n. Also (d(u), d(ui)) = (n + 2, 2) = 1, 1 ≤ i ≤ n

where n is odd. Hence γrpd(J∗
n) = 2.

Case 2. Suppose that n is even. In this case (d(u), d(ui)) = (n+ 2, 2) 6= 1, 1 ≤ i ≤ n. Clearly

any dominating set must contain atleast two vertices whose degree must be divisible by 2. Hence

γrpd(J∗
n) = 0.

Theorem 3.7 Let G be a extended jewel graph J∗
n,m without the prime edge.

Then γrpd(E(J∗
n,m)) = 2 if and only if n and m are of opposite parity.

Proof: Let (E(J∗
n,m)) be the extended jewel graph without the prime edge. The total number

of vertices are given by V |E(J∗
n,m)| = n + m + 4. The total number of edges are given by E

|E(J∗
n,m)| = 2(m + n) + 4. Consider E(J∗

n,m) with the vertex set V (J∗
n,m)) = {u, x, v, y, ui, vi :

1 ≤ i ≤ n} and the edge set E(E(J∗
n,m)) = {ux, vx, uy, vy, xy, uui, vui, uvi, vvi : 1 ≤ i ≤ n}.

Also d(u) = d(v) = n+m+ 2, d(x) = d(y) = 2 and d(ui) = d(vj) = 2, 1 ≤ i ≤ n, 1 ≤ j ≤ n.

Suppose that n and m are of opposite parity. That is one is odd and the other is even. Clearly

{u, ui : 1 ≤ i ≤ n}, {u, x}, {u, y}, {v, ui}, {v, x}, {v, y} are the minimal relatively prime

dominating set of E(J∗
n,m). Also (d(u), d(x)) = (n+m+ 2, 2) = 1. Hence, γrpd(E(J∗

n,m)) = 2. If

n and m are of same parity, then (d(u), d(x)) = (n+m+2, 2) = 1. Any dominating set of E(J∗
n,m)

must contain atleast two vertices whose degree is divisible by 2. Therefore, γrpd(E(J∗
n,m)) = 0.

Figure 3: E(J∗3, 2)

Theorem 3.8 Let G be a comb graph, G = PnK1, n ≥ 2. Then γrpd(Pn �K1) = n.

Proof: Let v1, v2,.. . . . . . , vn be the n vertices of a path Pn. Join a single pendant edge to

each vertex of the path Pn. The resultant graph G is Pn � K1 with the vertex set V (G) =
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{ui, vi/1 ≤ i ≤ n}, where ui is a leaf for i ∈ [1, n], d(v1) = d(vn) = 2, d(vi) = 3 for i ∈ [2,

n-1] and E(G) = {vivi+1/1 ≤ i ≤ n − 1} ∪ {uivi/1 ≤ i ≤ n}. Clearly {u1, u2, . . . .., un} is a

minimal relatively prime dominating set of Pn � K1. Also d(ui) = 1, 1 ≤ i ≤ n. That is the

leaves of Pn � K1 serves as the minimal relatively prime dominating set of Pn � K1. Then

(d(ui), d(ui+ 1)) = 1, 1 ≤ i ≤ n− 1. Hence, γrpd(Pn �K1) = n.

Example 3.9 For P4K1, {u1, u2, u3, u4} is a minimal relatively prime dominating set. Also

d(ui) = 1, 1 ≤ i ≤ 4 and (d(ui), d(ui+ 1)) = 1, 1 ≤ i ≤ 3. Hence γrpd(P4K1) = 4

Figure 4:

Theorem 3.10 Let G be a (2, n) Barbell graph denoted by B(Kn,Kn). Then for any n,

γrpd(G) = 2.

Proof: Let v1, v2, . . . ., vn and u1, u2, . . . ., un be the vertices of two copies of a complete

graph Kn. Join u1 and v1 by a bridge. The resultant graph G is B(Kn,Kn) with the vertex set

V (B(Kn,Kn)) = {ui, vi, 1 ≤ i ≤ n} and

E(B(Kn,Kn)) = {u1v1, vivi+ 1, vnv1, uiui+ 1, unu1, 1 ≤ i ≤ n} and hence B(Kn,Kn) has 2n

vertices. Also d(u1) = d(v1) = n and d(ui) = d(vi) = n − 1, 2 ≤ i ≤ n. For any n, clearly

{u1, vi} and {v1, ui}, 2 ≤ i ≤ n is a minimal relatively prime dominating set of B(Kn,Kn).

Also d(u1) = d(v1) = n and d(ui) = d(vi) = n − 1, 2 ≤ i ≤ n. Then (n, n − 1) = 1. Hence

γrpd(G) = 2.

Example 3.11 For n = 5, clearly {v1, ui} and {u1, vi}, 2 ≤ i ≤ 5 is a minimal relatively prime

dominating set of B(K5, K5) of size 2. Therefore, γrpd(G) = 2.
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Figure 5: B(K5, K5)

4 RPD Number of Vertex Switching in Some Standard

Graphs

Theorem 4.1 Let G be a wheel graph Wn for n ≥ 4 and let v be any vertex of Wn.

i) If dG(v) = 3, then γrpd(W v
n ) =

{
2 if n is odd

0 otherwise

ii) If dG(v) = n-1, then γrpd(Wn
v) = 0.

Proof: Let u be the centre, and v1, v2, . . . . . . , vn−1 be the vertices of the outer cycle Cn−1 of

Wn. The resultant graph G is Wn with V (G) = {u, vi/1 ≤ i ≤ n − 1} and

E(G) = {uvi, vivi+1, v1vn/1 ≤ i ≤ n− 1}. Then Wn has n vertices and 2n− 2 edges.

Case 1. dG(v) = 3

Sub case 1. 1. n is odd.

Suppose that n is odd. Here v is vi, 1 ≤ i ≤ n. Clearly, Gv1 ∼= Gv2 ∼= . . . .∼= Gvn−1 . Let v be

v2. In G, v2 is adjacent to v1, v3 and u. Hence v2 is adjacent to all vertices except v1, v3 and

u in Gv2 . Therefore, {u, v2} is a minimal relatively prime dominating(RPD) set of Gv2 . And

(d
′
(v2), d

′
(u)) = (n− 4, n− 2) = 1. This implies that γrpd(Gv) = 2.

Sub Case 1. 2. n is even.

Suppose that n is even. Now, (d
′
(v2), d

′
u))=(n-2, n-4) 6= 1. Then {u, v2} is a dominating set

of Gv2 . Clearly, any minimal relatively prime dominating set of Gv2 must contain atleast two

vertices having degree which is divisible by 2. Hence, γrpd (Wn
v) = 0.

Case 2. dG(v) = n− 1

Here v is u. Clearly, Gu ∼= Cn−1 with a isolated vertex u. Also d
′
(vi) = 2foralli∈ [1,n-1],

Then γrpd(Wu
n ) = 0.

Example 4.2 In Figure 4.1, {u, v1} is a minimal relatively prime dominating set of W5
v1 . Also

(d(u), d(v1)) = 1. Hence γrpd(W5
v1) = 2.
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Figure 6:

Theorem 4.3 Let G be a comb graph Pn � K1,n ≥ 2. Then γrpd(Gv) = 2 if and only if v is

either a leaf u1 or un.

Proof: Let v1, v2, . . . . . . . , vn be the n vertices of a path Pn. Join a single pendant edge to

each vertex of the path Pn. The resultant graph G is Pn � K1 with the vertex set V (G) =

{ui, vi/1 ≤ i ≤ n}, where ui is a leaf for i ∈ [1, n], d(v1) = d(vn) = 2, d(vi) = 3 for i ∈ [2, n-1]

and E(G) = {vivi+1/1 ≤ i ≤ n − 1} ∪ {uivi/1 ≤ i ≤ n}. Here v is either u1 or un. Clearly,

Gu1 ∼= Gun . Let v be u1. In G, u1 is adjacent to v1. Then in Gu1 , u1 is adjacent to all the

vertices except v1. Therefore, {v1, u1} is a minimal relatively prime dominating set of Gu1 . Also

d(u1) = 2n− 2, d(v1) = 1 and (2n− 2, 1) = 1. Hence γrpd(Gv) = 2.

Figure 7:

5 Conclusion

Domination theory is one of the most flourishing branches of graph theory today. In this

paper we have discussed the relatively prime domination number of some standard graphs which

includes Shell graph, Wheel graph, Barbell graph, Jewel graph, Extended jewel graph and Comb
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Abstract

In this paper,we study about the structure of a power graph Γp(Zn) .We investigate,the

interplay between the graph theoretic properties of γ.Γp(Zn) and IΓp(Zn).Further ,we

prove that γ.Γp(Zn) and IΓp(Zn) are planar and also γ.Γp(Zn) is self-centered and has a

perfect matching.Also,we obtain the value of clique number and the number of ω-set of

Γp(Zn).

Keywords : Power graph,Intersection graph,Gamma graph,Planar,Self-centered,Perfect

matching,Clique.
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1 Introduction

The study of algebraic structures, using the properties of graphs, became an exciting research

topic in the past twenty years, leading to many fascinating results and questions. In the literature,

there are many papers assigning graphs to rings, groups and semigroups.Also investigation of

algebraic properties of groups or rings using the associated graph becomes an exciting topic. In

2002, The directed power graph of a semi group S was defined by Kelarev and Quinn [7] as the

digraph ~G with vertex set S, in which there is an arc from x to y if and only if x 6= y and y = xm

for some positive integer m. Motivated by this, Chakrabarty et al.[2] defined the undirected

power graph ΓP (G) of a group G. Actually the power graph ΓP (G) of G is the graph with vertex

set V (ΓP (G)) and two distinct vertices x, y ∈ G are adjacent in ΓP (G) if and only if either

xi = y or yj = x, where i and j are integers and 2 ≤ i, j ≤ n.

By a graph ΓP (G) = (V,E), we mean an undirected graph Γ with vertex set V , edge

set E and has no loops or multiple edges.A set D ⊆ V of vertices in a graph G= (V,E) is called a

dominating set if for every vertex u ∈ V −D, there exists a vertex v ∈ D such that v is adjacent to

u. A dominating set D is minimal if no proper subset of D is a dominating set. The domination

number of a graph G, denoted by γ(G), is the minimum cardinality of a minimal dominating

set of G. A dominating set D in a graph G with cardinality γ is called γ-set of G.Let D be the

collection of γ-sets in G.The gamma graph of G, denoted by γ.G is the graph with vertex set D
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and any two vertices D1 and D2 are adjacent if |D1∩D2| = γ(G)−1. The intersection graph of

G, denoted by IG is the graph with vertex set D and any two vertices D1 and D2 are adjacent

if D1 ∩D2 6= Ø.

A planar graph is a graph that can be embedded in the plane so that no two edges

intersect geometrically except at a vertex which both are incident.Any set M of independent

lines of a graph G is called a matching of G.A matching M is called a perfect matching if every

point of G is M-saturated.A graph is said to be self-centered graph if the eccentricity of every

vertex of the graph is the same.The clique number is the number of vertices in a largest complete

subgraph of G and is denoted by ω(G).Let G be a group with identity e. The number of elements

of a group is called its order and it is denoted by o(G). The order of an element g in a group is

the smallest positive integer n such that gn = e. If no such integer exists, we say g has infinite

order. The order of an element g is denoted o(g).

2 Structures of a power graph

In this section we drive the structure of a power graphs,which will be used for further study.

Theorem 2.1 Let n=pq where p is a even prime and q ≥3 .Then the number of ω-sets in Γp(Zn)

is 1 and the clique number is n-1.

Proof: Let Zn be a cyclic group of order pq where p is a even prime and q ≥3 is prime. Then

Γp(Zn) ∼= (Kp−1 ∪Kq−1) +Kφ(n)+1 where φ is the Euler function.

Clearly the elements of order p and the elements of order q are not adjacent. The number of

elements of order p is p − 1 and the number of elements of order q is q − 1.But we have p is a

even prime and hence ω(Γp(Zn)) = n− 1 and the number of ω-set in Γp(Zn) is 1.

Theorem 2.2 Let n= pk where k ≥1,p is prime .Then the number of ω-sets in Γp(Zn) is 1 and

the clique number is n.

Proof: Let x,y 6= e ∈ Zn.Then o(x)= pi and o(y)= pj for some 1 ≤ i, j ≤ n. From this we have

either o(x)|o(y) or o(y)|o(x) and so either < x >∈ < y > or < y >∈ < x >. Since the identity

element is adjacent to all other elements of Zn, Γp(Zn) ∼= K1 + Kpk−1. Hence the number of

ω-set in Γp(Zn) is 1 and the clique number is n.

Theorem 2.3 Let n= pkq, where k > 1, p<q, p and q are two distinct primes. Then the number

of ω-sets in Γp(Zn) is 1 and the clique number is n-( pk-1).

Proof: Since Zn is a cyclic group,Zn has a unique subgroup H of order pk .Then

Γp(H) ∼= K pk

The number of elements which are relatively prime to Zn is φ(n) where φ is a Euler function and

it is denoted by M .Let o(x)= pkq and o(y)= pkq.From this we have both o(x)|o(y) and o(y)|o(x)
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and so both < x >∈ < y > and < y >∈ < x >.

Thus we get, Γp(M) ∼= Kφ(n)

Consider the remaining elements of Zn-H-M and it is denoted by Q .Let x1, y1 ∈ Q.Then

o( x1)= piq and o( y1)= pjq,for some o ≤ i, j ≤ n. From this we have either o( x1)|o( y1) or

o( y1)|o( x1) and so either < x1 >∈ < y1 > or < y1 >∈ < x1 >.

Thus we get, Γp(Q) ∼= K( pk−1)(q−1). Since the identity element is adjacent to every element in

Zn, (K( pk−1) ∪K( pk−1)(q−1)) +Kφ(n)+1 is a spanning subgraph of Γp(Zn).

Hence ω(Γp(Zn)) = n - ( pk − 1) and the number of ω-set in Γp(Zn) is 1.

Theorem 2.4 Let n=p qk, where k > 1,p < q, p and q are two distinct primes. Then the number

of ω-sets in Γp(Zn) is 1 and the clique number is n-( qk−1)(p-1).

Proof: Since Zn is a cyclic group ,Zn has a unique subgroup H of order qk .Then Γp(H) ∼= K qk .

The number of elements which are relatively prime to Zn is φ(n) where φ is a Euler function and

it is denoted by M .Let o(x)=p qk and o(y)=p qk.From this we have both o(x)|o(y) and o(y)|o(x)

and so both < x >∈ < y > and < y >∈ < x >. Thus we get, Γp(M) ∼= Kφ(n)

Consider the remaining elements of Zn-H-M and it is denoted by Q .Let x1, y1 ∈ Q.Then

o( x1)=p qi and o( y1)=p qj,for some o ≤ i, j ≤ n. From this we have either o( x1)|o( y1) or

o( y1)|o( x1) and so either < x1 >∈ < y1 > or < y1 >∈ < x1 >.

Thus we get, Γp(Q) ∼= K( qk−1)(p−1). Since the identity element is adjacent to every element in

Zn, (K( qk−1)(p−1) ∪K( qk−1) +Kφ(n)+1 is a spanning subgraph of Γp(Zn).

Hence ω(Γp(Zn)) = n - ( qk−1)(p-1) and the number of ω-set in Γp(Zn) is 1.

3 Intersection graph and Gamma graph of a power graph

Definition 3.1 The Intersection graph of gamma sets in the power graph of a commutative ring

Zn with vertex set as the collection of all gamma sets of the power graph of Zn and two distinct

vertices A and B are adjacent if and only if |A ∩B| 6= ø.This graph is denoted by IΓp
(Zn).

Definition 3.2 The Gamma graph of a power graph of a finite commutative ring Zn is a graph

with vertex set as the collection of all gamma sets of the power graph of Zn and two distinct

vertices A and B are adjacent if and only if |A ∩ B| = γ(Γp(Zn)) − 1.This graph is denoted by

γ.(Γp(Zn)).

Theorem 3.3 Let n be an positive integer.Then

IΓp
(Zn) =

Kn if n = pk, k ≥ 1, p is prime

Kφ(n)+1 otherwise

Proof: If n = pk, then Γp(Zn) ∼= K1 +Kk−1
P and γ(Γp(Zn)) = 1.

Hence IΓp
(Zn) = Kn
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If n 6= pk is an integer, then Γp(Zn) has a subgraph of Kφ(n)+1 , where φ is a Euler

function.Also γ(Γp(Zn)) = 1.

Hence IΓp
(Zn) = Kφ(n)+1 .

Theorem 3.4 Let n be an positive integer.Then

γ.(Γp(Zn)) =

 Kn if n = pk, k ≥ 1, p is prime

Kφ(n)+1 otherwise

Proof: If n= pk, then Γp(Zn) ∼= K1 +KPk−1 and γ(Γp(Zn)) = 1.

Hence γ.(Γp(Zn)) = Kn

If n 6= pk is an integer, then Γp(Zn) has a subgraph of Kφ(n)+1, where φ is a Euler

function.Also γ(Γp(Zn)) = 1.

Hence γ.(Γp(Zn)) = Kφ(n)+1.

Theorem 3.5 Let n be an positive integer. Then γ.(Γp(Zn)) is self-centered.

Proof: If n = pk, then γ.(Γp(Zn)) = Kn, a complete graph and so e(v) = 1 for all v ∈ V .

ie., γ.(Γp(Zn)) is self-centered.

If n 6= pk is an integer, then γ.(Γp(Zn)) = Kφ(n)+1, a complete graph and so e(v) = 1 for

all v ∈ V .

ie., γ.(Γp(Zn)) is self-centered.

Theorem 3.6 Let n be an positive integer. Then γ.(Γp(Zn)) has a perfect matching.

Proof: If n = pk, then γ.(Γp(Zn)) = Kn, a complete graph and so has a perfect matching.

If n 6= pk is an integer, then γ.(Γp(Zn)) = Kφ(n)+1, a complete graph and so has a

perfect matching.

Theorem 3.7 Let n be an positive integer. Then IΓp(Zn) is planar.

Proof: If n = pk, then IΓp
(Zn) = Kn, which is planar.

If n 6= pk, then IΓp(Zn) = Kφ(n)+1, which is also a planar.

Theorem 3.8 Let n be an positive integer.Then γ.(Γp(Zn) is planar if n = pk, n < 5 otherwise

n 6= pk, φ(n) + 1 < 5.

Proof: If n = pk, then γ.(Γp(Z)n = Kn.Hence γ.(Γp(Z)n is planar for n < 5.

If n 6= pk , then γ.(Γp(Z)n = Kφ(n)+1.Hence γ.(Γp(Z)n is planar for φ(n) + 1 < 5.

4 Conclusion

In this paper, we have discussed about the strucutre of power graphs and intersection graph

and gamma graph of a power graph.It is planned to explore different graph properties in future

work regarding to this concept.
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Abstract

For a graph G = (V (G), E(G)) having no isolated vertex, an edge labeling function f :

E(G)→ {0, 1, ..., k − 1} is said to be an edge k-product cordial labeling if it induces a vertex

labeling f? : V (G)→ {0, 1, ..., k − 1} defined by f?(v) = (
∏

uv∈E(G) f(uv))(mod k) satisfies

|vf?(i)− vf?(j)| ≤ 1, and |ef (i)− ef (j)| ≤ 1 for i, j ∈ {0, 1, ..., k − 1} where ef (i) and vf?(i)

denote the number of edges and vertices respectively having label i for i = 0, 1, ..., k − 1. A

graph that admits edge k-product cordial labeling is called an edge k-product cordial graph.

In this paper, we establish edge 4-product cordial labeling of path, cycle, comb, and fan

graphs.

Keywords : Cordial Labeling, Edge Product Cordial Labeling, Edge 4-Product Cordial

Labeling, Path, Cycle, Comb, Fan.

AMS Subject Classification : 05C78

1 Introduction

All graphs under consideration are finite, connected, undirected, and adhere to the

fundamental notations and terminology of graph theory, as outlined in Harary [4]. During the

past six decades, the concept of graph labeling has attracted considerable attention in graph

theory due to its diverse range of applications. Graph labeling involves assigning real numbers,

typically positive integers, to the elements of a graph through a function. In 1967, Rosa [5]

made a significant contribution to the field of graph theory with a pioneering paper on the

graph labeling problem. Since then, numerous types of graph labeling techniques have been

investigated by various researchers. Gallian [2], in his comprehensive survey, elegantly

categorized these labelings into graceful labelings, variations of harmonious labelings,

magic-type labelings, anti-magic-type labelings, and miscellaneous labelings. Cordial labeling, a

refined version of graceful and harmonious labeling, was introduced by Cahit [1]. Drawing from

the concept of cordial labeling, Sundaram et al.[6] introduced product cordial labeling in 2004.

In 2012, Vaidya et al.[7] introduced edge product cordial labeling as an edge-based counterpart

to product cordial labeling. Building upon previous concepts, we advance further by
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introducing a new extension called edge k-product cordial labeling. For a graph

G = (V (G), E(G)) having no isolated vertex, an edge labeling function

f : E(G)→ {0, 1, ..., k − 1} is said to be an edge k-product cordial labeling if it induces a vertex

labeling f? : V (G) → {0, 1, ..., k − 1} defined by f?(v) = (
∏

uv∈E(G) f(uv))(mod k) satisfies

|vf?(i)− vf?(j)| ≤ 1, and |ef (i)− ef (j)| ≤ 1 for i, j ∈ {0, 1, ..., k − 1} where ef (i) and vf?(i)

denote the number of edges and vertices respectively having label i for i = 0, 1, ..., k − 1. This

paper concentrates on investigating the behavior of edge 4-product cordial labeling of path,

cycle, fan graphs, and comb graphs. A fan graph Fn [3], is obtained by joining all vertices of Pn

to a new vertex which is known as the center. The graph formed by attaching a single pendant

edge to each vertex of a path is referred to as a Comb Pn �K1.

2 Main Results

Theorem 2.1 The Path Pn is edge 4-product cordial if and only if 5 ≤ n ≤ 11.

Proof: Let V (Pn) = {ui : 1 ≤ i ≤ n} and E(Pn) = {uiui+1 : 1 ≤ i ≤ n− 1}.
Assume 5 ≤ n ≤ 11.

An edge 4-product cordial labeling of P5, P6, P7, P8, P9, P10, and P11 are shown in Table 1.

n v1v2 v2v3 v3v4 v4v5 v5v6 v6v7 v7v8 v8v9 v9v10 v10v11

5 0 2 3 1

6 0 2 3 3 1

7 0 1 3 2 3 1

8 1 3 2 0 2 3 1

9 1 3 2 0 0 2 3 1

10 0 0 2 3 1 2 3 3 1

11 0 0 2 3 1 2 3 3 1 1

Table 1

From the above labeling pattern we have |vf?(i)− vf?(j)| ≤ 1, and |ef (i)− ef (j)| ≤ 1 for i, j ∈
{0, 1, 2, 3}.
Conversely, Assume n ≤ 4 or n ≥ 12.

If possible, let there be an edge 4-product cordial labeling f of Pn for n ≤ 4 or n ≥ 12.

Case (i): n ≤ 4.

Subcase (i): n = 2.

Clearly, vf∗(i) and ef (i) are either 0 or 1 (i = 0, 1, 2, 3). If ef (i) = 1, then vf?(i) = 2 which is

a contradiction. So, ef (i) = 0 for all i(i = 0, 1, 2, 3) which is absurd. Hence, P2 is not an edge

4-product cordial graph.
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Subcase (ii): n = 3.

Thus, ef (i) and vf?(i) are either 0 or 1 (i = 0, 1, 2, 3). Clearly, ef (0) = 0 otherwise vf?(0) = 2.

Also, ef (2) = 0 otherwise vf?(2) = 2. Now, ef (1) = ef (3) = 1 imply vf?(3) = 2. Therefore,

|vf∗(0)− vf∗(3)| > 1 which is a contradiction. Hence, the path P3 is not edge 4-product cordial.

Subcase (iii): n = 4.

Thus, ef (i) = 0 or 1 (i = 0, 1, 2, 3) and vf?(i) = 1 for all i = 0, 1, 2, 3. Clearly, ef (0) = 0

otherwise vf?(0) = 2. Also, ef (1) = ef (2) = ef (3) = 1 imply vf?(2) = 2. Therefore, |vf∗(i) −
vf∗(2)| > 1 for some i ∈ {0, 1, 3} which is a contradiction. Hence, P4 is not an edge 4-product

cordial graph.

Case (ii): n ≥ 12.

Subcase (i): n ≡ 0(mod 4).

Let |V (Pn)| = 4t and |E(Kn)| = 4t − 1(t ≥ 3). Thus, ef (i) = t or t − 1(i = 0, 1, 2, 3) and

vf∗(i) = t for all i = 0, 1, 2, 3. Clearly, ef (0) = t − 1 and 0 must be assigned consecutively

otherwise vf∗(0) ≥ t + 1. Hence, ef (i) = t for all i (i = 1, 2, 3). Also, two adjacent edges cannot

labeled by 2 otherwise vf∗(0) > t. Since ef (2) = t, vf∗(2) > t. Therefore, |vf∗(i) − vf∗(2)| > 1

for some i ∈ {0, 1, 3} which is a contradiction. Hence, the path Pn is not edge 4-product cordial

if n ≡ 0(mod 4).

Subcase (ii): n ≡ 1(mod 4).

Let |V (Pn)| = 4t + 1 and |E(Kn)| = 4t(t ≥ 3). Thus, ef (i) = t for all i (i = 0, 1, 2, 3) and

vf∗(i) is either t or t + 1 for i = 0, 1, 2, 3. By counting vf∗(2) as in above subcase, we get a

contradiction. Hence, Pn is not an edge 4-product cordial graph if n ≡ 1(mod 4).

Subcase (iii):n ≡ r(mod 4); 2 ≤ r ≤ 3.

Let |V (Pn)| = 4t + r and |E(Kn)| = 4t + r − 1(t ≥ 3). Thus, ef (i) and vf∗(i) are either t or

t + 1(i = 0, 1, 2, 3). Clearly, ef (0) = t, 0 must be assigned consecutively and two adjacent edges

cannot labeled by 2 otherwise vf∗(0) ≥ t + 1. If ef (2) = t or t + 1, vf∗(2) > t + 1. Therefore,

|vf∗(i) − vf∗(2)| > 1 for some i ∈ {0, 1, 3} which is a contradiction. Hence, the path Pn is not

edge 4-product cordial if n ≡ 2, 3(mod 4).

Theorem 2.2 The cycle Cn is edge 4-product cordial if and only if 5 ≤ n ≤ 10 except n = 8.

Proof: Let V (Cn) = {ui : 1 ≤ i ≤ n} and E(Cn) = {uiui+1 : 1 ≤ i ≤ n− 1} ∪ {unu1}.
Assume 5 ≤ n ≤ 10 except n = 8.

An edge 4-product cordial labeling of C5, C6, C7, C9, and C10 are shown in Table 2.
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n v1v2 v2v3 v3v4 v4v5 v5v6 v6v7 v7v8 v8v9 v9v10 v10v1

5 0 1 1 3 2

6 0 1 3 3 1 2

7 0 2 3 3 1 1 2

9 0 0 2 3 3 1 1 3 2

10 0 0 2 1 3 3 1 1 3 2

Table 2

From the above labeling pattern we have |vf?(i)− vf?(j)| ≤ 1, and |ef (i)− ef (j)| ≤ 1 for

i, j ∈ {0, 1, 2, 3}.
Conversely, Assume 3 ≤ n or n ≥ 11.

If possible, let there be an edge 4-product cordial labeling f of Cn for 3 ≤ n or n ≥ 11.

Case (i): n ≡ 0(mod 4).

Let |V (Cn)| = |E(Cn)| = 4t. Thus, ef (i) = vf∗(i) = t for all i (i = 0, 1, 2, 3). But ef (0) = t

implies vf∗(0) > t. Therefore, |vf∗(0) − vf∗(j)| > 1 for j = 1, 2, 3 which is a contradiction.

Hence Cn is not an edge 4-product cordial graph if n ≡ 0(mod 4).

Case (ii): n ≡ r(mod 4); 1 ≤ r ≤ 3.

|V (Cn)| = |E(Cn)| = 4t + r. Thus, ef (i) and vf∗(i) are either t or t + 1 for i = 0, 1, 2, 3.

Clearly, 0 must be assigned consecutively and two adjacent edges cannot labeled by 2 otherwise

vf∗(0) > t+ 1. So, ef (2) = t or t+ 1 implies vf∗(2) > t+ 1. Therefore, |vf∗(i)− vf∗(2)| > 1 for

some i ∈ {0, 1, 3} which is a contradiction. Hence, Cn is not an edge 4-product cordial graph if

n ≡ 1, 2, 3(mod 4).

Theorem 2.3 The Fan graph Fn is not edge 4-product cordial.

Proof: Let the vertex set of Fn be V (Fn) = {ui, u : 1 ≤ i ≤ n} and the edge set be

E(Fn) = {uiui+1 : 1 ≤ i ≤ n− 1} ∪ {uui : 1 ≤ i ≤ n}. If possible, let there be an edge 4-product

cordial labeling f of Fn. Then we have the following six cases.

Case (i): n = 1, 2.

Clearly, F1
∼= P2 and F2

∼= C3 which are not edge 4-product cordial graphs.

Hence, the fans F1 and F2 are not edge 4-product cordial.

Case (ii): n = 4.

Thus, ef (i) and vf∗(i) are either 1 or 2 (i = 0, 1, 2, 3). Clearly, ef (0) = 1 otherwise vf∗(0) > 2.

Hence, ef (i) = 2 and vf∗(i) = 1 for all i (i = 1, 2, 3). But, ef (2) = 2 implies vf∗(2) > 1.

Therefore, |vf∗(0) − vf∗(2)| > 1 which is a contradiction. Hence, F4 is not an edge 4-product

cordial graph.

Case (iii): n = 5, 6.

Thus, ef (i) = 2 or 3 for i(i = 0, 1, 2, 3) and vf∗(i) = 1 or 2 for i(i = 0, 1, 2, 3). Clearly,
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ef (2) = 2 or 3 implies vf∗(2) > 2. Therefore, |vf∗(i) − vf∗(2)| > 1 for i = 0, 1, 3 which is a

contradiction. Hence, F5 and F6 are not edge 4-product cordial graphs.

Case (iv): n ≡ 0(mod 4) for n ≥ 8.

Let |V (Fn)| = 4t + 1 and |E(Fn)| = 8t − 1 where t ≥ 2. Thus, ef (i) = 2t or 2t − 1 for

i = 0, 1, 2, 3 and vf∗(i) = t or t + 1 for i = 0, 1, 2, 3. Clearly, ef (0) = 2t or 2t − 1 implies

vf∗(0) > t + 1. Therefore, |vf∗(0) − vf∗(j)| > 1 for j = 1, 2, 3 which is a contradiction. Hence,

Fn is not an edge 4-product cordial graph for n ≡ 0(mod 4) and n ≥ 8.

Case (v): n ≡ r(mod 4) for n ≥ 9 and 1 ≤ r ≤ 2.

Let |V (Fn)| = 4t + r + 1 and |E(Fn)| = 8t + 2r − 1 where t ≥ 2. Thus, ef (i) = 2t or 2t + 1 for

i = 0, 1, 2, 3 and vf∗(i) = t or t + 1 for i = 0, 1, 2, 3. Clearly, ef (0) = 2t or 2t + 1 implies

vf∗(0) > t + 1. Therefore, |vf∗(0) − vf∗(j)| > 1 for j = 1, 2, 3 which is a contradiction. Hence,

the fan Fn is not edge 4-product cordial for n ≡ 1, 2(mod 4) and n ≥ 9.

Case (vi): n ≡ 3(mod 4);n ≥ 3.

Let |V (Fn)| = 4t + 4 and |E(Fn)| = 8t + 5 where t ≥ 0. Thus, ef (i) = 2t + 1 or 2t + 2 for

i = 0, 1, 2, 3 and vf∗(i) = t + 1 for all i (i = 0, 1, 2, 3). Clearly, ef (0) = 2t + 1 or 2t + 2 implies

vf∗(0) > t + 1. Therefore, |vf∗(0) − vf∗(j)| > 1 for j = 1, 2, 3 which is a contradiction. Hence,

Fn is not edge 4-product cordial for n ≡ 3(mod 4) and n ≥ 3.

Theorem 2.4 The Comb Pn �K1 is edge 4-product cordial if and only if n ≥ 3.

Proof: Let V (Pn�K1) = {ui, vi : 1 ≤ i ≤ n} and E(Pn�K1) = {uiui+1 : 1 ≤ i ≤ n−1}∪{uivi :

1 ≤ i ≤ n}. Then we have the following two cases.

Define f : E(Pn �K1)→ {0, 1, 2, 3} as follows:

Case (i): n ≡ 0, 1(mod 4).

Define f(uiui+1) = 0 if 2bn4 c+ 1 ≤ i ≤ n− 1 and f(uivi) = 2 if 2bn4 c+ 1 ≤ i ≤ n.

Subcase (i): bn4 c is odd.

For 1 ≤ i ≤ 2bn4 c, define

f(uiui+1) = f(uivi) =

{
1 if i ≡ 2, 3(mod 4)

3 if i ≡ 0, 1(mod 4).

Subcase (ii): bn4 c is even.

For 1 ≤ i ≤ 2n
4 , define

f(uiui+1) = f(uivi) =

{
1 if i ≡ 0, 1(mod 4)

3 if i ≡ 2, 3(mod 4).

From the above labeling,

ef (0) + 1 = ef (1) = ef (2) = ef (3) = n
2 and vf∗(0) = vf∗(1) = vf∗(2) = vf∗(3) = n

2 if
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n ≡ 0(mod 4).

ef (0) = ef (1) = ef (2)− 1 = ef (3) = 2bn4 c and vf∗(0)− 1 = vf∗(1) = vf∗(2)− 1 = vf∗(3) = 2bn4 c
if n ≡ 1(mod 4).

Case (ii): n ≡ 2, 3(mod 4).

Define f(uiui+1) = 0 if 2bn4 c+ 2 ≤ i ≤ n− 1 and f(uivi) = 2 if 2bn4 c+ 2 ≤ i ≤ n.

Subcase (i): bn4 c is odd.

For 1 ≤ i ≤ 2bn4 c+ 1, define

f(uiui+1) =

{
1 if i ≡ 1, 2(mod 4)

3 if i ≡ 0, 3(mod 4) and

f(uivi) =

{
1 if i ≡ 0, 1(mod 4)

3 if i ≡ 2, 3(mod 4).

Subcase (ii): bn4 c is even.

For 1 ≤ i ≤ 2bn4 c+ 1, define

f(uiui+1) =

{
1 if i ≡ 0, 3(mod 4)

3 if i ≡ 1, 2(mod 4) and

f(uivi) =

{
1 if i ≡ 1, 2(mod 4)

3 if i ≡ 0, 3(mod 4).

From the above labeling,

ef (0) + 1 = ef (1) = ef (2) = ef (3) = 2bn4 c+ 1 and vf∗(0) = vf∗(1) = vf∗(2) = vf∗(3) = 2bn4 c+ 1

if n ≡ 2(mod 4).

ef (0) = ef (1) = ef (2)− 1 = ef (3) = 2bn4 c+ 1 and vf∗(0)− 1 = vf∗(1) = vf∗(2)− 1 = vf∗(3) =

2bn4 c+ 1 if n ≡ 3(mod 4).

In all the cases, |vf?(i)− vf?(j)| ≤ 1, and |ef (i)− ef (j)| ≤ 1 for i, j ∈ {0, 1, 2, 3}. Hence, the

comb Pn �K1 is edge 4-product cordial.

An example of edge 4-product cordial labeling of P8 �K1 is shown in Figure 1.
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3 Conclusion

In this paper, we study the edge 4-product cordial labeling behavior of Pn, Cn, Fn, and

Pn �K1. In the future, we propose to find the edge k-product cordial behavior of these graphs.
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Abstract

Let Zn be the ring of integer modulo n and Γ(Zn) be the corresponding zero divisor

graph. The zero divisor graph of a commutative ring is the graph whose vertices are the

nonzero zero divisors of the commutative ring, and two vertices are connected by an edge if

and only if their product is zero. Also, a distance parameter triameter of a connected graph

G, which is defined as for |V (G)| ≥ 3, tr(G)= max{ d(u, v) + d(v, w) + d(u,w);u, v, w ∈
V(G) }. This article focuses on the triameter of zero divisor graph for the ring of integer

modulo n. More precisely, we completely characterize the triameter of Γ(Zn).

Keywords : Commutative ring, Ring of integers, Diameter, Zero divisor graph, Triameter

AMS Subject Classification : 05C12, 13A70

1 Introduction

One of the most rapidly growing areas of mathematics is graph theory. Understanding how

to quantify the nodal connections in a network to build communities is one of the challenges with

the clustering process. Investigating the distance between the vertices will help us to find the

solution. The diameter and radius of the graph are two of the most frequently seen properties.

Angsuman Das[6] first proposed the idea of a distance parameter triameter of a connected graph

in 2018, which is stated as follows: For a connected graph G = (V,E), the distance parameter

triameter of G, tr(G) is equal to the maximum of {dG(u, v) + dG(v, w) + dG(u,w); u,v,w ∈
V(G)}. The triameter was originally used as a parameter in [11], but it wasn’t formally termed

until [7]. Metric polytopes are another field that utilizes the idea of triameter [9]. The study

of algebraic structures using the properties of graph theory has been an exciting research topic

in recent days. Let R be a commutative ring with identity and Z(R) the set of zero divisors

of R. The zero divisor graph of the ring R, denoted by Γ(R), is the simple graph with vertex

set Z(R), and two distinct vertices x and y are adjacent if and only if xy = 0, I. Beck[5] first

proposed this idea in 1988, however since every element would be adjacent to the element 0,

the structure of these graphs is not particularly interesting. The current definition of Γ(R) was

provided by Anderson and Livingston in 1999 in [3]. They associate a simple graph with vertices
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as components of Z(R)∗ = Z(R)− {0}, the set of nonzero zero divisors of R, and the adjacency

between two distinct vertices is determined in the same manner as Beck’s zero-divisor graph.

Anderson and Livingston[3] and Anderson and Mulay[2] investigated the diameter of the zero

divisor graph of a commutative ring. It was proven that the zero divisor graph of a commutative

ring is always connected with diameter at most three. The study of zero divisor graphs was

continued by S. Akbari and B. Mohamadian[1], T. G. Lucas[10] who found solely on nonzero

zero divisors. In [8] Kim et.al focus on the diameter and girth of the zero-divisor graph for the

ring of integer modulo n, and they completely characterized the diameter of zero divisor graph of

Zn. Let Zn be the ring of integer modulo n and Γ(Zn) be the corresponding zero divisor graph.

If n is a prime number, then Zn has no zero divisors, so Γ(Zn) is the empty graph. Hence, In

this paper, we only consider the case that n is a composite. We use the following definitions and

results in the subsequent section.

Definition 1.1 [12] A graph G is called connected if there is a path between any two distinct

vertices in G.

Definition 1.2 [13] A graph G is said to be complete if every pair of distinct vertices are

adjacent. A complete graph of n vertices is denoted by Kn.

Definition 1.3 [13] A graph G = (V,E) is said to be bipartite if the vertex set V can be

partitioned into two nonempty disjoint subsets A and B such that every edge in G has one end

in A and the other end in B, denoted by V (G) = (A,B). The sets A and B are called a

bipartition of G. If every vertex of A is adjacent with all the vertices of B, then G is said to be

complete bipartite graph, and it is denoted by K|A|,|B|. A graph is called a star graph if it is a

complete bipartite graph with one partition a singleton set.

Definition 1.4 [13] For vertices u and v in a graph G, d(u, v) denotes the length of the shortest

path from u to v. If there is no such path, then d(u, v) is defined to be infinity; and d(u, u) is

defined to be zero.

Definition 1.5 [13] The diameter of a graph G is the supremum of {d(u, v) | u and v are vertices

of G } denoted by diam(G).

Definition 1.6 [13] The girth of a graph G is the length of a smallest cycle contained in the

graph, and gr(G) =∞ if G contains no cycles.

Definition 1.7 [13] A set S of vertices of G is a dominating set of G if every vertex in V (G)−
S is adjacent to some vertex in S. The cardinality of minimum dominating set is called the

domination number of G and is denoted by γ(G).

Definition 1.8 [14] A ring R in which uv = vu for all u, v ∈ R, is called a commutative ring.
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Definition 1.9 [14] A commutative ring R which contains no nonzero zero divisors is called an

integral domain.

Definition 1.10 [6] Let G = (V,E) be a connected graph on n ≥ 3 vertices. The triameter of

G is defined as max{d(u, v) + d(v, w) + d(u,w) : u, v, w ∈ V } and is denoted by tr(G).

Definition 1.11 [4] A triple of vertices u, v, w ∈ V (G) is triametral if d(u, v, w) = tr(G).

Definition 1.12 [3] Let R be a commutative ring with identity and Z(R)∗ the set of nonzero

zero divisors of R. The zero divisor graph of R, denoted by Γ(R), is the simple graph with vertex

set Z(R)∗, and for distinct a, b ∈ Z(R)∗, a and b are adjacent if and only if ab = 0. Clearly,

Γ(R) is the empty graph if and only if R is an integral domain.

Theorem 1.13 Let R be a commutative ring. Then Γ(R) is connected and diam(Γ(R)) ≤ 3.

Proof: see Theorem 2.3 in [3].

Theorem 1.14 For any connected graph G, 2.diam(G) ≤ tr(G) ≤ 3.diam(G).

Proof: see Theorem 3.1 in [6].

2 Main Results

In this section, we completely characterize the triameter of the zero divisor graph of the ring

of integer modulo n

Theorem 2.1 For any connected graph Γ(Zn), then tr(Γ(Zn)) ≤ 9.

Proof: This result holds from Theorem 1.13 and Theorem 1.14, i.e., tr(Γ(Zn)) ≤ 3.3. Therefore,

tr(Γ(Zn)) ≤ 9.

Figure 1: Zero divisor graph of Z30
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Theorem 2.2 Let pi be a prime number and αi ∈ N for i = 1, ...,m. Then the following

statements hold true:

(i) tr(Γ(Zn)) = 0 if and only if n = 4 or n = 9.

(ii) tr(Γ(Zn)) = 3 if and only if n is a prime square with a prime of more than 3 non zero zero

divisors.

(iii) tr(Γ(Zn)) = 4 if and only if n = 6 or n = 8.

(iv) tr(Γ(Zn)) = 6 if and only if n = p1p2 or n = pα1
1 with α1 ≥ 3. In either case Z(Zn)∗ has

more than three zero divisors.

(v) tr(Γ(Zn)) = 8 if and only if n = pα1
1 pα2

2 with at least α1 ≥ 2 or α2 ≥ 2.

(vi) tr(Γ(Zn)) = 9 if and only if n = pα1
1 pα2

2 ...pαmm with 3 ≤ m ∈ N.

Proof:

(i) If n = 4, Z(Zn)∗ = { 2 }. Hence, Γ(Zn) contains only one vertex. Therefore, tr(Γ(Zn)) =

0. If n = 9, Z(Zn)∗ = { 3,6 }. Hence, Γ(Zn) is a line segment with length one. Therefore,

tr(Γ(Zn)) = 0.

(ii) If n is a prime square with a prime of more than 3 nonzero zero divisors. Then, all the

elements in Z(Zn)∗ are the multiples of p. So the product of any two elements of Z(Zn)∗ is

zero, i.e., uv = 0 for all u, v ∈ Z(Zn)∗. Implies that Γ(Zn) is a complete graph. Therefore,

tr(Γ(Zn)) = 3.

(iii) Suppose n = 6 or 8, then Γ(Zn) is a line segment with length two. Therefore, tr(Γ(Zn)) =

4.

(iv) Suppose n = p1p2 with Z(Zn)∗ > 3 then

Z(Zp1p2)∗ = {p1, 2p1, ..., (p2 − 1)p1, p2, 2p2, ..., (p1 − 1)p2} implies (ip1) × (jp2) = 0 ∀
i = 1, 2, 3, ..., p2 − 1 and j = 1, 2, 3, ..., p1 − 1. For any a, b ∈ {p1, 2p1, ...(p2 − 1)p1} and

c, d ∈ {p2, 2p2, ...(p1 − 1)p2} where ab 6= 0 and cd 6= 0. Every vertex of {p1, 2p1, ...(p2 − 1)p1} is

a multiples of p1, and every vertex of {p2, 2p2, ...(p1 − 1)} is a multiples of p2. Thus, every

element of {p1, 2p1, ...(p2 − 1)p1} shares an edge with every element of {p2, 2p2, ...(p1 − 1)p2}.
Then d(u, v, w) is a triametral triple if u, v, w belongs to either {p1, 2p1, ...(p2 − 1)p1} or

{p2, 2p2, ...(p1 − 1)p2}. Therefore, tr(Γ(Zp1p2)) = 6.

Suppose, n = pα1
1 with α1 ≥ 3 and Z(Zn)∗ > 3. Then Z(Zpα1

1
)∗ = {p1, 2p1, ...(pα1−1

1 − 1)p1}.
Here, apα1−1

1 =0 ∀ a ∈ Z(Zpα1
1

))∗. Then, d(u, v) ≤ 2 for all u, v ∈ Γ(Zpα1
1

) implies that

tr(Γ(Zpα1
1

)) ≤ 6. Note that, p1(pα1−1
1 − 1) × p1 6= 0 and p1 × (2p1) 6= 0 also

p1(pα1−1
1 − 1)× p1 6= 0. Thus, d(p1, 2p1) ≥ 2, d(2p1, (p

α1−1
1 − 1)p1) ≥ 2, d(p1, (p

α1−1
1 − 1)p1) ≥

2. Since d(u, v) ≤ 2 for all u,v ∈ Γ(Zpα1
1

), then d(p1, 2p1) = 2, d(2p1, (p
α1−1
1 − 1)p1) = 2,

d(p1, (p
α1−1
1 − 1)p1) = 2. By the definition of triameter, tr(Γ(Zpα1

1
)) = 6.

(v) Suppose that n = pα1
1 pα2

2 with at least α1 ≥ 2 or α2 ≥ 2. Then p1, p2 ∈ Z(Zpα1
1 p

α2
2

)∗ with

p1 × p2 6= 0. So that d(p1, p2) ≥ 2. Also, p1— pα1−1
1 pα2

2 — pα1
1 pα2−1

2 — p2 is a path. Therefore,
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d(p1, p2) = 3. There exists a vertex q1 such that (n, q1) = p1. Then q1 — pα1−1
1 pα2

2 — p1 and

q1— pα1−1
1 pα2

2 — pα1
1 pα2−1

2 — p2 are the paths, i.e, d(q1, p1) = 2 and d(q1, p2) = 3. If both p1

and p2 divides q1, then either p1q1 = 0 or p2q1 = 0. Therefore, tr(Γ(Zpα1
1 p

α2
2

)) = 8.

(vi) If n = pα1
1 pα2

2 ...pαmm with 3 ≤ m ∈ N. Then pi, pj ∈ Z(Zn)∗ and pi × pj 6= 0 where i 6= j.

Therefore, d(pi, pj) ≥ 2. Also, pi — pα1
1 pα2

2 ...pαi−1i ...pαmm — pα1
1 pα2

2 ...p
αj−1
j ...pαmm — pj is a

path. Implies that d(pi, pj) = 3. Also, pk ∈ Z(Zn)∗. note that d(pi, pk) ≥ 2 and d(pj , pk) ≥ 2.

Also, pi — pα1
1 pα2

2 ...pαi−1i ...pαmm — pα1
1 pα2

2 ...pαk−1k ...pαmm — pk and pj — pα1
1 pα2

2 ...p
αj−1
j ...pαmm —

pα1
1 pα2

2 ...pαk−1k ...pαmm — pk are the paths. Therefore, d(pi, pk) = 3 and d(pj , pk) = 3. Therefore,

tr(Γ(Zpα1
1 p

α2
2 ...pαmm

)) ≥ 9. Hence tr(Γ(Zpα1
1 p

α2
2 ...pαmm

)) = 9

Theorem 2.3 Let n = pα1
1 pα2

2 ...pαmm where pi’s are distinct prime and αi ∈ N for i = 1, ...,m

and if Γ(Zn) has triameter three then. gr(Γ(Zn)) = 3.

Proof: Assume that Γ(Zn) has triameter three. Then, by theorem 2.2, n is a prime square with

a prime of more than three nonzero zero divisors. Moreover, Γ(Zn) is a complete graph. Then

clearly, gr(Γ(Zn)) = 3.

Remark 2.4 Consider the ring Z27. The corresponding zero divisor graph has given below. And

Γ(Z27) has 3 – 9 – 18 – 3 as a triangle, i.e., gr(Γ(Z27)) = 3. But tr(Γ(Z27)) = 6, which says

that converse of the above theorem is not true.

Figure 2: Zero divisor graph of Z27

Theorem 2.5 Let n = pα1
1 pα2

2 ...pαmm where pi’s are distinct prime and αi ∈ N for i = 1, ...,m

and if Γ(Zn) is triangle free with |Γ(Zn)| > 3, then tr(Γ(Zn)) ∈ { 6,8 }.
Proof:If Γ(Zn) is triangle free with |Γ(Zn)| > 3, then there are two cases.

case (i): If n = p1p2 with |Γ(Zn)| > 3. Then, by theorem 2.2, tr(Γ(Zn)) = 6.

case (ii): If n = 22p1 with |Γ(Zn)| > 3. Then, 2, p1 ∈ Z(Zn)∗ such that 2p1 6= 0. Therefore
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d(2, p1) = 3, since the vertex 2 is connected only to 2p1, which is not connected to p1. The vertex

2p1 is connected only to vertices divisible by 22, any of which are in turn connected to the vertex

p1. Moreover, there is a vertex q1 such that (n, q1) = 2. Then, 2 – 2p1 – q1, and q1 – 2p1 – 2

– p1 are the paths, i.e., d(2, q1) = 2, and d(q1, p1) = 3. Since the vertex q1 is connected only to

2p1. Therefore tr(Γ(Zn)) = 8.

Theorem 2.6 Let n = pα1
1 pα2

2 ...pαmm where pi’s are distinct prime and αi ∈ N for i = 1, ...,m.

Then tr(Γ(Zn)) = 9 if and only if γ(Γ(Zn)) = 3.

Proof: Assume tr(Γ(Zn)) = 9. Let u, v and w be the triametral triple of vertices in Γ(Zn),

i.e., d(u, v, w) = 9. Clearly, d(u, v) = 3, d(v, w) = 3, d(u,w) = 3. Suppose γ(Γ(Zn)) < 3 then,

D = {x, y} be the minimum dominating set of Γ(Zn). If x = u, then exactly one of the following

held, v or w = y, or vertices v and w belong to the neighborhood of y, implies d(v, w) ≤ 2, a

contradiction. Therefore, the vertex w must be in D, i.e., γ(Γ(Zn)) = 3.

For the converse part assume γ(Γ(Zn)) = 3. Let D = {x, y, z} where x, y, z ∈ Γ(Zn). Suppose

tr(Γ(Zn)) < 9, let d(u, v, w) = tr(Γ(Zn)) where u, v and w be any arbitrary vertices such that

d(u, v) = 3, d(u,w) = 3, d(v, w) = 2. If u = x or u ∈ N(x), then v 6= x and v /∈ N(x).

Equivalently, v has dominated by some vertex in D − {x}. Since w is any arbitrary vertex

and d(v, w) = 2, w would dominated by an element that dominates v, say y. Then {x, y} is a

minimum dominating set, a contradiction. Therefore, tr(Γ(Zn)) = 9.

observation 2.7 Let n = pα1
1 pα2

2 ...pαmm where pi’s are distinct prime and αi ∈ N for

i = 1, ...,m. γ(Γ(Zn)) = 2, then tr(Γ(Zn)) < 9, i.e., tr(Γ(Zn)) ≤ 8

3 Conclusion

In this paper, we study the triameter of the zero divisor graph for the ring of integer modulo

n. In the future, we have to determine the triameter of the zero divisor graph of a commutative

ring.
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Abstract

In a graph G = (V,E), a set S ⊆ V is restrained dominating set of G if every vertex

in V \ S is adjacent to a vertex in S as well as another vertex in V \ S. The restrained

domination number γr(G) is the smallest cardinality of a restrained dominating sets of G.

For each vertex v ∈ V (G), we define the restrained domination value of v to be the number

of γr(G)-sets to which v belongs. In this paper, we study some basic properties of the

restrained domination value function, thus initiating a local study of restrained domination

in graphs. Further, we characterize restrained domination value of cycle and path graphs.

Keywords : Restrained domination, restrained domination value, γr(G)-set, cycles, paths.

AMS Subject Classification : 05C69, 05C38

1 Introduction

Let G = (V (G), E(G) be a simple, undirected and nontrivial graph with order |V (G)| and

size |E(G)|. For S ⊆ V (G), We denote by < S > the subgraph of G induced by S. The degree

of a vertex v in G, denoted by degG(v), is the number of edges that are incident to v in G, and

end-vertex is a vertex of degree one. We denote ∆(G) the maximum degree of a graph G. A

set S ⊆ V is a restrained dominating set of G if every vertex V \ S is adjacent to a vertex S

as well as another vertex in V \ S. The restrained domination number γr(G), is the smallest

cardinality of a restrained dominating set of G; a RDS of G of smallest cardinality is called

γr(G)-set. Throughout the paper, we denote by Pn, Cn, and Kn the path, the cycle and the

complete graph on n vertices, respectively.

In this paper, we will use τr(G) to denote the total number of γr(G)-sets, and by RDM(G)

the collection of all γr(G)-sets. For each vertex v ∈ V (G), we define the domination value of

v denoted by RDVG(v), to be the number of γr(G)-sets to which v belongs. In this paper, we

study some basic properties of the domination value function, thus initiating a local study of

restrained domination in graphs.
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2 Basic Properties of Restrained Domination Values

Theorem 2.1 Let G be a connected graph with n > 2 vertices. Then every end vertex is

contained in each γr-set of G.

Proof: let v be an end vertex of a graph G. Let S be a γr-set of G. Suppose v is not in S, then

v belongs to V \ S. Since v is an end vertex, v is adjacent to either a vertex in S or a vertex in

V \ S, which is a contradiction to the definition of restrained domination, and so v ∈ S. Thus

every end vertex is contained in each γr-set of G.

Observation 2.2
∑

v∈V (G)

RDVG(v) = τr(G).γr(G).

Observation 2.3 1f there is an isomorphism of graphs carrying a vertex v in G to a vertex v′

in G′ then RDVG(v) = RDVG′(v′).

Observation 2.4 Let G be a disjoint union of two graphs G1 and G2. Then γr(G) = γr(G1) +

γr(G2) and τr(G) = τr(G1).τr(G2). For v ∈ V (G1), RDVG(v) = RDVG1
(v).τr(G2)

3 Restrained Domination Value for some Graph Families

Theorem 3.1 If G is a complete graph Kn (n ≥ 1), then τr(G) = n and RDV = 1, for all

v ∈ V (Kn).

Remark 3.2 If n = 2, then G = Km1,m2 is a complete bipartite graph.

Theorem 3.3 If G is a complete bipartite graph Km1,m2
, then

τr(G) =


m1.m2 if m1,m2 ≥ 2

1 if m1 = m2 = 1

1 if {m1,m2} = {1, x} where x > 1.

If m1,m2 ≥ 2, then RDV (v) =

{
m2 if v ∈ V1
m1 if v ∈ V2.

If m1 = m2 = 1, then RDV = 1 for any v in K1,1.

If {m1,m2} = {1, x} with x > 1, say m1 = 1 and m2 = x, then RDV (v) = 1 if v ∈ V1, V2.

4 Restrained Domination Value on Cycles

Let the vertices of the path Pn be labelled 1 through nLet the vertices of the cycle Cn be

labeled 1 through n consecutively in counterclockwise order, where n ≥ 3. Observe that the
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restrained domination value is constant on the vertices of Cn, for each n, by vertex transitivity.

Recall that γr(Cn) = n− 2bn3 c where n ≥ 3 [2].

Example.

1. RDM(C4) = {{1, 2}, {2, 3}, {3, 4}, {1, 4}}. Since γr(C4) = 2. So τr(C4) = 4 and RDV (i) =

2 for each i ∈ V (C4).

2. RDM(C6) = {{1, 4}, {2, 5}, {3, 6}}. Since γr(C6) = 2. So τr(C6) = 3 and RDV (i) = 1 for

each i ∈ V (C6).

Theorem 4.1 For n ≥ 3, τr(Cn) =


3 if n ≡ 0(mod 3)

n if n ≡ 1(mod 3)
1
2n(1 + bn3 c) if n ≡ 2(mod 3).

Proof: Case (i): n ≡ 0(mod 3). Let n = 3k, where k ≥ 1. γr(Cn) = k. A γr(Cn)-set Γ

comprises k, K ′1s and Γ is fixed by the choice of the first K1. There exist exactly one γr(Cn)-set

containing the vertex 1, and there are two γr(Cn)-sets omitting the vertex 1 such as Γ containing

the vertex 2 and Γ containing the vertex n. Thus τ(Cn) = 3.

Case (ii): n ≡ 1(mod 3). < Γ >∼= (k − 1)K1 ∪ K2. Let n = 3k + 1 where n ≥ 1. Here

γr(Cn) = k+ 1 a γr(Cn)-set Γ comprises of one K2 and (k− 1)K1’s. Note that Γ is fixed by the

choice of single K2. Choosing K2 is same as choosing its initial vertex in the counterclockwise

order. If we choose first two vertex in Γ then Γ omits the next two vertices. Likewise we can

choose 3k + 1 vertices τr(Cn) = 3k + 1 = n.

Case (iii): n ≡ 2(mod 3).

Let n = 3k + 2, where k ≥ 1. Hence γr(Cn) = k + 2 a γr(Cn)-set Γ is either comprises of

(k − 1)K1 ∪ P3 and or of (k − 2)K1 ∪ 2P2.

Subcase (i): < Γ >∼= (k − 1)K1 ∪ P3.

Note that Γ is fixed by the placement of the single P3. Choosing P3 is the same as choosing

its initial vertex in the counterclockwise order. P3 can be placed in end vertices or intermediate

vertices. Thus we can choose τr(Cn) = 3k + 2.

Subcase (ii) < Γ >∼= (k − 2)K1 ∪ 2P2.

Note that Γ is fixed by the placement of the two P2. Every end vertices belongs to every Γ set.

There are n = 3k+ 2 ways of choosing the first P2 as discussed. The initial vertex of the second

P2 may be placed in any slot of any of k − 1 subintervals. Thus τ(Cn) = (3k+2)(k−1)
2 .

Summing over the two disjoint cases we get

τr(Cn) = 3k + 2 + (3k+2)(k−1)
2 = (3k + 2)(1 + k−1

2 ) = n
2 (1 + bn3 c).
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5 Restrained Domination Values on Paths

Let the vertices of the path Pn be labelled 1 through n consecutively. Recall that γr(Pn) =

n− 2bn−13 c where n ≥ 1 [2].

Example.

1. γr(P4) = 2. RDM(P4) = {{v1, v4}}. So τr(P4) = 1 and RDV (i) =

{
1 if i = 1, 4

0 if i = 2, 3.

2. γr(P5) = 3. RDM(P5) = {{v1, v4, v5}, {v1, v2, v5}, {v2, v3, v4}, {v3, v4, v5}, {v1, v2, v3}}. So

τr(P5) = 5 and RDV (i) = 3 for each i ∈ V (P5).

Theorem 5.1 For n ≥ 2, τr(Pn) =


1
2d

n
3 e(1 + dn3 e) if n ≡ 0(mod 3)

1 if n ≡ 1(mod 3)

dn3 e if n ≡ 2(mod 3).

Proof: Case (i): n ≡ 0(mod 3). Let n = 3k, where k ≥ 1. Then γr(Pn) = k+ 2 and γr(Pn)-set

Γ is constituted in exactly one of the following ways (i) (k − 1)K1 ∪ P3, (ii) (k − 2)K1 ∪ 2P2.

Subcase (i): < Γ >∼= (k − 1)K1 ∪ P3.

Note that Γ is fixed by the placement of P3. Every end vertices Pn belongs to every Γ-set. We

can take P3 as initial, terminal or intermediate vertices. If we choose P3 as initial vertex in Γ,

then the next two vertices omit Γ. Thus we can choose k number of Γ-set in this case. Thus

τr(Pn) = k.

Subcase (ii) < Γ >∼= (k − 2)K1 ∪ 2P2.

Note that Γ is fixed by the placement of the 2P2. Every end vertices belongs to every Γ set. Γ is

fixed by the placement of two P2’s into the k available slots. Thus τr(Pn) =
(
k
2

)
= k(k−1)

2 .

Summing the two cases τr(Pn) = k + k(k−1)
2 = k(k+1)

2 = 1
2d

n
3 e(1 + dn3 e).

Case (ii): n ≡ 1(mod 3). Let n = 3k + 1, where k ≥ 1. Here γr(Pn) = k + 1 and a γr(Pn)-set

Γ comprises kK1’s. In this case the end vertices of Pn belongs to every Γ-set. Every vertices in

Γ restrainly dominate bn3 c vertices. The first vertex is fixed by vertex 1. Thus τr(Pn) = 1.

Case (iii): n ≡ 2(mod 3) where k ≥ 1. Let n = 3k + 2. Here γr(Pn) = k + 2 and γr(Pn)-set Γ

comprises of kK1’s and one K2. Note that every Γ contains both the end vertices. Γ is fixed by

the placement of one K2. Thus τr(Pn) = k = dn3 e.

6 Conclusion

This paper introduces a new parameter known as restrained domination value in graphs.

Further this concept can be extend to various types of graphs.
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Abstract

The main aspect of this paper is to maximize the solution of a fuzzy goal programming

problem. Where fuzzy quantities are in the form of triangular fuzzy numbers with its

membership value. The triangular fuzzy number is converted into a crisp value using a

novel suggested ranking method and an existing ranking method. Fuzzy simplex procedure

for goal programming is then applied to obtain the solution. By comparing the results, we

can achieve better results with the novel suggested ranking method.

Key words::Triangular fuzzy number, Fuzzy goal programming problem, A novel suggested

ranking method, F.Reubens ranking method.

AMS classification: 90C29 Multi-objective and goal programming

1 Introduction

Bellman and Zadeh proposed the concept of decision-making in a Fuzzy environment [2].

In traditional goal programming, all parameters are assumed to be precise and deterministic,

but in real-world scenarios, various factors may involve vagueness or ambiguity [4]. In FGPP,

decision variables, coefficients, and constraints can be described using fuzzy sets, which provide

a more flexible framework for modeling the inherent uncertainty in decision-making. Goal

Programming was first addressed by Charnes and Cooper [3], and Tamiz et al. [7]. Zangiabadai

and Maleki [8,9] also applied fuzzy goal programming approach to solve multiobjective

transportation problems with linear and nonlinear membership functions. Goal Programming

is a mathematical technique and a variation of Linear Programming. It is an approach that is

capable to handle the decision-making problems having multiple conflicting goals and the

objective function. By considering fuzzy parameters, FGPP enables a more realistic

representation of complex systems.

The outline of this work is described below. In section 2: Basic Definitions, Proposed

ranking technique. In section 3: Procedure for solving a fuzzy goal programming problem. In

section 4: Numerical example. Finally, a conclusion in section 5.
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2 Preliminaries

Definition 2.1 For a triangular fuzzy number A it can be represented by A= (a,b,c) with

membership function µA(x) given by

µA(x) =



x− a
b− a

, a ≤ x ≤ b

1, x = b
c− x
c− b

, b ≤ x ≤ c

0, otherwise

The Arithmetic Operations on Fuzzy Numbers

Let A1 = (a, b, c) and A2 = (d, e, f) be two non-negative triangular fuzzy numbers then

(i) A1 ⊕A2 = (a, b, c)⊕ (d, e, f) = (a+ d, b+ e, c+ f)

(ii) A1 −A2 = (a, b, c)− (d, e, f) = (a− f, b− e, c− d)

(iii) −A1 = −(a, b, c) = (−c,−b,−a)

(iv) A1 ⊗A2 = (a, b, c)⊗ (e, f, g) = (ae, bf, cg)

Ranking function

Ranking fuzzy numbers are an important aspect of decision-making in a fuzzy environment.

Since 1965, many authors have proposed different methods for ranking fuzzy numbers.

Ranking function for triangular fuzzy numbers [5]

The ranking function for A = (a1, a2, a3) denoted R(A) proposed by F.Reubens is defined by :

R(A) =
1

2

1∫
0

(
aLα + aUα

)
dα, where

aLα = a1 + (a2 − a1)α

aUα = a3 + (a3 − a2)α
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Result: If A = (a1, a2, a3) and B = (b1, b2, b3) be triangular fuzzy numbers, Then


A < B if and only if R(A) < R(B)

A = B if and only if R(A) = R(B)

A > B if and only if R(A) > R(B)

Proposed Ranking Technique

This paper proposes a method that ranks triangular fuzzy numbers which is simple in

calculation.

Let A = (a1, a2, a3) be the triangular fuzzy number. If a triangular fuzzy number with its

membership value is 〈A,ωA〉, then new ranking function is defined as, R(A)/ωA.

Mathematical Formulation of Fuzzy Goal Programming Problem:[6]

Minimize z =
m∑
i=1

ω
′

i(d
−
i + d+i ) subject to

n∑
j=1

a
′

ijx
′

j + d−i − d
+
i = b

′

i; i = 1, 2, · · · ,m

d−i , d
+
i ≥ 0

m-goals are expressed by as m-component column b
′

i

a
′

ij- represents the coefficient for the jth decision variable in the ith constraint.

x
′

j- represents a derision variable

ω
′

i- represents the weights of each goal.

d−i , d
+
i - deviational variables, represents the amount of under achievement and over achievement

respectively.

3 Fuzzy simplex procedure

The procedure of Fuzzy Simplex Method

Step-1: In a Fuzzy linear programming problem, convert fuzzy values to crisp values using the

ranking technique.

Step-2: Express the LPP in the standard form of goal programming problem. By introducing

the slack/surplus variables in each of the constraints, introduce deviational variables in the

objective function equate to a maximum value which we assume and convert it as an additional

constraint. Convert the objective function to minimization type using the deviational variables.

Step-3: Obtain an initial basic feasible solution and compute net evaluation

zj − cj =

m∑
i=1

cBiaij − cj where j = 1, 2, · · · ,m+ n
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(i) If all net evaluations are non-negative, then the initial basic feasible solution is an optimal

solution.

(ii) If at least one net evaluation is negative, proceed to next step.

Step-4: Choose the most negative of net evaluation. The corresponding column is the entering

column. If all values in the column are less than zero, then problem has unbounded solution.

Step-5: Compute the ratio (XB/Entering column) and choose the minimum of these ratio. The

corresponding row is the leaving row. The intersection of entering column and leaving row is

called key element.

Step-6: Convert the key element to unity by dividing its row by key element and all other

elements in remaining rows by using elementary row transformations.

Step-7: Go to step-3 and repeat the procedure until an optimal solution is obtained or there is

an indication of an unbounded solution.

4 Numerical Example [1]

Consider, Maximize z = 〈(1, 6, 9), 0.9〉x1 + 〈(2, 3, 8), 0.8〉x2 subject to

〈(2, 3, 4), 0.7〉x1 + 〈(1, 2, 3), 0.8〉x2 ≤ 〈(6, 16, 30), 0.5〉
〈(−1, 1, 2), 0.4〉x1 + 〈(1, 3, 4), 0.6〉x2 ≤ 〈(1, 17, 30), 0.8〉

x1, x2 ≥ 0

Applying the F.Reubens ranking technique, we get

Maximize z = 5.5x1 + 4x2 subject to

3x1 + 2x2 ≤ 17

0.75x1 + 2.75x2 ≤ 16.25

x1, x2 ≥ 0

Standard form, We introduce two slack variables s1 ≥ 0 and s2 ≥ 0

Minimize z
′

= d− subject to

3x1 + 2x2 + s1 = 17

0.75x1 + 2.75x2 + s2 = 16.25

5.5x1 + 4x2 + d− − d+ = 100 (Here,100 is our assumption) d−, d+ ≥ 0
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Now, all the z
′

j − cj ≥ 0. Hence optimality is reached and the optimal solution is

x1 = 2.114, x2 = 5.333, d− = 67.057, z
′

= −67.057 and the maximum value of

z = 100 - 67.057= 32.943.

Applying the proposed ranking technique, we get

Maximize z = 6.111x1 + 5x2 subject to

4.285x1 + 2.5x2 ≤ 34

1.875x1 + 4.583x2 ≤ 20.312

x1, x2 ≥ 0

Standard form,

We introduce two slack variables s1 ≥ 0 and s2 ≥ 0

Minimize z
′

= d− subject to

4.285x1 + 2.5x2 + s1 = 34

1.875x1 + 4.583x2 + s2 = 20.312

6.111x1 + 5x2 + d− − d+ = 100 (Here, 100 is our assumption) d−, d+ ≥ 0

Now, all the z
′

jcj ≥ 0. Hence optimality is reached and the optimal solution is

x1 = 7.026, x2 = 1.557, d− = 49.277, z
′

= −49.277 and the maximum value of z = 100-49.277=

50.723.
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5 Applications

Fuzzy goal programming finds application in diverse fields where decision-making involves

dealing with imprecise goals and uncertainties. In the financial planning, it aids in optimizing

investment portfolios by considering the fuzzy nature of returns and risks, thus accommodating

the uncertainty inherent in financial markets. Additionally, in production planning, it addresses

the challenges of fluctuating demand, resource availability, and quality requirements by

providing a framework that allows for imprecision in setting and achieving production goals.

Its versatility extends to supply chain management, environmental decision-making, healthcare

resource allocation, project scheduling, and education planning, among other domains. By

incorporating fuzzy logic, this approach enables decision-makers to navigate complex scenarios

where goals and constraints may not be precisely defined, providing a more realistic and robust

framework for optimal decision outcomes.

6 Conclusion

In this paper, we considered numerical examples with values as triangular fuzzy numbers.

Then they were transformed into crisp values using a novel suggested ranking technique and

an existing ranking method. Fuzzy simplex procedure for goal programming is then applied

to obtain the solution. By comparing the results, we can achieve better results with the novel

suggested ranking method.
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Abstract

Observations with ground-based telescopes suffer from atmospheric turbulence while

looking through the sky. The best option to minimize the atmospheric effects is to launch

a telescope into space to avoid the atmospheric problems altogether, but it has its

limitations in launching technology for big telescopes and cost of operation. The more

economical solution is to build an Adaptive Optics (AO) system that senses the distortions

and compensates them in a ground-based telescope. In this paper, the simulation of

atmospheric turbulence was carried out numerically using the Kolmogorov turbulence

model with the Fourier Transform method and the Sub-Harmonics method.

Key words:: Numerical Simulation, Atmospheric turbulence, Fourier Transform,

Sub-Harmonics.

AMS classification: 42A38,42B10

1 Introduction

The atmospheric turbulence can be considered as a random process and can be estimated

using variances and co-variances of local refractive index fluctuations [1]. Due to changes in the

refractive indices of the different layers, the planar wavefront, from the distant star, propagating

through the turbulent atmosphere, gets distorted. So, both the amplitude and phase of the

incoming beam fluctuate during its passage and change with time. Thus, the random process of

atmospheric turbulence affects the image-forming capabilities of a telescope.

1.1 Effect of Atmospheric Turbulence

The effects of turbulence on light that passes through the atmosphere are three types. a. It

creates intensity fluctuations or scintillations which are observed as the twinkling of the stars.

b. The position of the star wanders when the varying refractive index of the atmosphere alters

the angle of arrival of the starlight. c. There is a spreading effect created by the higher order

aberrations which causes stars to appear as small discs of light and not sharply defined point

sources. Figure 1 shows the simulated point source images of a diffraction-limited case in the

presence of strong turbulence. The intensity is normalized to the peak intensity of the Point
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1.2 Wavefront Correcting System

Spread Function (PSF) in the absence of turbulence. This light spreads over a larger area and

demonstrates high resolution, high contrast imaging is difficult.

(a) No Turbulence (b) Strong Turbulence

1.2 Wavefront Correcting System

Adaptive Optics is the adaptation of the telescope optical system and it works in such a way

that it measures the incoming light from natural stars and gives information on the nature of the

atmosphere at a certain point in time. A distorted wavefront comes into the system through the

telescope aperture. It is reflected from a Deformable Mirror to a beam splitter that divides the

beam to a WFS and a scientific camera. The measurements from WFS are fed into computers to

compute the required instructions for the DM. The mirror is deformed using actuators, each of

them having its own control voltage. After calculating wavefront errors with WFS, they can be

appropriately corrected with spatial correction devices such as Tip Tilt and Deformable Mirror.

1.2.1 Tip-tilt Mirror

The simplest form of Adaptive Optics is Tip-Tilt correction [2,3]. Tip-Tilt mirror is an

Opto-Electronic device used to correct the tilts of the wavefront in two dimensions. In Adaptive

optics, Tip-Tilt mirror can correct 87% of distortion which is introduced by the atmosphere.

1.2.2 Deformable Mirror

Once the wavefront aberrations are measured with a Wavefront Sensor, they have to be

somehow corrected. A mirror with its surface locally bent is called a Deformable Mirror (DM),

which is usually used for this purpose. DM is an important component in a wavefront

compensation system [4]. A DM is a flexible structure and its surface can be shaped
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dynamically into a custom form. The incoming light falls onto the mirror which in turn is

deformed into the shape producing a straight wavefront leaving the mirror. A DM is also an

Opto-Electronic device that corrects the distortions in the wavefront by deforming the mirror.

It consists of an array of actuators that control the mirror such that it is perfectly conjugate to

the incoming aberrated wavefront.

2 Objective

Once the wavefront aberrations are measured with a Wavefront Sensor, they have to be

somehow corrected. A mirror with its surface locally bent is called a Deformable Mirror (DM),

which is usually used for this purpose. DM is an important component in a wavefront

compensation system [4]. A DM is a flexible structure and its surface can be shaped

dynamically into a custom Various Wavefront Sensing techniques have been developed for use

in a variety of applications ranging from measuring the wavefront aberrations of human eyes [5]

to Adaptive Optics in astronomy [6]. The most commonly used Wavefront Sensors are the

Shack-Hartmann (SH) [7, 8], Curvature sensing [9], Lateral Shearing Interferometry (LSI) [10,

11 and 12], Phase Retrieval methods [13] and Pyramid Wavefront Sensor [14]. Among the

Wavefront Sensors, the Shack-Hartmann Wavefront Sensor (SHWS) is the most commonly used

technique for the measurement of turbulence-induced phase distortions for various applications

in atmospheric studies and Adaptive Optics. However, the dynamic range of the SHWS is

limited by the optical parameters of its micro lenses, namely, the spacing and the focal length

of the microlens array. Development of AO requires a better understanding of the

characteristics of turbulent atmospheres and their effects on the wavefront aberrations. So, in

this paper, the simulation of atmospheric turbulence was carried out numerically using the

Kolmogorov turbulence model with LabVIEW routines for different D/ro ratios with the

Fourier Transform method and Sub-Harmonics method.

3 Main Results

3.1 Shack Hartmann Wavefront Sensor

Shack-Hartmann Wavefront Sensor is an optical instrument that senses local gradients

through aperture sub-division with a lenslet array. This is the most common Wavefront Sensor

in Astronomy and Ophthalmology. In SHWS an image of the telescope exit pupil is projected

onto a lenslet array of small identical lenses. Each lens takes a small part of the aperture,

called a sub-pupil, and forms an image of the source on back focal plane of array. A CCD

detector is placed at the back focal plane of the lenslet array. An array of images is formed at
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3.2 Numerical simulation of atmospheric turbulence

the detected plane. To measure the positional accuracy of each image spot, the center of the

mass method is used. A reference source is introduced in the optical path to record reference

coordinates. Measuring the difference from the reference position, the local slopes are

calculated and from these slopes, the wavefront is reconstructed.

Figure 2: Schematic of Shack Hartmann Wavefront Sensor

Deviation of spot position from a perfectly square grid measures the shape of the

incoming wavefront. The shift may be in the x direction or y direction or in both directions.

From the knowledge of the focal length of the Shack- Hartmann lens and the distance of the

centroid, the slope can be determined. Centroid algorithms are used to determine the spot

centroids. The accuracy of SHWS is mainly depending on the centroid calculation accuracy

and reconstruction accuracy.

3.2 Numerical simulation of atmospheric turbulence

To understand the adaptive optics technology, it is essential to simulate atmospheric

turbulence numerically and experimentally. For testing and calibrating a complex adaptive

optics (AO) system it is useful to have an artificial turbulence generator with known, realistic,

and repeatable characteristics. Turbulent flow is very complicated and still it is not entirely

understood. The most widely accepted theory of turbulence flow, due to consistent agreement

with observation and statistical model of the wavefront aberrations induced by the turbulent

atmosphere was first put forward by Andrei Kolmogorov [15]. Kolmogorov statistics provide a

suitable theoretical model for atmospheric turbulence. This model is based on the idea that

energy is fed into the system at large scales and propagates down to smaller structures, where

it eventually dissipates into heat. Kolmogorov turbulence model is valid for atmospheric

turbulence and it is experimentally proved [16]. However, the Kolmogorov model is only useful
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between the largest (the outer scale L0), and the smallest structures (the inner scale l0) of the

turbulence.The theory based on Kolmogorov turbulence has been reviewed by Roddier [17].

3.3 Kolmogorov Model of Atmospheric Turbulence

Kolmogorov model suggested that the energy injected into turbulent medium on large spatial

scales (outer scale,  L0 is of the order of a few tens of meters) [18] forms eddies. The outer scale

 L0 limits the contribution of low spatial frequencies to the wavefront aberrations. Since these

spatial frequencies dominate the overall wavefront distortions,  L0 has a significant influence on

the achievable performance and image quality of telescope [19]. These large eddies cascade the

energy into small scale eddies until they become small enough (small scale l0) that the energy

is dissipated by the viscous properties of the medium. For the inertial range between inner and

outer scales, Kolmogorov predicted a power law distribution of the turbulent power with spatial

frequency k(−11)/3. The outer scale is denoted by  L0, the inner scale by  L0. Eddies between these

limits form the inertial subrange. Energy is injected by wind shear and convection is transferred

until it is dissipated to heat. Atmospheric turbulence is a random process. Tatarski [20] shows

the three dimensional power spectrums, φN (k) of the refractive index variations is,

φN (k) = 0.033c2N (k)
(−11/3)

(1)

where is the scalar wave number vector (Kx,Ky,Kz) The outer scale is an important

parameter in turbulence statistics and its range of values are much debated in astronomical

databases [21]. The standard spectrum of Kolmogorov turbulence is usually written with

infinite outer scale and the effect of infinite outer scales is to reduce the lower spatial frequency

contributions.

3.4 Fourier Transform - based Phase Screen

Fourier Transform (FT) method proposed by McGlamery [22, 23] has been used to simulate

the phase screens numerically. The FT methods are most common since very large phase screens

can be generated quickly. One way of describing the phase statistically is by means of its power

spectrum. The phases of the Fourier Transform of the phase map are independent with frequency,

uniformly randomly distributed in −πto+ π interval. Based on these the phase map is generated

using a complex array of Gaussian random numbers and the array are multiplied by the square

root of the power spectrum. The array is subjected to a discrete Fourier Transform and the

resulting complex array is separated into its real and imaginary components, each of these arrays

represent an independent instantaneous phase map realization. The power spectrum is only valid

within the inertial range between the inner and outer scale as it tends to infinity at larger spatial

separations. There are other modified models for the atmospheric power spectral density, like
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3.4 Fourier Transform - based Phase Screen

the Tatarski [20], Von Karman [24], and modified Von Karman [25] which are commonly used.

These models are much more sophisticated and include various inner-scale and outer-scale factors

that improve the agreement between theory and experimental measurements. To accommodate

the finite inner and outer scales, the Kolmogorov power spectrum was modified by Von Karman

power spectrum [26] which is given by,

φN (k) = 0.033C2
N (K2 +K2

0 )(−11)/6)exp(−K2/K2
i ) (2)

Where ko = 2π/L0, ki = 5.92/l0 and k = 2π/L. It can be expressed in another form with Fried

parameter r0,

φN (k) = 0.023(D/r0)(5/3)
exp(−k2)/(k2i )

(k2 + k20)(11/6)
(3)

For infinite outer scale (k0 = 0) and zero inner scale(ki =∞) above equation reduces to,

φN (k) = 0.023(D/r0)(5/3)κ(−11)/3 (4)

The Power spectral density (PSD) and phase screen f(r)are related as,

φN (k) =

∣∣∣∣∫ ∞
−∞

f(r)e(−ikr)dr

∣∣∣∣2 (5)

From the above equation phase screen is derived by:

f(r) =

∫ ∞
−∞

√
(φN (k))eikr(dk) (6)

where f(r) is the 2D- Kolmogorov phase screen. It is obtained from Inverse Fourier Transform

(IFT) of square root of Von Karman power spectrum of turbulent atmosphere. The randomness

of atmospheric turbulence is implemented with random numerical function. The Figure 4.1.

A presents the typical atmospheric phase screen simulated by Fourier Transform method with

D/r0 = 2, D/r0 = 1, 2 where D is the telescope diameter, r0 is the Frieds parameter, L0 = 50 m

and l0 = 0.01m. The Figure 4.2 demonstrate 3D representation of phase screen. In this Figure

one can observe that the low spatial frequencies are not sampled well (i.e., no tip / tilt).

This method has a disadvantage of under sampling at low spatial frequencies due to

limited low sampling of Fourier Transform technique. This leads to lower-order aberrations such

as tilt which are often under-represented. These lower-order aberrations contribute a majority

of the atmospheric energy spectrum and must be included to produce realistic models.
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(a)

(b)

Figure 3: Sample Phase Screens obtained by Fourier Transform Method

3.5 Sub-Harmonics Method - based Phase Screen

Sub - Harmonics method [27, 28,29] is a simple technique for modelling the effects of lower

frequencies by generating additional random frequencies and adds their effects to the sampled

frequencies using equation 1.7. It modifies the usual Fourier Transform method of generating

phase screens for atmospheric propagation to allow low-frequency turbulence effects. This

method consists of generating realizations of turbulence on two different size grids and uses a

trigonometric interpolation to introduce low frequency effects on the smaller (propagation)

grid. It is proved that the phase screens generated by this method give a better representation

of Kolmogorov turbulence since they include effects from the low spatial frequency part of the

spectrum. This method can be considerably more efficient than direct implementation of the

FT method on a very large grid. It provides a low frequency screen p(x, y) generated by a sum

of different number (Np) of phase screens. The low frequency screen as a Fourier series is given

by,

p(x, y) =

(Ng)∑
(g=1)

1∑
(n=−1)

1∑
(m=−1)

c(n,m)exp [i2π(fxn(x) + fymy)] (7)

where the sums over n and m are over discrete frequencies and each value of the index

g corresponds to a different grid. The phase screen generated in this simulation is derived

by addition of two-phase screens obtained with Fourier Transform method and Sub-Harmonics

method. The sample phase screens thus simulated are shown in Figure 4. (a) presents the typical

atmospheric phase screen simulated by Sub-Harmonics method with D/ro = 5, Dr0 = 1, 2, L0 =

50m and l0 = 0.01m. The Figures 4. (b) demonstrates 3D representations of phase screen. In

these Figures it is clearly seen that low spatial frequencies are well sampled.
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3.6 Numerical Simulation of Shack Hartman in the presence of noise

(a) (b)

Figure 4: Sample Phase Screens obtained by Fourier Transform Method

3.6 Numerical Simulation of Shack Hartman in the presence of noise

The atmospheric turbulence affected Shack-Hartmann spot patterns are generated. Initially

Airy pattern spots are generated by considering pre-fixed sub lenslet diameter. The generated

Airy spot intensity array multiplied with phase screen array exponentially as phase information.

Then the resulted image is Fourier transformed. As a result, we get the turbulence distorted

SH spot pattern. The spot pattern (7 × 7) at the focal plane of a Shack Hartmann sensor is

simulated. In figure 6 , the Shack Hartmann back focal plane spot intensities is shown when the

turbulence at the order of Dro = 15. This images are generated with the Airy array spot pattren

which is corrupted by Kolmogorov atmospheric turbulence.

Figure 5: Airy pattern in the presence of turbulence (at D/ro = 15)
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3.7 Centroid algorithms

The Center of Gravity (CoG) is the simplest and most direct way to calculate the position

of a symmetric spot:

x̂CoG =
(
∑
x.I(x,y))

(
∑
I(x,y))

(8)

3.8 Wavefront reconstruction

After finding out the centroid of each spot, the slope of the wavefront at each sub aperture

is calculated with the knowledge of focal length of the Shack-Hartmann sensor and the

deviation of the centroid of each spot from the reference image. From this slope the wavefront

is reconstructed using a modal approach. Reference and distorted centroid points are compared

for slope determination. The wavefront is calculated with a modal approach using Zernike [30]

basis functions using 21 modes. Figure 7 shows the wavefront reconstructed from the distorted

wavefront at Turbulence D/ro = 5. One can see that distorted wavefront leading to speckles

and centroid positions also shifted. In Figure 8, Zernike coefficients are plotted for

Figure 6: Shack Hartmann sensor Top left one is reference array pattern; Top right one is

distorted array pattern, bottom left one is calculated centroid positions; bottom right one is

wavefront constructed at D/ro =5.

Zernike index up to 21 modes. (Except piston). It is clearly seen that the values of the lower

order terms are much higher than the higher orders ones.
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Figure 7: Zernike coefficients are plotted against Zernike index number

4 Conclusion

Estimation of the wavefront errors is a very important aspect in adaptive optics. Besides the

telescope system errors, the atmospheric turbulence also accounts for the major contribution to

the errors. The atmospheric turbulence is characterized by the Kolmogorov model. It is essential

to accurately estimate these aberrations in dynamic situations and to apply real-time corrections.

A phased screen based on the Fourier transform and sub-harmonics method has been tested and

reconstructed the wavefront using Zernike polynomials.
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Abstract

A subset S of V is said to be dominating set in if every vertex in V-S is adjacent to at

least one vertex in S. The domination number (G) is the minimum cardinality of a

dominating set in G. A set S ⊆ V is said to be relatively prime dominating set if it is a

dominating set with at least two elements and for every pair of vertices u and v in S such

that (deg(u),deg(v))=1. The minimum cardinality of a relatively prime dominating set is

called relatively prime domination number and it is denoted by γrpd(G). If there is no such

pair exist, then γrpd(G) = 0 . This article focuses on exploring the relatively prime

domination number within the context of power of wheel graph. The discussion reveals

that for the power of wheel graph Wn the relatively prime domination number, denoted as

(Wn), assumes values of 0 or 2. Additionally, the article describes the computation of the

relatively prime domination number for the power of wheel graph using the Python

programming language.

Key words::Dominating Set, Domination Number, Relatively Prime Dominating Set,

Relatively Prime Dominating Number.

AMS classification:

1 Introduction

By a graph G=(V,E) we mean a finite undirected graph without loops and multiple edges.

The order and size of G are denoted by p and q respectively. For graph theoretical terms, we

refer Harary [2] and for terms related to domination we refer to Haynes [5]. A subset S of V is

said to be a dominating set in G if every vertex in V-S is adjacent to at least one vertex in S.

The domination number γ(G) is the minimum cardinality of a dominating set in C. Berge [1]

and Ore [4] formulated the concept of domination in graphs. It was further extended to define

many other dominations related parameters in graphs. Let G be a non trivial graph. A set

S ⊆ V is said to be relatively prime dominating set if it is a dominating set with at least two

elements and for every pair of vertices and in such that (deg(u), deg(v)) = 1. The minimum

cardinality of a relatively prime dominating set is called relatively prime domination number and

it is denoted by γrpd(G). If there is no such pair exist, then γrpd(G) = 0 [3]. Switching in graphs

was introduced by Lint and Seidel. For a finite undirected graph G(V, E) and a subset σ ⊆ V ,

the switching of G by is defined as the graph Gσ(V,E′) which is obtained from G by removing

all edges between σ and V −σ. For σ = {v}, we write Gv instead of G{v} and the corresponding
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switching is called as vertex switching. A Wheel graph is a graph formed by connecting a single

universal vertex to all vertices of a cycle. It is denoted by Wn.

2 Relatively Prime Domination on Wheel graph

In this section, we discussed about the relatively prime domination number of a wheel graph.

Theorem 2.1 For any Wheel graph (Wn) where n ≥ 4,

γrpd(Wn) =

0 if n = k + 4 where k = 0, 3, 6, 9, · · ·

2 otherwise

Proof: Let Wn be a wheel graph and n denote number of vertices where n ≥ 4. We Proceed by

two cases.

Case 1: γrpd(Wn) = 0 if n=k+4 where k=0,3,6,9,· · ·
Let v1 be the universal vertex of (Wn) of degree n-1 (a multiple of 3). Let u1, u2, · · · , un−1 be the

other vertices of degree 3. Since the degree of all the vertices have a common factor 3, relatively

prime dominating set does not exist. Therefore, γrpd(Wn) = 0

Case 2: Otherwise

Let v1 be the universal vertex of degree n-1. Let u1, u2, · · · , un−1 be the other vertices of degree

3. Since the graph has n vertices and the vertex v1 has degree n-1. The Vertex v1 covers all the

Vertices of Wn. Since relatively prime dominating set has at least two elements. We Choose two

Vertices v1 of degree n-1(not a multiple of 3) and ui of degree 3, where 1 ≤ i ≤ n − 1. Then

(d(v1), d(ui)) = 1. Thus, Relatively Prime Dominating set is {v1, ui} and γrpd(Wn) = 2.

3 Relatively Prime Domination on power of Wheel graph

Theorem 3.1 Let Wn be a Wheel Graph. Then γrpd((Wn)p) = 0, where p ≥ 2, n ≥ 4.

Proof: Since (Wn)p is a complete graph where n ≥ 4 and p ≥ 2, we have γrpd((Wn)p) = 0 ∀p ≥ 2.

As relatively prime domination number of wheel graph is zero, we find the number for it switching.

Its surprise that the relatively prime domination number for its switching graph is also zero.

Theorem 3.2 Let Wn be a wheel graph. Then γ(((wn)p)v) = 0 where p ≥ 2, n ≥ 4.

Proof: Let (wn)p be a power of wheel graph where p ≥ 2, n ≥ 4. As power of wheel graph is a

complete graph, degree of each vertex is same, ie) power of wheel graph is a complete graph of

degree n-1. Therefore, degree of each vertex is n-1. Let v be any vertex in ((wn)p). Then in the

resulting graph ((Wn)p)v, deg(v) = 0 and deg(u) = n-2 ∀ u 6= v Clearly the two vertices u and v

cover all the vertices of ((wn)p)v). But it is not relatively prime dominating set

Therefore, relatively prime dominating set does not exist for ((wn)v) and so γ(((wn)p)v) = 0.
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4 Python program to compute the

Relatively prime domination number of any wheel graph or power of wheel graph can be computed

using the python program given below.

PROGRAM INPUT

#Relatively prime domination on wheel graph

def switching graph(G,v):

import networkx as nx

import matplotlib.pyplot as plt

V = list(G.nodes())

E = list(G.edges())

for i in V:

if (i,v) in E:

E.remove((i,v))

elif (v,i) in E:

E.remove((v,i))

else:

if i!=v:

E.append((i,v))

K=nx.Graph()

K.add nodes from(V)

K.add edges from(E)

nx.draw(K,with labels=True)

plt.show()

return K

def rpd wheel graph(n,p=1):

#draw the wheel graph

import networkx as nx

import matplotlib.pyplot as plt

G = nx.wheel graph(n) K=nx.power(G,p)

nx.draw(K,with labels=True)

plt.show()

#condition for the relatively prime domination number

u=n-4

if u%3==0 or p >= 2:

print(”Relatively prime domination number is 0”)
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print(”Since Relatively prime domination number is 0 we find the relatively prime domination

number for switching graph ”)

K=switching graph(K,0)

print(”Relatively prime domination number of switching graph is 0”)

else:

print(”Relatively prime domination number is 2”)

Example 4.1 INPUT

rpd wheel graph(10)

OUTPUT

Figure 1:

Example 4.2 INPUT

rpd wheel graph (12,4)

Figure 2:
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Abstract

Cordial labeling is defined as a function g : V (θ) → {0, 1} in which each edge ab is

assigned the label |g(a)−g(b)| with the conditions |vg(0)−vg(1)| ≤ 1 and |eg(0)−eg(1)| ≤ 1

where vg(0) and vg(1) signify the number of vertices with 0s and 1s, similarly eg(0) and

eg(1) signify the number of edges with 0s and 1s. In this paper, Bistar clunged with square

of cycle graph and Cartesian product graph P2XCn are analyzed for cordial labeling.

Key words::Cordial labeling, Square of cycle graph, Bistar graph, Cartesian product graph.

AMS classification: 05C50, 05C78

1 Introduction

Graph labeling is an assignment of integers to vertices, or edges or both under certain

conditions. Rosas[5] 1967 invention is credited for the majority of graph labeling methods.

Cordial labeling was introduced by Cahit[1] in 1987. In[2] Devakirubanithi, et.al established

graphs such as uniform sub-divided shell bow graph, uniform sub-divided shell flower graph,

subdivided shell graph with star graphs coupled to the apex and path vertices and one point

union of multiple sub-divided shell graph admits cordial labelling. In[4] Pariksha Gupta, et.al

proved a Cordial labeling pattern for star of a bistar graph. Cordial labeling is useful in DNA

code word design problem and noisy communication channels. In this paper, Bistar clunged with

square of cycle graph and Cartesian product graph P2XCn are analyzed for cordial labeling.

2 Main Results

In this section, we provide all the fundamental notations and definitions which serve as

prerequisites for the advancement of the topic.

Definition 2.1 [3] Let f be a function from the vertices of G to {0, 1} and for each edge xy

assign the label |f(x)− f(y)|. f is called a cordial labeling of G if the number of vertices labeled

0 and the number of vertices labeled 1 differ by atmost 1 and the number of edges labeled 0 and

the number of edges labeled 1 differ atmost by 1.
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Definition 2.2 [6] Square of a graph G denoted by G2 has the same vertex as of G and two

vertices are adjacent in G2 if they at a distance of 1 or 2 apart from G.

Definition 2.3 The Bistar clunged with square of cycle graph Bl,m(C2
n) is obtained by attaching

the square of cycle graph C2
n to each pendant vertices of bistar graph Bl,m.

Definition 2.4 The Cartesian Product Graph G1XG2 of a graph G1 and G2 whose vertex set

is V (G1)XV (G2) can be defined as follows. Let u be a vertex in V (G1) and v be the vertex in

V (G2). Then (u,v) is an element of G1XG2 and (u,v) is adjacent to (u′, v′) iff either u = u′

and edge vv′ belongs to E(G2) or v = v′ and the edge uu′ belongs to E(G1).

Theorem 2.5 The Bistar clunged with square of cycle graph Bl,m(C2
n) is cordial when n is even

and n ≥ 4.

Proof: Let G = Bl,m(C2
n) be the bistar clunged with square of cycle graph where l and m are

the number of vertices of the bistar graph and n is the number of vertices of the cycle. Fix the

central vertices of the bistar graph as a0 = 0 and a1 = 1. Let the vertices of (C2
n) be labeled as

aji (1 ≤ i ≤ n, 1 ≤ j ≤ l + m). Here aji denote the vertices of the jth copy of C2
n. We obtain

am1 , am2 , · · · , al+m
n as the successive vertices of the nth copy of the square of cycle graph

Figure 1: Generalized Bistar clunged with square of cycle graph

Case 1: If l and m are same

The number of vertices and edges in Bl,m(C2
n) is defined as 2ln+2 and 4ln+2l+1

Define the vertex labeling as follows

f(ai) =

0, if i ≡ 0 (mod2)

1, if i ≡ 1 (mod2)

The number of vertices labeled with 0 and 1 is defined as follows:

Vf (0) =
2ln + 2

2
;Vf (1) =

2ln + 2

2
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The number of edges labeled with 0 and 1 is defined as follows

ef (0) =

⌊
4ln + 2l + 1

2

⌋
; ef (1) =

⌊
(4ln + 2l + 1)

2

⌋
+ 1

From the above labeling pattern, |Vf (0) − Vf (1)| ≤ 1 and |ef (0) − ef (1)| ≤ 1 Thus, the Bistar

clunged with square of cycle graph Bl,m(C2
n) admits cordial labeling when l and m are same.

Case 2: If l and m are different

Subcase (i): when l is odd and m is even

Define the vertex labeling as follows

If j ≡ 1(mod 2)

f(aji ) =

0, if i ≡ 1(mod 2)

1, if i ≡ 0(mod 2)

If j ≡ 0(mod 2)

f(aji ) =

0, if i ≡ 0(mod 2)

1, if i ≡ 1(mod 2)

Subcase (ii): when l is even and m is odd

Define the vertex labeling as follows

If j ≡ 1(mod 2)

f(aji ) =

0, if i ≡ 0(mod 2)

1, if i ≡ 1(mod 2)

f j ≡ 0(mod 2)

f(aji ) =

0, if i ≡ 1(mod 2)

1, if i ≡ 0(mod 2)

For both subcase (i) and subcase (ii), The number of vertices and edges in Bl,m(C2
n) is defined

as ln+mn+2 and 2ln+2mn+l+m+1

The number of vertices labeled with 0 and 1 is defined as

Vf (0) =
ln + mn + 2

2
;Vf (1) =

ln + mn + 2

2

The number of edges labeled with 0 and 1 is defined as follows

ef (0) =
2ln + 2mn + l + m + 1

2
; ef (1) =

2ln + 2mn + l + m + 1

2

Subcase (iii): when l and m are even or when l and m are odd

Define the vertex labeling as follows

If j ≡ 1(mod 2)

f(aji ) =

0, if i ≡ 1(mod 2)

1, if i ≡ 0(mod 2)
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If j ≡ 0(mod 2)

f(aji ) =

0, if i ≡ 0(mod 2)

1, if i ≡ 1(mod 2)

The number of vertices and edges in Bl,m(C2
n) is defined as ln+mn+2 and 2ln+2mn+l+m+1

The number of vertices labeled with 0 and 1 is defined as

Vf (0) =
ln + mn + 2

2
;Vf (1) =

ln + mn + 2

2

when l and m are even, the number of edges labeled with 0 and 1 is defined as follows

ef (0) =

⌊
2ln + 2mn + l + m + 1

2

⌋
; ef (1) =

⌊
2ln + 2mn + l + m + 1

2

⌋
+ 1

when l and m are odd, the number of edges labeled with 0 and 1 is defined as follows

ef (0) =

⌊
2ln + 2mn + l + m + 1

2

⌋
+ 1; ef (1) =

⌊
2ln + 2mn + l + m + 1

2

⌋
From the above labeling pattern, |Vf (0)− Vf (1)| ≤ 1 and |ef (0)− ef (1)| ≤ 1

Thus, the Bistar clunged with square of cycle graph Bl,m(C2
n) admits cordial labeling when l and

m are different.

Illustration 2.6 Case 1

Figure 2: Cordial labeling of B2,2(C2
4 )
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Illustration 2.7 Case 2

Figure 3: Cordial labeling of B2,3(C2
4 )

Theorem 2.8 The Cartesian product graph P2XCn is cordial when n is odd

Proof: Let G = P2XCn be the Cartesian Product graph P2XCn where n is the number of vertices

of the cycle. Let the vertices of P2XCn be labeled as ai where i=1,2,3,· · · ,2n The number of

Figure 4: Generalized Cartesian product graph P2XCn

vertices in P2XCn are defined as 2n and 3n

Define the vertex labeling as follows

f(ai) =

0, if i ≡ 1, 0(mod 4)

1, if i ≡ 2, 3(mod 4)

The number of vertices labeled with 0 and 1 is defined as

Vf (0) = n;Vf (1) = n
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Case 1: If n ≡ 1(mod 4)

The number of edges labeled with 0 and 1 is defined as follows

ef (0) =

⌊
3n

2

⌋
+ 1; ef (1) =

⌊
3n

2

⌋
Case 2: If n ≡ 3(mod 4)

The number of edges labeled with 0 and 1 is defined as follows

ef (0) =

⌊
3n

2

⌋
; ef (1) =

⌊
3n

2

⌋
+ 1

In both the cases, |Vf (0)− Vf (1)| ≤ 1 and |ef (0)ef (1)| ≤ 1

Therefore, the Cartesian product graph P2XCn admits cordial labelling when n is odd.

Illustration 2.9 Case 1

Figure 5: Cordial labeling of P2XC9

Illustration 2.10 Case 2

Figure 6: Cordial labeling of P2XC7

86



REFERENCES
Proceedings of ICHGD-2024 ISBN: 978-81-19821-72-3

3 Conclusion

Thus in this paper we have obtained Bistar clunged with square of cycle graph and Cartesian

product graph P2XCn are analysed for cordial labeling.
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Subdivision of Stolarsky-3 Mean Graphs
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Abstract

Let G = (V,E) be a graph with p vertices and q edges. G is said to be Stolarsky-3

Mean graph if each vertex x ∈ V is assigned distinct labels f(x) from 1, 2, ..., q + 1 and

each edge e = uv is assigned with labels f(e) =

⌈√
[(f(u))2+f(u)f(v)+(f(v))2]

3

⌉
or⌊√

[(f(u))2+f(u)f(v)+(f(v))2]
3

⌋
then the resulting edge labels are distinct. In this case, f is

called a Stolarsky-3 mean labeling of G and G is called a Stolarsky-3 Mean graph. In this

paper we contribute some new results in Stolarsky-3 mean graphs. We prove that

subdivision of Stolarsky-3 mean graphs are Stolarsky-3 mean graphs. We use some

standard graphs to derive the results for subdivision of graphs.

Keywords : Graph Labeling, Stolarsky-3 mean labeling, Subdivision of graphs, Comb

graph, Ladder graph, Triangular snake graph and Quadrilateral Snake graph.

AMS Subject Classification : 05C78

1 Introduction

Throughout this paper we consider finite, undirected and simple graphs. Let G be a graph

with p vertices and q edges. There are several types of labeling and a detailed survey can be

found in [2]. For all other standard terminology and notations, we follow [3]. Subdivision of Mean

labeling was introduced in [8]. The concept of Stolarsky-3 mean labeling was introduced in [4].

In this paper we investigate the subdivision of Stolarsky-3 mean labeling of graphs. We will

provide brief summary of definitions and other information which are necessary for our present

investigation.

Definition 1.1 A graph G with p vertices and q edges is said to be Stolarsky-3 Mean graph if each

vertex x ∈ V is assigned distinct labels f(x) from 1, 2, ..., q + 1 and each edge e = uv is assigned

the distinct labels f(e) =

⌈√
[(f(u))2+f(u)f(v)+(f(v))2]

3

⌉
or f(e) =

⌊√
[(f(u))2+f(u)f(v)+(f(v))2]

3

⌋
then the resulting edge labels are distinct. In this case, f is called a Stolarsky-3 mean labeling of

G and G is called a Stolarsky-3 Mean graph.

Definition 1.2 A walk in which all the vertices u1, u2, ..., un are distinct is called a Path. It is

denoted by Pn.

Definition 1.3 A closed path is called a cycle. A Cycle on n vertices is denoted by Cn.
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Definition 1.4 The Corona G1�G2 of two graphs G1 and G2 is defined as the graph G obtained

by taking one copy of G1 (which has P1 vertices ) and P1 copies of G2 and then joining the ith

vertex of G1 to every vertices in the ith copy of G2.

Definition 1.5 The Cartesian product G1 × G2 of two graphs is defined to be the graph with

vertex set V1 × V2 and two vertices U = (U1, U2) and V = (V1, V2) are adjacent in G1 × G2 if

either U1 = V1 and U2 is adjacent to V2 and U1 is adjacent to V1.

Definition 1.6 Comb Pn � K1 is a graph obtained by joining a single pendant edge to each

vertex of a path.

Definition 1.7 The Ladder graph Ln (n ≥ 2) is the product graph P2 × Pn which contains 2n

vertices and 3n− 2 edges.

Definition 1.8 A Triangular Snake Tn is obtained from a path u1, u2, ..., un by joining ui and

ui+1 to a new vertex vi for 1 ≤ i ≤ n− 1. That is, every edge of a path is replaced by a triangle

C3.

Definition 1.9 A Quadrilateral snake Qn is obtained from a path u1, u2, ..., un by joining ui

and ui+1 to two new vertices vi and wi respectively and then joining vi and wi. That is, every

edge of a path is replaced by a cycle C4.

Definition 1.10 If e = uv is an edge of G and w is a vertex not in G, then e is said to be

subdivided when it is replaced by the edges uw and vw. The graph obtained by subdividing each

edge of a graph G is called the Subdivision graph G and is denoted by S(G).

Theorem 1.11. Any Path Pn is Stolarsky-3 mean graph. [4]

Theorem 1.12. The Comb graph Pn �K1 is a Stolarsky-3 mean graph.[4]

Theorem 1.13. Any Ladder Ln is a Stolarsky-3 mean graph. [4]

Theorem 1.14. Any Triangular snake Tn is a Stolarsky-3 mean graph [4]

Theorem 1.15. Any Quadrilateral Snake Qn is a Stolarsky-3 mean graph. [4]

2 Main Results

Theorem 2.1 The subdivision of a Comb graph (Pn �K1) is a Stolarsky-3 mean graph.

Proof: Here we subdivide the comb graph in three different cases. Let u1, u2, ..., un be the vertices

of the path Pn and let vi be the pendant vertices attached to the path Pn. Let G = S(Pn �K1).

Case (i): Subdivide the edge uiui+1, 1 ≤ i ≤ n− 1 of the path Pn. Let ti, 1 ≤ i ≤ n− 1 be the

vertices which subdivide the edges of Pn.
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Define a function f : V (G) → 1, 2, ..., q + 1 by f(ui) = 3i − 2, 1 ≤ i ≤ n, f(vi) = 3i − 1,

1 ≤ i ≤ n, f(ti) = 3i, 1 ≤ i ≤ n− 1, and the edges are labeled as f(uiti) = 3i− 1, 1 ≤ i ≤ n− 1,

f(uivi) = 3i− 1, 1 ≤ i ≤ n, and f(tiui+1) = 3i, 1 ≤ i ≤ n− 1. This gives a set of distinct edge

labels which forms a Stolarsky-3 mean graph.

Example 2.2 Subdivision of P5 �K1 is given below

4 107 96 1231

141182 5

Figure 1

13

Case (ii): Here we subdivide the edge uivi, 1 ≤ i ≤ n of the comb Pn �K1. Let ti, 1 ≤ i ≤ n

be the vertices which subdivide the edges uivi, 1 ≤ i ≤ n.

Define a function f : V (G)→ {1, 2, ..., q+ 1} by f(ui) = 3i−2, 1 ≤ i ≤ n, f(vi) = 3i, 1 ≤ i ≤ n,

f(ti) = 3i − 1, 1 ≤ i ≤ n − 1. Then the edges are labeled as f(uiui+1) = 3i, 1 ≤ i ≤ n − 1

f(uiti) = 3i − 2, 1 ≤ i ≤ n and f(tivi) = 3i − 1, 1 ≤ i ≤ n. This forms a Stolarsky-3 mean

graph.

Example 2.3 Subdivision of (P5 �K1) is given below

115

13

14

10

2

71 4

8

Figure 2

126 153 9

16

17

18

Case (iii): We apply subdivision for all the edges of the comb Pn �K1. Let ti, 1 ≤ i ≤ n− 1 be

the vertices which subdivide the edges uiui+1 and wi, 1 ≤ i ≤ n be the vertices which subdivide

the edge uivi, 1 ≤ i ≤ n.

Define a function f : V (G) → {1, 2, ..., q + 1} by f(ui) = 4i − 3, 1 ≤ i ≤ n, f(vi) = 4i − 1

1 ≤ i ≤ n, f(ti) = 4i, 1 ≤ i ≤ n− 1, f(wi) = 4i− 2, 1 ≤ i ≤ n, thus we get distinct edge labels

f(uiti) = 4i − 1, 1 ≤ i ≤ n − 1, f(uiwi) = 4i − 3, 1 ≤ i ≤ n, f(wivi) = 4i − 2, 1 ≤ i ≤ n,

f(tiui+1) = 4i, 1 ≤ i ≤ n− 1. This forms a Stolarsky-3 mean graph.

Example 2.4 S(P5 �K1) is given below
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5 139 128 1641

1814102 6

17

1915113 7

Figure 3

Theorem 2.5 Subdivision of Ladder graph Ln is a Stolarsky-3 mean graph.

Proof: Let Ln be a Ladder graph connecting two paths u1, u2, ..., un and v1, v2, ..., vn. Let G =

S(Ln) be a graph obtained by subdividing all the edges of Ln.

Here we subdivide the Ladder in three different cases.

Case (i): We subdivide each edge uiui+1, and vivi+1 1 ≤ i ≤ n−1 of Ln. Let xi, yi, 1 ≤ i ≤ n−1

be the vertices which subdivide the edges uiui+1, and vivi+1.

Define a function f : V (G) → {1, 2, ..., q + 1} by f(ui) = 5i − 4, 1 ≤ i ≤ n, f(vi) = 5i − 3 ,

1 ≤ i ≤ n, f(xi) = 5i − 2, 1 ≤ i ≤ n − 1, and f(yi) = 5i − 1, 1 ≤ i ≤ n − 1. The edges are

labeled as f(uixi) = 5i − 3, 1 ≤ i ≤ n − 1, f(xiui+1) = 5i − 1, 1 ≤ i ≤ n − 1, f(viyi) = 5i − 2,

1 ≤ i ≤ n− 1, f(yivi+1) = 5i, 1 ≤ i ≤ n− 1, f(uivi) = 5i− 4, 1 ≤ i ≤ n. Thus we get distinct

edge labels which forms a Stolarsky-3 mean labeling of graphs.

Example 2.6 The labeling pattern of subdivision of L5 is given below.

6 1611 138 1831 21

Figure 4

7 1712 149 1942 22

Case (ii): Here we subdivide the edge uivi, 1 ≤ i ≤ n of Ln. Let ti, 1 ≤ i ≤ n − 1 be the

vertices which subdivide ui and vi. Define a function f : V (G) → {1, 2, ..., q + 1} by f(u1) = 1,

f(ui) = 4(i− 1), 2 ≤ i ≤ n, f(v1) = 3, f(vi) = 4(i− 1) + 1, 2 ≤ i ≤ n, f(xi) = 4i− 2, 1 ≤ i ≤ n.

Edges are labeled with f(uiui+1) = 4i − 1, 1 ≤ i ≤ n − 1, f(vivi+1) = 4i, 1 ≤ i ≤ n − 1,

f(uixi) = 4i− 3, 1 ≤ i ≤ n, f(xivi) = 4i− 2, 1 ≤ i ≤ n. Thus we get distinct edge labels. Hence

f is Stolarsky-3 mean labeling.

Example 2.7 The Labeling pattern of S(L5) is given below
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8 161241

Figure 5
9 171353

10 181462

Case (iii): We apply subdivision for all the edges of the ladder Ln. Let xi, yi, 1 ≤ i ≤ n− 1 be

the vertices which subdivide the edges uiui+1, and vivi+1 and let ti, 1 ≤ i ≤ n− 1 be the vertices

which subdivide the edges uivi, 1 ≤ i ≤ n. Define a function f : V (G) → {1, 2, ..., q + 1} by

f(u1) = 6, f(ui) = 6(i−1), 2 ≤ i ≤ n, f(v1) = 3, f(vi) = 6(i−1) + 1, 2 ≤ i ≤ n, f(xi) = 6i−2,

1 ≤ i ≤ n, f(yi) = 6i − 1, 1 ≤ i ≤ n − 1, f(ti) = 6i − 4, 1 ≤ i ≤ n. Edges are labeled as

f(uixi) = 6i− 3, 1 ≤ i ≤ n− 1, f(xiui+1) = 6i− 1, 1 ≤ i ≤ n− 1, f(uizi) = 6i− 5, 1 ≤ i ≤ n,

f(zivi) = 6i − 4, 1 ≤ i ≤ n, f(viyi) = 6i − 2, 1 ≤ i ≤ n − 1, f(yiv(i + 1)) = 6i. Thus we get

distinct edge labels. This forms a Stolarsky-3 mean labeling of graphs.

Example 2.8 The Labeling pattern of S(L5) is exhibited below

6 1812 1610 2141 23

Figure 6

7 1913 1711 2253 24

14 252082

Theorem 2.9 Subdivision of Triangular snake Tn is a Stolarsky-3 mean graph.

Proof: In this theorem we make subdivision in three cases. In first case, we subdivide the edges

of the triangle in its lower base and in second case we subdivide the remaining two sides. Then

in the third case we divide three sides at the same time. Let u1, u2, ..., un and v1, v2, ..., vn be the

vertices of the triangular snake.

Case (i): We subdivide the edge uiui+1 by xi. Then the function defined here as f : V (G) →
{1, 2, ..., q + 1} by f(ui) = 4i − 3, 1 ≤ i ≤ n, f(vi) = 4i − 2, 2 ≤ i ≤ n − 1, f(xi) = 4i,

1 ≤ i ≤ n−1. Edges are labeled as f(uixi) = 4i−2, 1 ≤ i ≤ n−1, f(xiui+1) = 4i, 1 ≤ i ≤ n−1,

f(uivi) = 4i − 3, 1 ≤ i ≤ n − 1, f(viui+1) = 4i − 1, 1 ≤ i ≤ n − 1. Thus, we get distinct edge

labels. This forms a Stolarsky-3 mean labeling of graphs.

Example 2.10 Stolarsky-3 mean labeling of subdivided Triangular snake is
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Figure 7

5 139 128 1641 17

10 1462

Case (ii): In this case we subdivide the two sides of the triangle. Let xi, yi, 1 ≤ i ≤ n − 1

be the vertices which subdivide the edges uivi and ui+1vi, 1 ≤ i ≤ n − 1 respectively. Define a

function f : V (G)→ {1, 2, ..., q + 1} by f(ui) = 5i− 4, 1 ≤ i ≤ n, f(vi) = 5i− 2, 1 ≤ i ≤ n− 1,

f(xi) = 5i − 3, 1 ≤ i ≤ n − 1, f(yi) = 5i − 1, 1 ≤ i ≤ n − 1. Then the edges are labeled as

f(uixi) = 5i− 4, 1 ≤ i ≤ n− 1, f(xivi) = 5i− 3, 1 ≤ i ≤ n− 1, f(viyi) = 5i− 2, 1 ≤ i ≤ n− 1,

f(yiui+1) = 5i, 1 ≤ i ≤ n − 1, f(yiui+1) = 5i − 1, 1 ≤ i ≤ n − 1. Thus we get distinct edge

labels. This forms a Stolarsky-3 mean labeling of graphs.

Example 2.11 The labeling pattern of S(T5) is shown below

Figure 8

6 16111 21

13 1883

7 1712 149 1942

Case (iii): In this case we subdivide each edge of a Triangular snake by a new vertex.

Let xi, yi and ti, 1 ≤ i ≤ n− 1 be the vertices which subdivide the edges uivi, viui+1, and uiui+1

respectively. Define a function f : V (G) → {1, 2, ..., q + 1} by f(ui) = 6i − 5, 1 ≤ i ≤ n,

f(vi) = 6i − 3, 1 ≤ i ≤ n − 1, f(xi) = 6i − 4, 1 ≤ i ≤ n − 1, f(yi) = 6i − 1, 1 ≤ i ≤ n − 1,

f(ti) = 6i − 2, 1 ≤ i ≤ n − 1. Then the edges are labeled as f(uiti) = 6i − 3, 1 ≤ i ≤ n − 1,

f(uixi) = 6i−5, 1 ≤ i ≤ n−1, f(xivi) = 6i−4, 1 ≤ i ≤ n−1, f(tiui+1) = 6i−1, 1 ≤ i ≤ n−1,

f(viyi) = 6i− 2, 1 ≤ i ≤ n− 1, f(yiui+1) = 6i, 1 ≤ i ≤ n− 1. Thus all edge labels are distinct.

This forms a Stolarsky-3 mean labeling of graphs.

Example 2.12 Stolarsky-3 mean labeling of subdivided Triangular snake is

Figure 9

7 1913 1610 2241 25

15 2193

8 2014 1711 2352
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Theorem 2.13 Subdivision of any Quadrilateral Snake Qn is a Stolarsky-3 mean graph.

Proof: Let Qn be a Quadrilateral Snake obtained from a path u1, u2, ..., un. Join ui and ui+1 to

new vertices vi and wi, 1 ≤ i ≤ n− 1 respectively and then joining vi and wi. Let G = S(Qn) be

the graph obtained by subdividing all the edges of Qn.

Here we consider the following cases.

Case (i): First we subdivide the edge uiui+1 of Qn. Let xi, 1 ≤ i ≤ n− 1 be the vertices which

subdivide ui and ui+1. Define a function f : V (G)→ {1, 2, ..., q+1} by f(ui) = 5i−4, 1 ≤ i ≤ n,

f(v1) = 3, f(vi) = 5(i − 1) + 2, 2 ≤ i ≤ n − 1, f(wi) = 5i − 1, 1 ≤ i ≤ n − 1, f(x1) = 2,

f(xi) = 5(i− 1) + 3, 2 ≤ i ≤ n− 1. Edges are labeled with f(u1x1) = 1, f(uixi) = 5(i− 1) + 2,

2 ≤ i ≤ n−1, f(xiui+1) = 5i−1, 2 ≤ i ≤ n−1, f(u1v1) = 2, f(uivi) = 5(i−1)+1, 2 ≤ i ≤ n−1,

f(viwi) = 5i − 2, 1 ≤ i ≤ n − 1, f(wiui+1) = 5i, 1 ≤ i ≤ n − 1. Hence f is Stolarsky-3 mean

labeling.

Example 2.14 Stolarsky-3 mean labeling of subdivided Quadrilateral Snake is shown below

Figure 10

6 1611 13821

43 97 1412

Case (ii): In this case we subdivide the edges uivi and ui+1wi of Qn. Let xi and yi, 1 ≤ i ≤ n−1,

be the vertices which subdivide the edges uivi and ui+1wi.

Define a function f : V (G) → {1, 2, ..., q + 1} by f(ui) = 6i − 5, 1 ≤ i ≤ n, f(vi) = 6i − 3,

1 ≤ i ≤ n − 1, f(wi) = 6i − 2, 1 ≤ i ≤ n − 1, f(si) = 6i − 4, 1 ≤ i ≤ n − 1, f(ti) = 6i − 1,

1 ≤ i ≤ n − 1. Edges are labeled with f(uisi) = 6i − 5, 1 ≤ i ≤ n − 1, f(sivi) = 6i − 4,

1 ≤ i ≤ n− 1, f(ui+1ti) = 6i, 1 ≤ i ≤ n− 1, f(tiwi) = 6i− 1, f(viwi) = 6i− 3, 1 ≤ i ≤ n− 1.

Clearly f is Stolarsky-3 mean labeling.

Example 2.15 Stolarsky-3 mean labeling of S(Q4) is shown below

Figure 11
7 19131

52

43

11 14

109

178

1615
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Case (iii): Here we subdivide the edge viwi of Qn. Let xi, 1 ≤ i ≤ n− 1, be the vertices which

subdivide vi and wi. Define a function f : V (G)→ {1, 2, ..., q + 1} by f(ui) = 5i− 4, 1 ≤ i ≤ n,

f(vi) = 5i − 3, 1 ≤ i ≤ n, f(wi) = 5i − 1, 1 ≤ i ≤ n − 1, f(xi) = 5i − 2, 1 ≤ i ≤ n − 1. Edges

are labeled with f(uivi) = 5i− 4, 1 ≤ i ≤ n− 1, f(vixi) = 5i− 3, 1 ≤ i ≤ n− 1, f(ui+1wi) = 5i,

1 ≤ i ≤ n− 1, f(xiwi) = 5i− 1, 1 ≤ i ≤ n− 1.

Clearly f is Stolarsky-3 mean labeling.

Example 2.16 Stolarsky-3 mean labeling of S(Q4) is shown below

Figure 12

6 15111

42 3 97 8 1412 13

Case (iv): In this case we subdivide all the edges of a Quadrilateral Snake Qn. Let si, ti, xi

and yi, 1 ≤ i ≤ n − 1, be the vertices which subdivide the edges uiui+1, uivi, viwi and wiui+1

respectively. Define a function f : V (G) → {1, 2, ..., q + 1} by f(ui) = 8i − 7, 1 ≤ i ≤ n,

f(vi) = 8i − 5, 1 ≤ i ≤ n − 1, f(wi) = 8i − 3, 1 ≤ i ≤ n − 1, f(si) = 8i, 1 ≤ i ≤ n − 1,

f(ti) = 8i − 6, 1 ≤ i ≤ n − 1, f(xi) = 8i − 4, 1 ≤ i ≤ n − 1, f(yi) = 8i − 2, 1 ≤ i ≤ n − 1.

Then the edges are labeled as f(uiti) = 8i − 7, 1 ≤ i ≤ n − 1, f(tivi) = 8i − 6, 1 ≤ i ≤ n − 1,

f(vixi) = 8i− 5, 1 ≤ i ≤ n− 1, f(xiwi) = 8i− 4, 1 ≤ i ≤ n− 1, f(wiyi) = 8i− 2, 1 ≤ i ≤ n− 1,

f(yiui+1) = 8i− 1, 1 ≤ i ≤ n− 1, f(ui+1si) = 8i, 1 ≤ i ≤ n− 1, f(siui) = 8i− 3, 1 ≤ i ≤ n− 1.

Thus, all edge labels are distinct. This forms a Stolarsky-3 mean labeling of graph.

Example 2.17 Stolarsky-3 mean labeling of S(Q4) is shown below

Figure 13

9 2517 241681

62

53 4

14 18

1311 12

2210

2119 20

3 Conclusion

The study of labeled graph is important due to its different applications. It is very interesting

to investigate subdivision of Stolarsky-3 mean graphs which admit Stolarsky-3 mean graphs.
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The derived results are demonstrated by means of sufficient illustrations which provide better
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Abstract

The Cluster hypergraphH = (Vx, E) is said to be an Edge Product Cluster Hypergraph if

there exists an edge function f : E → I such that the edge function f and the corresponding

edge product function F of f on Vx have the following two conditions:

(i) F (v) ∈ I for every v ∈ Vx

(ii) if f(e1)× f(e2)× . . .× f(ei) ∈ I for some edges e1, e2, . . . ei ∈ E(H) then the edges

e1, e2, . . . ei are all adjacent to some vertex v ∈ Vx.

An edge e whose edge function is labeled as one is the unit edge and the largest element in

the set of positive integers I is the maximal edge of the cluster hypergraph. The edge

product cluster hypergraph, unit edge product cluster hypergraph and some theorems

based on this concept have been discussed in this paper.

Keywords : Edge function, Edge product function, Edge product cluster hypergraph,

Unit edge product cluster hypergraph, Cluster hypergraph.

AMS Subject Classification : 05C65

1 Introduction

Harary F introduced the notation of sum graph [6]. A graph G(V,E) is said to be a sum

graph if there exists a bijection labeling f from the vertex set V to a set S of positive integers

such that xy ∈ E if and only if f(x) + f(y) ∈ S. The product analogue of sum graphs was first

introduced by Thavamani in 2011 [8]. He introduced the edge product graphs and the edge

product number of a graph [6], [13]. A graph G is said to be an edge product graph if the edges

of G can be labelled with distinct positive integers such that the product of all label of the

edges incident on a vertex is again an edge label of G [8] .

The hypergraph is a generalization of a graph in which edges can connect any number of

vertices. Hypergraph was introduced by Berge in 1973 [1]-[2]. In 2020 S. Samantha introduced

the concept of cluster hypergraphs [8]. An cluster hypergraph was introduced to generalize the

concept of hypergraph in which cluster nodes are allowed. Jadhar and Pawar introduced the
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notation of an edge function and using this edge function an edge product hypergraph is defined

[9]. In this paper the concept of edge product cluster hypergraph, unit edge product cluster

hypergraph have been discussed here.

2 Preliminaries

Definition 2.1 Let H = (Vx, E) be a simple cluster hypergraph with vertex set Vx(H) and edge

set E(H). Let I be the set of positive integers such that |E| = |I|. Then any bijection f : E → I

is called an Edge Function of the cluster hyergraph H.

Definition 2.2 The function F (v) =
∏
{f(e); edge e incident to the vertex v} on Vx(H) is

called an Edge Product Function of the edge function f .

Definition 2.3 The cluster hypergraph H = (Vx, E) is said to be an Edge Product

Cluster Hypergraph if there exists an edge function f : E → I such that the edge function f

and the corresponding edge product function F of f on Vx(H) have the following two conditions:

(i) F (v) ∈ I for every v ∈ Vx(H)

(ii) if f(e1)×f(e2)× . . .×f(ei) ∈ I for some edges e1, e2 . . . ei ∈ E(H), then the edges e1, e2 . . . ei

are all incident to some vertex v ∈ Vx(H).

Example 2.3 Let H = (Vx, E) be a cluster hypergraph, with vertex set

Vx(H) = {v1, v2,v3 = {v1, v2},v4, v5,v6 = {v4, v5},v7, v8, v9, v10, v11, v12} and edge set

E(H) = {e1, e2, . . . e8}. Here the edges of H are defined as follows e1 = {v1, v3}, e2 = {v2, v3},
e3 = {v3, v6}, e4 = {v4, v6}, e5 = {v5, v6}, e6 = {v6, v7, v8}, e7 = {v6, v7, v9},
e8 = {v10, v11, v12}. Now we define the edge function f : E → I by f(e1) = 15, f(e2) = 8,

f(e3) = 20, f(e4) = 2, f(e5) = 3, f(e6) = 4, f(e7) = 5, f(e8) = 2400. The edge product

function F of f is defined by F (v1) = 15, F (v2) = 8, F (v3) = 2400, F (v4) = 2, F (v5) = 3,

F (v6) = 2400, F (v7) = 20, F (v8) = 4, F (v9) = 5, F (v10) = 2400, F (v11) = 2400, F (v12) = 2400.

Thus the given cluster hypergraph in figure 2 is an edge product cluster hypergraph.
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Definition 2.4 Let H = (Vx, E) be an edge product cluster hypergraph. Then H is said to be a

Unit edge Product cluster hypergraph if there exists an edge function f : E → I such that

1 ∈ I.

Definition 2.5 An edge e in a unit edge product cluster hypergraph whose edge function label

as the largest element in the set of positive integers I is called a Maximal Edge of that cluster

hypergraph.

Definition 2.6 Let X be a nonempty set and let Vx be a subset of P (X) such that φ /∈ Vx and

X ⊂ Vx. Now F be a multi-set whose element belong to P (P (X)) such that

(i) E 6= φ

(ii) for each element e ∈ E, there exist atleast one element v ∈ Vx such that v ∈ e.
Then H = (Vx, E) is said to be Cluster hypergraph where Vx is said to be a vertex set and E

is said to be multi-hyper edge set[11].

3 Main Results

Theorem 3.1 Let H = (Vx, E) be a unit edge product cluster hypergraph with a unit edge e.

Then every maximal edge in H is adjacent to only e.

Proof: Let H = (Vx, E) be a unit edge product cluster hypergraph with a unit edge e. Let

f : E → I be an edge function and F be an edge product function of f . Now, consider the unit

edge e. ie., f(e) = 1. Let m be a maximal edge in H such that f(m) = i. To prove m is

adjacent only to e. By using theorem 3.3 in [1], e is adjacent to all the edges in H. Therefore it
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is enough to prove that m has e only as its neigbour. Suppose on the contrary m is adjacent to

some other edge h ∈ E(H). Choosing a vertex v ∈ m ∩ h or v ∈ m ∩ h ∩ e. So we obtained that

F (v) = f(m).f(h) > i or F (v) = f(m).f(h).f(e) > i. Both the ways, we get a contradiction to

that i is the largest element in I. Hence m is the maximal edge in H which is adjacent to only

the unit edge e. Hence the theorem.

Definition 3.2 Let H = (Vx, E) be a cluster hypergraph. Let v ∈ V . The edge degree of v is

the number of edges containing the vertex v and is denoted by dE(v).

The maximum edge degree of H is denoted by ∆E(H)

The minimum edge degree of H is denoted by δE(H)

A vertex of edge degree one is called a pendant vertex or end vertex.

Theorem 3.3 Let H = (Vx, E) be a unit edge product cluster hypergraph with a unit edge e. If

v ∈ V be a vertex of maximum edge degree, then v ∈ e.
Proof: Let H = (Vx, E) be a unit edge product cluster hypergraph with a unit edge e. Let

f : E → I be an edge function and F be an edge product function of f . Let v be the vertex in

unit edge product cluster hypergraph with maximum edge degree d (say), where d is a positive

integer. To prove v ∈ e. On the contrary, suppose v /∈ e. Since ∆E(H) = d. Consider

e1, e2, . . . , ed be the edges incident to v. Then F (v) = f(e1)× f(e2)× . . .× f(ed) ∈ I. But it is

clear that F (v) = F (v).1. Therefore it follows that F (v) = f(e1)× f(e2)× . . .× f(ed)× f(e) ∈ I.

This shows that the edges e1, e2, . . . , ed, e is incident with v and so the edge degree of v is

d+ 1 > ∆E(H), which is a contradiction. Hence v ∈ e.

Theorem 3.4 Let H = (Vx, E) be a cluster hypergraph. Let e be any edge of H with f(e) = 1.

Let ei 6= e for any other edge in H, there is exactly one vertex vi ∈ ei ∩ e for 1 ≤ i ≤ m− 1 and

f ∩ g = φ for every distinct edges f and g connecting the maximal vertices (except edge e).

Then H is a unit edge product cluster hypergraph.

Proof: Let H = (Vx, E) be a cluster hypergraph which satisfies the hypothesis of the theorem.

Let e, e1, e2, . . . , em−1 be the edges of H. Let v1, v2, . . . , vm−1 be the set of vertices incident with

e and ei ∩ ej 6= φ for all distinct edges ei and ej which connects the maximal vertices. Clearly,

for every edge ei (1 ≤ i ≤ m− 1) has only one distinct vertex vi ∈ ei ∩ e. Let l1, l2, . . . , lt be the

other vertices in e for which l1, l2, . . . , lt /∈ ei, 1 ≤ i ≤ m− 1. This implies that l1, l2, . . . , lt are

end vertices in H.

For 1 ≤ i ≤ m− 1, let ei be the edges with vertices ui1, u
i
2, . . . , u

i
qi in H. Here q1, q2, . . . , qm−1

are the non-negative integers which represents the number of members in e1, e2, . . . , em−1

respectively. Therefore V (H) = {v1, v2, . . . , vm−1,

u11, u
1
2, . . . , u

1
q1 , u

2
1, u

2
2, . . . , u

2
q2 , . . . , u

m−1
1 , um−1

2 , . . . , um−1
qm−1

, l1, l2, . . . , lt} and

E(H) = {e, e1, e2, . . . , em−1} where e = {v1, v2, . . . , vm−1, l1, l2, . . . , lt} and ei = {ui1, ui2, . . . , uiqi}
for 1 ≤ i ≤ m− 1 are the vertex set and edge set of the given cluster hypergraph respectively.
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Now, define the edge product function for this cluster hypergraph H. Consider the set of positive

integers I as I = {1, p1, p2, . . . , pm−1} where pi are the prime number which are taken in the

increasing order.Define the edge function f : E → I by f(e) = 1, f(ei) = pi for 1 ≤ i ≤ m− 1.

So the edge product function of Fof edge function f is defined by

F (vi) = pi for 1 ≤ i ≤ m− 1

F (lj) = 1 for 1 ≤ j ≤ t
F (u11) = F (u12) = F (u13) = . . . = F (u1q1) = p1

F (u21) = F (u22) = F (u23) = . . . = F (u2q2) = p2
...

F (um−1
1 ) = F (um−1

2 ) = F (um−1
3 ) = . . . = F (um−1

qm−1
) = pm−1

It is easily verified that for every vertex x ∈ Vx(H), we have F (x) ∈ I. Also if the product of a

collection more than one member of I is in I then the collection consists of exactly two

members. That is 1 and pi. This happens, the edges e and ei is incident to a vertex

vi ∈ Vx(H). Therefore it follows that H is a unit edge product cluster hypergraph.

Remark 3.5 If the cluster hypergraph H = (Vx, E) satisifies the hypothesis of the above

theorem, then every cluster nodes contains exactly one simple node.

Theorem 3.6 Let H = (Vx, E) be an edge product cluster hypergraph. Let x be a non-pendant

vertex such that the edges e1, e2, . . . , ei are incident to x and e ∈ E with F (x) = F (e). If e is

adjacent to any edge m 6= e1, e2, . . . , ei in H, then m must be adjacent to the edges e1, e2, . . . , ei

in H.

Proof: Let H = (Vx, E) be an edge product cluster hypergraph. Let f : E → I be an edge

function and F be an edge product function of f . Let x be a non-pendant vertex and e ∈ E with

F (x) = F (e). Let e1, e2, . . . , ei be the edges incident with x. Since x is non-pendant implies that

i ≥ 2. Therefore, F (x) = f(e1)× f(e2)× . . .× f(ei) ∈ I. Let m be any edge other than

e1, e2, . . . , ei which is adjacent to e. This shows that, there exist a vertex v such that v ∈ e ∩m
and so F (v) = f(e)× f(m) ∈ I. It follows that F (v) = f(e1)× f(e2)× . . .× f(ei)× f(m) ∈ I.

Hence m must be adjacent to th edges e1, e2, . . . , ei in H.

Remark 3.7 Let H = (Vx, E) be any cluster hypergraph which satisfies the hypothesis of the

above theorem. If u be a vertex of H incident with the edges e1, e2, . . . , ei,m then δE(H) ≥ 3.

4 Conclusion

The edge product of cluster hypergarph and some theorems related to this concept have

been discussed here. In future studies, the edge product number can be determined for cluster

hypergraphs.
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Abstract

For a nonempty subset W ⊆ E(G), the edge-to-vertex Steiner distance dev (W) of W is

the smallest size of a tree containing V(W). The smallest size of a tree containing V(W) is

called a Steiner Wev - tree of G. Every edge of a Steiner Wev-tree of G must be present for

a set W ⊆ E to be referred to as an edge-to-edge Steiner set. The edge-to-edge Steiner

number see (G) of G is the least cardinality of its edge-to-edge Steiner sets. The Upper

edge-to-edge Steiner set of cardinality see(G) is referred to as a minimum edge-to-edge

Steiner number of G is the maximum cardinality of a minimal edge-edge Steiner set of G.

It is denoted by s+ee(G). Certain kinds of graphs have their upper edge-to-edge Steiner

numbers determined. This concept’s general qualities are investigated. It is shown that for

any positive integers a and b with 2 ≤ a ≤ b, there exists a connected graph G such that

see(G) = a and s+ee(G) = b.

Key words:: Steiner distance, Steiner number, edge-to-vertex Steiner distance,

edge-to-vertex Steiner set, edge-to-edge Steiner set.

AMS classification: 05C12

1 Introduction

Let G = (V,E) be a graph having a vertex set V(G) and an edge set E(G). In addition,

we state that a graph G has size m = ‖E(G)‖ and order n = ‖V (G)‖. We refer to [2] for the

fundamental terms used in graph theory. If and only if an edge e = uv ∈ E(G) exists, a vertex

v is next to a vertex u. If uv ∈ E(G), then u is a neighbor of v, and the set of neighbors of v is

denoted by NG(v).The formula for a vertex’s degree is degG(v) = |NG(v)|. If degG(v) = n − 1,

a vertex is said to be a universal vertex. If the subgraph induced by vertex v is complete, then

vertex v is said to be an extreme vertex. The length of the shortest u − v path in a connected

graph G is equal to the distance d(u, v) between two vertices, denoted as u and v. For a nonempty

set W of vertices in a connected graph G, the Steiner distance d(W) of W is the minimum size

of a connected subgraph of G containing W. The Steiner distance for [17] was examined. Let

S(W) be the collection of all Steiner W-tree vertices. A set W ⊆ V (G) is referred to as a Steiner
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set of G if S(W ) = V (G). The lowest cardinality for a Steiner set, commonly referred to as a

minimum Steiner set or simply an s-set, is the Steiner number s(G) of G. The Steiner number

s(G) of G determines the minimal cardinality of a Steiner set, which is also known as an s-set.

The Steiner number was introduce in [5] and further studied in [5,6,9-14,19-22].

Definition 1.1 [15] A connected graph with at least three vertices should be G = (V,E). If every

edge of G is lies on a Steiner Wev − tree of G, a set W ⊆ E is referred to as an edge-to-edge

Steiner set. The edge-to-edge Steiner number see(G) of G is the minimum cardinality of its

edge-to-edge Steiner sets. Any edge-to-edge Steiner set with cardinality see(G) is a minimum

edge-to-edge Steiner set of G or see-set of G.

Example 1.2 Let W1 = v1v6, v2v5, v3v4 for the graph G shown in Figure 1.1. W is an

edge-to-edge Steiner set of G since each edge of G is contained in one of the two Steiner

Wev-trees, and as a result, see(G) ≤ 3. No edge-to-edge Steiner set of G is a two elements

subset of E, hence see(G) = 3.

Figure 1: 1

Remark 1.3 [11] If G is adjacent vertices e = uv and f = vw are, then the Steiner Wev − tree

is a path between u,v and w. It should be emphasised that the Steiner Wev − tree only contains

the elements of V(W) if W ⊆ E such that W is connected.

Corollary 1.4 [15] Each end vertex of G belongs to every edge-to-edge Steiner set of G.

Theorem 1.5 [15] Every edge-to-edge Steiner set of a connected graph of G is an edge-to-vertex

Steiner set of G.

2 The Upper Edge-to-Edge Steiner Number of a Graph

Definition 2.1 A minimum edge-to-edge Steiner set of G is an edge-to-edge Steiner set W in

a connected graph G where no appropriate subset of W is an edge-to-edge Steiner set of G. The
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highest cardinality of a minimal edge-to-edge Steiner set of G is known as the upper edge-to-edge

Steiner number of G, it is denoted by s+ee(G).

Example 2.2 Consider the graph G shown in Figure 1.1. The only two minimal edge-to-edge

Steiner sets of G are W1 = {v1v6, v2v5, v3v4}and W2 = {v1v2, v2v3, v4v5, v5v6} and so that

s+ee(G) = 4.

Remark 2.3 Every minimal edge-to-edge Steiner set of G is a minimal edge-to-edge Steiner

set of G and the converse need not true. W2 = v1v2, v2v3, v4v5, v5v6 is a minimal edge-to-edge

Steiner set for the graph G shown in Figure 1.1, but it is not a minimal edge-to-edge Steiner set

for G.

observation 2.4 1. In a connected graph G, each end-edge is a member of every minimum

edge-to-edge G Steiner set.

1. Let G be a connected graph and let W be the minimal edge-to-edge Steiner set of G.

Therefore, W is not the owner of any cut edge of G that are not G end edges.

Theorem 2.5 For a connected graph G size n ≥ 2,2 ≤ see (G) ≤ s+ee(G) ≤ n.

Proof: There must be at least two edges in any edge-to-edge Steiner set, so

see(G) ≥ 2.see(G) ≤+
ee (G) because every minimal edge-to-edge Steiner set is a minimal

edge-to-edge Steiner set. The fact that E(G) is an edge-to-edge Steiner set of G also makes it

obvious that s+ee(G) ≤ n. Consequently, 2 ≤ see(G) ≤ s+ee(G) ≤ n.

Remark 2.6 In Theorem 2.5, there may be a sharp bound. For the path of length

n ≥ 3, see(G) = 2. For the star G = K(1,n), s
+
ee(G) = n, and for the double star

G,see(G) = s+ee(G). Additionally, Theorem 2.5 inequalities are all strict. For the graph G given

in Figure 1.1, see(G) = 3, s+ee(G) = 4and n=7. Thus 2 < see(G) < s+ee(G) < n.

Theorem 2.7 Consider the connected graph G, see(G) = n if and only if s+ee(G) = n.

Proof: Suppose see(G) = n. Then the unique minimal edge-to-edge Steiner set of G is W =

E(G). It is obvious that W is the one and only minimum edge-to-edge Steiner set of G because

no proper subset of W is an edge-to-edge Steiner set of G, and as a result, s+ee(G) = n. Theorem

2.5 leads to the Converse.

Theorem 2.8 G be a connected graph of size n ≥ 5, which is not a star. Then s+ee(G) ≤ n− 2.

proof:Assume that s+ee(G) ≥ n − 1. So, according to Theorem 2.7, s+ee(G) = n − 1. Let W =

E(G) − {e} be the smallest edge-to-edge Steiner set of G. Let e be an edge of G that is not an
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end edge of G. e is connected to [E(G)e] since it is not a cut edge of G. Let f be an edge of

[E(G)e] that is not an end edge of G and is independent of e (this is possible since n ≥ 5). An

edge-to-edge Steiner set of G is then W1 = W{f}. W is not a minimal edge-to-edge Steiner set

of G since W1 ⊆W , which is a contradiction. Consequently, s+ee(G) ≤ n− 2.

Remark 2.9 There can be sharp bounds in Theorem 2.8. For the cycle G = C4, see(G) = 2 =

n− 2.

Theorem 2.10 For a connected graph of G with n ≥ 4, see(G) = n− 1 if and only if s+ee(G) =

n− 1.

proof: Let see(G) = n− 1. Then it follows from Theorem 2.5, s+ee(G) = n or n− 1. According

to Theorem 2.6, s+ee(G) = n, which is a contradiction, if s+ee(G) = n. Therefore, s+ee(G) = n− 1.

Conversely, if we assume that s+ee(G) = n− 1, it follows from Theorem 2.8 that G is not a star.

Thus, according to Theorem 2.8, G has a cut-edge, say e. It follows that W = E(G) − e is the

only minimal edge-to-edge Steiner set of G since s+ee(G) = n−1. In our assertion, see(G) = n−1.

Assume that see(G) = n − 1. Then there exists a Steiner set W1that is edge-to-edge minimal

and such that |W1| < n − 1. If e /∈ W1, then it follows that W1 ⊂ W , which is a contradiction.

Consequently, s+ee(G) ≤ n− 1.

Theorem 2.11 For a complete graph of Km with m ≥ 4,s+ee(Km) = m− 1.

Proof: Let W be any collection of Km adjacent edges that are incident at a vertex, say x. It is

obvious that W is an edge-to-edge Steiner set of G because every vertex of Km is on the Steiner

Wev-tree of G. There exists a proper subset of W’ such that W’ is an upper edge-to-edge Steiner

set of G if W is not a minimal edge-to-edge Steiner set of G. At least one vertex, say y of

Km, exists where y is not incident with any of the edges of W’. This results in a contradiction

because y does not occur with any Steiner W
′

ev -tree of G. Therefore, W is an edge-to-edge Steiner

minimum set of G. Consequently, S+
ee(Km) ≥ m− 1. Consider the case where |S| ≥ mand there

exists a minimal edge-to-edge set of S. There is at least one cycle in S because it has at least

m edges. Let S
′

= S − {e}, be the edge of a cycle which lies [S] . It is obvious that S’ is an

edge-to-edge Steiner set with S
′ ∈ S, which is a contradiction . Consequently,s+ee(Km) = m− 1.

Theorem 2.12 For the complete bipartite graph G = Kr,s(2 ≤ r ≤ s), s+ee(G) = r + s− 2.

Proof. The bipartite sets of G are U = {u1, u2, u3, u4, · · · , ur} and V = {v1, v2, v3, u4, · · · , vs}.
Let Wi = {uiv1, uiv2, · · · , uiv(s− 1), u2vs, · · · , u(i− 1)vs, u(i + 1)vs, · · · , urvs}, (1 ≤ i ≤ r),Sj =

{u1vj , u2vj , · · · , u(r − 1)vj , urv1, urv2, · · · , urv(i − 1), urv(i + 1), · · · , urvs}, (1 ≤ j ≤ s) and

Wk = {u1v1, u2v(2), · · · , u(r−1)v(r−1), urvr, urv(mr+1), · · · , urvs}with |Wi| = |Sj | = r + s− 2 and

|Wk| = s. Any smallest edge-to-edge Steiner set of G is easily verifiable to be of the type Wi or Sj

or Wk. It follows that s+ee(G) = r + s− 2 since no proper subset of Wi(1 ≤ i ≤ r), Sj(1 ≤ j ≤ s),

and Wk is an edge-to-edge Steiner set of G.
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Theorem 2.13 For any non-trivial tree T with k end vertices, s+ee(G) = k.

Proof: This follows from Observation 2.4. In viva, Theorem 2.5. We have the realisation result

listed below.

Theorem 2.14 There is a connected graph G there exists for every pair of positive integers a

and b with 2 ≤ a ≤ b the property that see(G) = a and s+ee(G) = b.

Proof: Let G = T if a = b. Consequently, see(G) = s+ee(G) = a. Let a < b. Let T :

u0, u1, u2, u3, u4, u5 be the six-vertex path. Let Pi : xi, yi(1 ≤ i ≤ b − a + 1) be represent a path

on two vertices. Let H be the graph created by adding each xi(1 ≤ i ≤ b− a + 1) to u0 and each

yi(1 ≤ i ≤ b − a + 1) to u5 from P and Pi. Figure 2.2 displays the graph G. The collection of

end edges in G is given by Z = {zz1, zz2, , zz(a−2)}. Z is a subset of each edge-to-edge Steiner

set of G. It is clear that, Z is not an edge-to-edge Steiner set of G. Additionally, it is established

that Z ∪ e,e /∈ Z is not an edge-to-edge Steiner set of G and that, thus, see(G) ≥ a. Let

Z
′

= Z ∪ {u0, u1, u4, u5}. So that see(G) = a, Z’ is an edge-to-edge Steiner set of G.

We then demonstrate that s+ee(G) = b. Now W = Z∪{u2u3, x1y1, x2y2, · · · , x(b−a+1)y(b−a+1)}
is an edge-to-edge Steiner set of G. We demonstrate that W is an minimum edge-to-edge Steiner

set of G. Let W’ represent any proper subset of W. Then at least one edge, say f ∈W , such that

f /∈ W
′
. If f /∈ zzi(1 ≤ i ≤ a − 2) is determine. There is a contradiction if f = xiyi(1 ≤ i ≤

b − a + 1), since xiyi(1 ≤ i ≤ b − a + 1) does not lie on a Steiner Wev-tree of G. Therefore W

is a minimum edge-to-edge Steiner set of G, and as a result, s+ee(G) ≤ b. We demonstrate that

s+ee(G) = b. Suppose that s+ee(G) ≥ b+ 1. Then, there exists a minimum edge-to-edge Steiner set

W’ and such that |W ′ | ≥ b+ 1. Then W’ being a minimum edge-to-edge Steiner set of G is then

clearly demonstrated. Hence, s+ee(G) = b.

Figure 2: G
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3 Conclusion

In this article we studied the upper edge-to-edge Steiner number of a Graph and generalized

same properties of some standard graphs we will develop this concept with other distance related

parameters of graphs in the further studies.
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Abstract

With the exponential growth of online food platforms, the need for effective food

recommendation systems has become imperative to enhance user experience and

satisfaction. This paper explores the application of Singular Value Decomposition (SVD)

as a powerful technique for personalized food recommendations. SVD, a matrix

factorization method, is employed to analyse user-item interaction matrices, extracting

latent features that capture user preferences and item characteristics. The motivation

behind this research stems from the evolving landscape of online user behaviour, where

individuals seek tailored and relevant suggestions in the vast array of available food

options. Traditional recommendation systems often face challenges in providing accurate

and personalized suggestions due to the complexity of user preferences. By utilising SVD,

this study aims to address these challenges and improve recommendation accuracy by

uncovering latent patterns within user-item interactions. Through a comprehensive

analysis of SVD-based food recommendation systems, this research emphasizes the

significance of personalized recommendations in enhancing user engagement and

satisfaction. The proposed approach aims to contribute to the evolution of online food

platforms, providing users with a more enjoyable and personalized culinary experience

while fostering increased loyalty and user retention.

Key words:: SVD (Singular Value Decomposition)

AMS classification: 05C15, 05C69

1 Introduction

In the dynamic landscape of modern living, online food delivery applications have become

an integral part of our daily routines, significantly impacting the way we experience and indulge

in culinary delights. As the availability of diverse food options continues to burgeon, users face

the challenge of navigating through extensive menus to discover dishes that resonate with their

preferences. This paper explores the application of Singular Value Decomposition (SVD) to

revolutionize the food recommendation system within online delivery platforms. By leveraging

the power of SVD, we aim to provide users with tailored and enticing food suggestions, navigating

the vast array of options a vailable. This study delves into the intersection of technology and

gastronomy, addressing the growing significance of food delivery apps in shaping contemporary

dining experiences.
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2 Singular Value Decomposition

Let M be an m× n matrix, and let r be the rank of M. Then there exists a matrix factorization

called Singular value Decomposition (SVD)1 of M with the form U
∑

V T , where

1. U is an column-orthonormal matrix; That is, each of its columns is a unit vector and the

dot product of any two columns is 0.

2.
∑

is a diagonal matrix where the diagonal entries are called the singular values of M.

3. V T is an r × n row-orthonormal matrix; That is, each of its rows is a unit vector and the

dot product of any two columns is 0.

The SVD of a matrix M has strong connections to the eigenvectors of the matrix MTM

and MMT

3 Enhancing Online Food Recommendations

After completing their orders on the online food delivery app, users have the

opportunity to provide ratings based on their dining experiences. These user ratings play

a pivotal role in assessing the quality and impact of the digital culinary offerings. To

enhance the feedback process and gain more specific insights, users are categorized into

distinct groups: North Indian and South Indian dishes. This categorization ensures that

the assessments are tailored to the unique preferences and expectations of users from

these two regional cuisines. By collecting ratings from both categories, we can use

Singular Value Decomposition (SVD) to find suggestions for new users or others with

similar taste preferences. Consider the data collected from users who mainly fall under
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these two categories: preference for North Indian and South Indian dishes. Five users

from each category are chosen, and five dishes, where dishes 1, 2, and 3 belong to the

North Indian category, and dishes 4 and 5 belong to the South Indian category. The

ratings given by users under two main categories as North Indian and South Indian food

category as follow:

User Food 1 Food 2 Food 3 Food 4 Food 5

A 4 4 4 0 0

B 5 5 5 0 0

C 0 0 0 1 1

D 0 0 0 2 2

E 0 0 0 3 3

Where the first two A and B users are representing North Indian category and next three

users C, D, E represent South Indian category. Now we construct a matrix using the ratings

given by the user as follow:

A =



4 4 4 0 0

5 5 5 0 0

0 0 0 1 1

0 0 0 2 2

0 0 0 3 3


We consider the above rating matrix as A. the first step is to decompose the matrix A

using singular value decomposition. the SVD can be done accurately and quickly using

the python software. Thus, a matrix A is decomposed into U
∑

V T .

4 4 4 0 0

5 5 5 0 0

0 0 0 1 1

0 0 0 2 2

0 0 0 3 3


=


0.62 0 −0.78 0 0

0.78 0 0.62 0 0

0 0.27 0 −0.89 −0.36

0 0.53 0 0.45 −0.72

0 0.8 0 0 0.59




11.09 0 0 0 0

0 5.29 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




0.58 0.58 0.58 0 0

0 0 0 0.7 0.7

−0.7 0.7 0 0 0

−0.4 −0.4 0.81 0 0

0 0.8 0 −0.7 0.7


Neglecting the smaller eigen values by dimensionality reduction we get,
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≈



0.62 0

0.78 0

0 0.27

0 − 0.53

0 0.8


[

11.09 0

0 5.29

][
0.58 0.58 0.58 0 0

0 0 0 0.7 0.7

]

Where, U=



0.62 0

0.78 0

0 0.27

0 − 0.53

0 0.8


,
∑

=

[
11.09 0

0 5.29

]
V T =

[
0.58 0.58 0.58 0 0

0 0 0 0.7 0.7

]

U-Connects user to foods.∑
-Each diagonal entry represents the strength of each category.

V T -Connects category to foods.

Here the strength of North Indian Category is higher than South Indian since the data

provides more information about the South Indian Category. By using the constructed

SVD we can find a suggestion list for new user having similar interest of foods from the

datas which are already collected and calculated. Suppose there is a new user H who only

read Food 3. We could recommend foods to her in following ways: If H be choice of new

users ratings to find the suggestion list for new user, we have to find the inner product of

the new user ratings and the transpose of the matrix V that is H.V.This inner product of

gives the category of foods which should be suggested for the new user.

We can represent the rating given by user H as H =
[
5 0 0 0 0

]

Now H.V =
[
5 0 0 0 0

]


0.58 0

0.58 0

0.58 0

0 0.7

0 0.7


From this it is clear that user H is interested in

North Indian related foods, but not in South Indian foods. we now have a representation

of user H in North Indian Category. We can also map user C back to foods by computing

[2.90]V T the matrix V T represent the category each food comes under. if we compute
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[2.90]V T we get the list of foods that is to be suggested for user C.

Let the rating of new user I be represented as I=[0 4 5 0 0]Then

I.V=
[
0 4 5 0 0

]


0.58 0

0.58 0

0.58 0

0 0.7

0 0.7


User I is also interested in North Indian related foods. we now have a representation of the

user I in North Indian category. we can also map user I back as follow:[
5.22 0

]
V T =

[
5.22 0

] [
0.58 0.58 0.58 0

0 0 0 0.7 0.7

]

=
[
3.03 3.03 3.03 0 0

]

This indicates User I would like dish1, dish 2 and dish 3 but not dish 4 and dish 5. In similar

way the SVD can computed for m number of dishes and n number of users (for larger value

of m and n) and the user can be categorised accordingly and required suggestion for the

food can be made. Further this recommendation system for foods to different category of

users in online food delivery applications can be completely automated using programming

by Python software.

4 Conclusion

In conclusion, the implementation of a recommendation system for food using Singular

Value Decomposition holds great promise in elevating the user experience on online food

delivery applications. Harnessing the capabilities of SVD enables us to offer diners

personalized and relevant food recommendations, ensuring they serve a delightful culinary

experience in todays diverse gastronomic landscape. With the exponential growth in the

availability of North Indian and South Indian dishes on these platforms, navigating the

extensive menu options has become a challenge for users. A food recommendation system

proves to be a valuable tool, guiding users to explore and relish new dishes aligned with

their taste preferences and culinary interests.
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Abstract

Recent advancements in human-computer interaction have emphasized the development

of logical communication channels between humans and computers. Vision-based interface

technologies have emerged as a promising avenue, enabling the extraction of nuanced

information from input images without the need for expensive hardware. This approach

holds significant potential for enhancing interaction systems. This paper describes image

processing using anisotropic diffusion and by applying partial differential equations the

similarity between human and animal brain tumour and the type of tumour in the image

detected. Utilizing the capabilities of the MATLAB toolbox and its associated functions,

we can efficiently and accurately process and analyze images in real-time.

Key words:: Anisotropic diffusion, Matrix Laboratory, Medical imaging techniques.

AMS classification: 35Q68

1 Introduction

Software for high-performance numerical computing and visualization is available under

the name MATLAB. With hundreds of built-in functions for technical computation, graphics,

and animation, it offers an interactive environment. The best part is that it also offers simple

extension using a high-level programming language of its own. MATrix LABoratory is the

meaning behind the term MATLAB. Anisotropic diffusion is often described using a partial

differential equation that models the behavior of the image over time. The most commonly

used PDE in anisotropic diffusion is the Perona-Malik equation

∂I∂t = ∇ · (c (||∇I||)∇I) (1)

Where

I - is the image intensity,

t - is time,

∇ - is the gradient operator,

C (||∇I||) - is the diffusion coefficient that varies based on the gradient magnitude ||∇I||,
. - represents the dot products and

∇I . - Represents the divergence
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2 Brain Tumour

A brain tumour is a mass or growth of abnormal cells in the brain, which are what make up

a human body. For medical and scientific research, the interior of the human body is visualized

using medical imaging techniques, and this technology can also be used to identify non-invasive

conditions. The numerous medical imaging technologies, such as MRI, Ultrasound, CT scan,

SPECT, PET, and X-ray, are based on non-invasive methods. MRI pictures can be used to

detect brain tumours. The detection of brain cancers using image processing methods is the

main topic of this research.

2.1 INPUT FOR MATLAB

ANISOTROPIC DIFFUSION

f unc t i on d i f f i m = a n i s o d i f f ( im , num iter , d e l t a t , kappa , opt ion )

f p r i n t f ( ’ Removing no i s e \n ’ ) ;

f p r i n t f ( ’ F i l t e r i n g Completed ! ! ’ ) ;

% Convert input image to double .

im = double ( im ) ;

% PDE ( p a r t i a l d i f f e r e n t i a l equat ion ) i n i t i a l c ond i t i on .

d i f f i m = im ;

% Center p i x e l d i s t a n c e s .

dx = 1 ;

dy = 1 ;

dd = s q r t ( 2 ) ;

% 2D convo lut ion masks − f i n i t e d i f f e r e n c e

hN = [ 0 1 0 ; 0 −1 0 ; 0 0 0 ] ;

hS = [ 0 0 0 ; 0 −1 0 ; 0 1 0 ] ;

hE = [ 0 0 0 ; 0 −1 1 ; 0 0 0 ] ;

hW = [ 0 0 0 ; 1 −1 0 ; 0 0 0 ] ;

hNE = [ 0 0 1 ; 0 −1 0 ; 0 0 0 ] ;

hSE = [ 0 0 0 ; 0 −1 0 ; 0 0 1 ] ;

hSW = [ 0 0 0 ; 0 −1 0 ; 1 0 0 ] ;

hNW = [ 1 0 0 ; 0 −1 0 ; 0 0 0 ] ;

% Ani so t rop i c d i f f u s i o n .

f o r t = 1 : num iter

% F i n i t e d i f f e r e n c e s . [ i m f i l t e r ( . , . , ’ conv ’ ) can be rep laced by conv2 ( . , . , ’ same ’ ) ]
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nablaN = i m f i l t e r ( d i f f i m ,hN, ’ conv ’ ) ;

nablaS = i m f i l t e r ( d i f f i m , hS , ’ conv ’ ) ;

nablaW = i m f i l t e r ( d i f f i m ,hW, ’ conv ’ ) ;

nablaE = i m f i l t e r ( d i f f i m , hE , ’ conv ’ ) ;

nablaNE = i m f i l t e r ( d i f f i m ,hNE, ’ conv ’ ) ;

nablaSE = i m f i l t e r ( d i f f i m , hSE , ’ conv ’ ) ;

nablaSW = i m f i l t e r ( d i f f i m ,hSW, ’ conv ’ ) ;

nablaNW = i m f i l t e r ( d i f f i m ,hNW, ’ conv ’ ) ;

% D i f f u s i o n func t i on .

i f opt ion == 1

cN = exp(−(nablaN/kappa ) . ˆ 2 ) ;

cS = exp(−( nablaS /kappa ) . ˆ 2 ) ;

cW = exp(−(nablaW/kappa ) . ˆ 2 ) ;

cE = exp(−(nablaE/kappa ) . ˆ 2 ) ;

cNE = exp(−(nablaNE/kappa ) . ˆ 2 ) ;

cSE = exp(−(nablaSE/kappa ) . ˆ 2 ) ;

cSW = exp(−(nablaSW/kappa ) . ˆ 2 ) ;

cNW = exp(−(nablaNW/kappa ) . ˆ 2 ) ;

e l s e i f opt ion == 2

cN = 1 . / (1 + ( nablaN/kappa ) . ˆ 2 ) ;

cS = 1 . / ( 1 + ( nablaS /kappa ) . ˆ 2 ) ;

cW = 1 ./ ( 1 + (nablaW/kappa ) . ˆ 2 ) ;

cE = 1 . / ( 1 + ( nablaE/kappa ) . ˆ 2 ) ;

cNE = 1 . / (1 + ( nablaNE/kappa ) . ˆ 2 ) ;

cSE = 1 ./ ( 1 + ( nablaSE/kappa ) . ˆ 2 ) ;

cSW = 1 . / ( 1 + (nablaSW/kappa ) . ˆ 2 ) ;

cNW = 1 . / ( 1 + (nablaNW/kappa ) . ˆ 2 ) ;

end

% D i s c r e t e PDE s o l u t i o n .

d i f f i m = d i f f i m + . . .

d e l t a t ∗ ( . . .

(1/( dy ˆ2))∗cN .∗ nablaN + (1/( dy ˆ2))∗ cS .∗ nablaS + . . . (1/( dx ˆ2))∗cW.∗ nablaW + (1/( dx ˆ2))∗ cE .∗ nablaE + . . . (1/( dd ˆ2))∗cNE.∗ nablaNE + (1/( dd ˆ2))∗ cSE .∗ nablaSE + . . . (1/( dd ˆ2))∗cSW.∗ nablaSW + (1/( dd ˆ2))∗cNW.∗nablaNW ) ;

End
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c l c

c l o s e a l l

c l e a r a l l

%% Input

[ I , path ]= u i g e t f i l e ( ’ ∗ . jpg ’ , ’ s e l e c t a input image ’ ) ;

s t r=s t r c a t ( path , I ) ;

s=imread ( s t r ) ;

f i g u r e ;

imshow ( s ) ;

t i t l e ( ’ Input image ’ , ’ FontSize ’ , 2 0 ) ;

%% F i l t e r num iter = 10 ;

d e l t a t = 1/7 ;

kappa = 15 ;

opt ion = 2 ;

d i sp ( ’ Preproce s s ing image p l e a s e wait . . . ’ ) ;

inp = a n i s o d i f f ( s , num iter , d e l t a t , kappa , opt ion ) ;

inp = uint8 ( inp ) ;

inp=i m r e s i z e ( inp , [ 2 5 6 , 2 5 6 ] ) ;

i f s i z e ( inp ,3)>1

inp=rgb2gray ( inp ) ;

end

f i g u r e ;

imshow ( inp ) ;

t i t l e ( ’ F i l t e r e d image ’ , ’ FontSize ’ , 2 0 ) ;

%% th r e s h o l d in g

sout=i m r e s i z e ( inp , [ 2 5 6 , 2 5 6 ] ) ;

t0=mean( s ( : ) ) ;

th=t0 +((max( inp ( : ) )+ min ( inp ( : ) ) ) . / 2 ) ;

f o r i =1:1 : s i z e ( inp , 1 )

f o r j =1:1 : s i z e ( inp , 2 )

i f inp ( i , j )>th

sout ( i , j )=1;

e l s e

sout ( i , j )=0;
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end

end

end

%% Morpholog ica l Operation

l a b e l=bwlabel ( sout ) ;

s t a t s=reg ionprops ( l o g i c a l ( sout ) , ’ S o l i d i t y ’ , ’ Area ’ , ’ BoundingBox ’ ) ;

dens i ty =[ s t a t s . S o l i d i t y ] ;

area =[ s t a t s . Area ] ; h i gh dense a r ea=dens i ty >0.7 ;

max area=max( area ( h i gh dense a r ea ) ) ;

tumor labe l=f i n d ( area==max area ) ; tumor=ismember ( l abe l , tumor labe l ) ;

i f max area>200

f i g u r e ;

imshow ( tumor )

t i t l e ( ’ tumor alone ’ , ’ FontSize ’ , 2 0 ) ;

e l s e

h = msgbox ( ’No Tumor ! ! ’ , ’ s tatus ’ ) ;

%di sp ( ’ no tumor ’ ) ; r e turn ;

end

%% Bounding box

box = s t a t s ( tumor labe l ) ;

wantedBox = box . BoundingBox ;

f i g u r e

imshow ( inp ) ;

t i t l e ( ’ Bounding Box ’ , ’ FontSize ’ , 2 0 ) ;

hold on ;

r e c t a n g l e ( ’ Pos i t ion ’ , wantedBox , ’ EdgeColor ’ , ’ y ’ ) ;

hold o f f ;

%% Getting Tumor Outl ine − image f i l l i n g , eroding , sub t ra c t i ng

% e r o s i o n the wa l l s by a few p i x e l s

di lationAmount = 5 ;

rad = f l o o r ( dilationAmount ) ;

[ r , c ] = s i z e ( tumor ) ;
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f i l l e d I m a g e = i m f i l l ( tumor , ’ ho les ’ ) ;

f o r i =1: r

f o r j =1: c

x1=i−rad ;

x2=i+rad ;

y1=j−rad ;

y2=j+rad ;

i f x1<1

x1=1;

end

i f x2>r

x2=r ;

end

i f y1<1

y1=1;

end

i f y2>c

y2=c ;

end

erodedImage ( i , j ) = min (min ( f i l l e d I m a g e ( x1 : x2 , y1 : y2 ) ) ) ;

end

end

f i g u r e

imshow ( erodedImage ) ;

t i t l e ( ’ eroded image ’ , ’ FontSize ’ , 2 0 ) ;

%% subt ra c t i ng eroded image from o r i g i n a l BW image tumorOutline=tumor ;

tumorOutline ( erodedImage )=0;

f i g u r e ;

imshow ( tumorOutline ) ;

t i t l e ( ’Tumor Outl ine ’ , ’ FontSize ’ , 2 0 ) ;

%% I n s e r t i n g the o u t l i n e in f i l t e r e d image in red c o l o r

rgb = inp ( : , : , [ 1 1 1 ] ) ;

red = rgb ( : , : , 1 ) ;
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red ( tumorOutline )=255;

green = rgb ( : , : , 2 ) ;

green ( tumorOutline )=0;

blue = rgb ( : , : , 3 ) ;

b lue ( tumorOutline )=0;

tumorOut l ineInserted ( : , : , 1 ) = red ;

tumorOut l ineInserted ( : , : , 2 ) = green ;

tumorOut l ineInserted ( : , : , 3 ) = blue ;

f i g u r e

imshow ( tumorOut l ineInserted ) ;

t i t l e ( ’ Detected Tumer ’ , ’ FontSize ’ , 2 0 ) ;

%% Display Together

f i g u r e

subplot ( 2 3 1 ) ; imshow ( s ) ; t i t l e ( ’ Input image ’ , ’ FontSize ’ , 2 0 ) ;

subplot ( 2 3 2 ) ; imshow ( inp ) ; t i t l e ( ’ F i l t e r e d image ’ , ’ FontSize ’ , 2 0 ) ;

subplot ( 2 3 3 ) ; imshow ( inp ) ; t i t l e ( ’ Bounding Box ’ , ’ FontSize ’ , 2 0 ) ;

hold on ; r e c t a n g l e ( ’ Pos i t ion ’ , wantedBox , ’ EdgeColor ’ , ’ y ’ ) ;

hold o f f ;

subplot ( 2 3 4 ) ; imshow ( tumor ) ; t i t l e ( ’ tumor alone ’ , ’ FontSize ’ , 2 0 ) ;

subplot ( 2 3 5 ) ; imshow ( tumorOutline ) ; t i t l e ( ’ TumorOutline ’ , ’ FontSize ’ , 2 0 ) ;

subplot ( 2 3 6 ) ; imshow ( tumorOut l ineInserted ) ; t i t l e ( ’ Detected Tumor ’ , ’ FontSize ’ , 2 0 ) ;

3.1 Input Images

Figure. 1. Figure. 2. Figure. 3.
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4 Results and Discussion

4.1 Output
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Output

Detected Tumour
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Output for Image 2
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4.1 Output

Output for Image 3
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Filtered image

Tumour Detection

No Tumour
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5 Characteristics of Chimpanzees

Among all animals, the brains of great apes, particularly chimpanzees are the most similar

to the human brain in terms of structure and function. This similarity is due to the close

evolutionary relationship between humans and these primates. Chimpanzees, for example, share

about 98% of their DNA with humans

⇒ similarities between the brains of humans and chimpanzees

1. Brain Structure

2. Complexity

3. Social Cognition

4. Tool Use

5. Emotional Expression

5.1 Input for Matlab

Anisotropic Diffusion

f unc t i on d i f f i m = a n i s o d i f f c h i m p ( im , num iter , d e l t a t , kappa , opt ion )

f p r i n t f ( ’ Removing no i s e \n ’ ) ;

f p r i n t f ( ’ F i l t e r i n g Completed ! ! ’ ) ;

% Convert input image to double .

im = double ( im ) ;

% PDE ( p a r t i a l d i f f e r e n t i a l equat ion ) i n i t i a l cond i t i on .

d i f f i m = im ;

% Center p i x e l d i s t a n c e s .

dx = 1 ;

dy = 1 ;

dd = s q r t ( 2 ) ;

% 2D convo lut ion masks − f i n i t e d i f f e r e n c e

hN = [ 0 1 0 ; 0 −1 0 ; 0 0 0 ] ;

hS = [ 0 0 0 ; 0 −1 0 ; 0 1 0 ] ;

hE = [ 0 0 0 ; 0 −1 1 ; 0 0 0 ] ;

hW = [ 0 0 0 ; 1 −1 0 ; 0 0 0 ] ;

hNE = [ 0 0 1 ; 0 −1 0 ; 0 0 0 ] ;

hSE = [ 0 0 0 ; 0 −1 0 ; 0 0 1 ] ;
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hSW = [ 0 0 0 ; 0 −1 0 ; 1 0 0 ] ;

hNW = [ 1 0 0 ; 0 −1 0 ; 0 0 0 ] ;

% Ani so t rop i c d i f f u s i o n .

f o r t = 1 : num iter

% F i n i t e d i f f e r e n c e s . [ i m f i l t e r ( . , . , ’ conv ’ ) can be rep laced by conv2 ( . , . , ’ same ’ ) ]

nablaN = i m f i l t e r ( d i f f i m ,hN, ’ conv ’ ) ;

nablaS = i m f i l t e r ( d i f f i m , hS , ’ conv ’ ) ;

nablaW = i m f i l t e r ( d i f f i m ,hW, ’ conv ’ ) ;

nablaE = i m f i l t e r ( d i f f i m , hE , ’ conv ’ ) ;

nablaNE = i m f i l t e r ( d i f f i m ,hNE, ’ conv ’ ) ;

nablaSE = i m f i l t e r ( d i f f i m , hSE , ’ conv ’ ) ;

nablaSW = i m f i l t e r ( d i f f i m ,hSW, ’ conv ’ ) ;

nablaNW = i m f i l t e r ( d i f f i m ,hNW, ’ conv ’ ) ;

% D i f f u s i o n func t i on .

i f opt ion == 1

cN = exp(−(nablaN/kappa ) . ˆ 2 ) ;

cS = exp(−( nablaS /kappa ) . ˆ 2 ) ;

cW = exp(−(nablaW/kappa ) . ˆ 2 ) ;

cE = exp(−(nablaE/kappa ) . ˆ 2 ) ;

cNE = exp(−(nablaNE/kappa ) . ˆ 2 ) ;

cSE = exp(−(nablaSE/kappa ) . ˆ 2 ) ;

cSW = exp(−(nablaSW/kappa ) . ˆ 2 ) ;

cNW = exp(−(nablaNW/kappa ) . ˆ 2 ) ;

e l s e i f opt ion == 2

cN = 1 . / (1 + ( nablaN/kappa ) . ˆ 2 ) ;

cS = 1 . / ( 1 + ( nablaS /kappa ) . ˆ 2 ) ;

cW = 1 ./ ( 1 + (nablaW/kappa ) . ˆ 2 ) ;

cE = 1 . / ( 1 + ( nablaE/kappa ) . ˆ 2 ) ;

cNE = 1 . / (1 + ( nablaNE/kappa ) . ˆ 2 ) ;

cSE = 1 ./ ( 1 + ( nablaSE/kappa ) . ˆ 2 ) ;

cSW = 1 . / ( 1 + (nablaSW/kappa ) . ˆ 2 ) ;

cNW = 1. / ( 1 + (nablaNW/kappa ) . ˆ 2 ) ;

end

% D i s c r e t e PDE s o l u t i o n .

d i f f i m = d i f f i m + . . .

d e l t a t ∗ ( . . .

(1/( dy ˆ2))∗cN .∗ nablaN + (1/( dy ˆ2))∗ cS .∗ nablaS + . . .
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(1/( dx ˆ2))∗cW.∗ nablaW + (1/( dx ˆ2))∗ cE .∗ nablaE + . . .

(1/( dd ˆ2))∗cNE.∗ nablaNE + (1/( dd ˆ2))∗ cSE .∗ nablaSE + . . .

(1/( dd ˆ2))∗cSW.∗ nablaSW + (1/( dd ˆ2))∗cNW.∗nablaNW

) ;

End

End

For Brain Tumour

c l c ;

c l o s e a l l ;

c l e a r a l l ;

%% Input

[ I , path ] = u i g e t f i l e ( ’ ∗ . jpg ’ , ’ S e l e c t an input image ’ ) ;

s t r = s t r c a t ( path , I ) ;

s = imread ( s t r ) ;

f i g u r e ;

imshow ( s ) ;

t i t l e ( ’ Input image ’ , ’ FontSize ’ , 2 0 ) ;

%% Preproce s s ing

num iter = 10 ;

d e l t a t = 1/7 ;

kappa = 15 ;

opt ion = 2 ;

d i sp ( ’ Preproce s s ing image p l e a s e wait . . . ’ ) ;

inp = a n i s o d i f f ( s , num iter , d e l t a t , kappa , opt ion ) ;

inp = uint8 ( inp ) ;

inp = i m r e s i z e ( inp , [ 2 5 6 , 2 5 6 ] ) ;

i f s i z e ( inp , 3) > 1

inp = rgb2gray ( inp ) ;

end

f i g u r e ;

imshow ( inp ) ;

t i t l e ( ’ F i l t e r e d image ’ , ’ FontSize ’ , 2 0 ) ;
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%% Threshold ing

sout = i m r e s i z e ( inp , [ 256 , 2 5 6 ] ) ;

t0 = mean( s ( : ) ) ;

th = t0 + ( (max( inp ( : ) ) + min ( inp ( : ) ) ) / 2 ) ;

f o r i = 1 : s i z e ( inp , 1)

f o r j = 1 : s i z e ( inp , 2)

i f inp ( i , j ) > th

sout ( i , j ) = 1 ;

e l s e

sout ( i , j ) = 0 ;

end

end

end

%% Morpholog ica l Operat ions

l a b e l = bwlabel ( sout ) ;

s t a t s = reg ionprops ( l o g i c a l ( sout ) , ’ S o l i d i t y ’ , ’ Area ’ , ’ BoundingBox ’ ) ;

dens i ty = [ s t a t s . S o l i d i t y ] ;

area = [ s t a t s . Area ] ;

h i gh dense a r ea = dens i ty > 0 . 7 ;

max area = max( area ( h i gh dense a r ea ) ) ;

tumor labe l = f i n d ( area == max area ) ;

tumor = ismember ( l abe l , tumor labe l ) ;

i f max area > 200

f i g u r e ;

imshow ( tumor )

t i t l e ( ’Tumor alone ’ , ’ FontSize ’ , 2 0 ) ;

e l s e

h = msgbox ( ’No Tumor ! ! ’ , ’ s tatus ’ ) ;

end

%% Bounding Box

box = s t a t s ( tumor labe l ) ;

wantedBox = box . BoundingBox ;

129



5.1 Input for Matlab
Proceedings of ICHGD-2024 ISBN: 978-81-19821-72-3

5 CHARACTERISTICS OF CHIMPANZEES

f i g u r e

imshow ( inp ) ;

t i t l e ( ’ Bounding Box ’ , ’ FontSize ’ , 2 0 ) ;

hold on ;

r e c t a n g l e ( ’ Pos i t ion ’ , wantedBox , ’ EdgeColor ’ , ’ y ’ ) ;

hold o f f ;

%% Getting Tumor Outl ine

dilationAmount = 5 ;

rad = f l o o r ( dilationAmount ) ;

[ r , c ] = s i z e ( tumor ) ;

f i l l e d I m a g e = i m f i l l ( tumor , ’ ho les ’ ) ;

f o r i = 1 : r

f o r j = 1 : c

x1 = i − rad ;

x2 = i + rad ;

y1 = j − rad ;

y2 = j + rad ;

i f x1 < 1

x1 = 1 ;

end

i f x2 > r

x2 = r ;

end

i f y1 < 1

y1 = 1 ;

end

i f y2 > c

y2 = c ;

end

erodedImage ( i , j ) = min (min ( f i l l e d I m a g e ( x1 : x2 , y1 : y2 ) ) ) ;

end

end

%% Subtract ing eroded image from o r i g i n a l BW image

tumorOutline = tumor ;
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tumorOutline ( erodedImage ) = 0 ;

f i g u r e ;

imshow ( tumorOutline ) ;

t i t l e ( ’Tumor Outl ine ’ , ’ FontSize ’ , 2 0 ) ;

%% I n s e r t i n g the o u t l i n e in f i l t e r e d image in red c o l o r

rgb = inp ( : , : , [ 1 1 1 ] ) ;

red = rgb ( : , : , 1 ) ;

red ( tumorOutline ) = 255 ;

green = rgb ( : , : , 2 ) ;

green ( tumorOutline ) = 0 ;

blue = rgb ( : , : , 3 ) ;

b lue ( tumorOutline ) = 0 ;

tumorOut l ineInserted ( : , : , 1) = red ;

tumorOut l ineInserted ( : , : , 2) = green ;

tumorOut l ineInserted ( : , : , 3) = blue ;

f i g u r e

imshow ( tumorOut l ineInserted ) ;

t i t l e ( ’ Detected Tumor ’ , ’ FontSize ’ , 2 0 ) ;

%% Display Together

f i g u r e

subplot ( 2 3 1 ) ; imshow ( s ) ; t i t l e ( ’ Input image ’ , ’ FontSize ’ , 2 0 ) ;

subplot ( 2 3 2 ) ; imshow ( inp ) ; t i t l e ( ’ F i l t e r e d image ’ , ’ FontSize ’ , 2 0 ) ;

subplot ( 2 3 3 ) ; imshow ( inp ) ; t i t l e ( ’ Bounding Box ’ , ’ FontSize ’ , 2 0 ) ;

hold on ;

r e c t a n g l e ( ’ Pos i t ion ’ , wantedBox , ’ EdgeColor ’ , ’ y ’ ) ;

hold o f f ;

subplot ( 2 3 4 ) ; imshow ( tumor ) ; t i t l e ( ’Tumor alone ’ , ’ FontSize ’ , 2 0 ) ;

subplot ( 2 3 5 ) ; imshow ( tumorOutline ) ; t i t l e ( ’Tumor Outl ine ’ , ’ FontSize ’ , 2 0 ) ;

subplot ( 2 3 6 ) ; imshow ( tumorOut l ineInserted ) ; t i t l e ( ’ Detected Tumor ’ , ’ FontSize ’ , 2 0 ) ;
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Input images

Figure. 1. Figure. 2. Figure. 3.

Results and Discussion

Output

Input image Filtered image Output
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5.1 Input for Matlab

Output for Image 2

Input image Filtered image Tumour Alone

Bounding Box Eroded image Detected Tumour
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Output for Image 3

Input image Filtered image Tumour Detection

6 Conclusion

In conclusion, By applying mathematical models like PDEs to analyze brain imaging data, we

can improve our ability to accurately identify and characterize tumors. Since brain tumours are

a lethal form of cancer, early and precise identification is essential for effective therapy. Tumour

detection by hand can be time-consuming and error-prone. This experiment suggests a technique

for locating a tumour, if one is there, in a brain MRI scan. The image noise is removed using an

isotropic filtering technique. The main advantage of this kind of detection is less time consuming

for long time. Moreover, the use of PDEs allows for a more comprehensive understanding of

tumor growth and behavior, leading to advancements in diagnostic techniques and therapeutic

strategies for brain tumors in both humans and animals.
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